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EXAMPLES OF PDE

One-D Wave equation

One-D Heat equation

Two-D Laplace equation

Two-D Wave Equation

Two-D Poisson equation

Three-D Laplace Equation
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A PDE is an equation involving one or more partial derivatives of a function.
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EXAMPLE OF WAVE EQUATION

Ø Problem, as a solution to the wave equation
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EXAMPLE OF HEAT EQUATION
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EXAMPLE OF LAPLACE EQUATION
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VIBRATING STRING AND THE WAVE EQUATION

Ø General assumptions for vibrating string problem:
Ø mass per unit length is constant; string is perfectly elastic and no resistance 

to bending.
Ø tension in string is sufficiently large so that gravitational forces may be 

neglected.
Ø string oscillates in a plane; every particle of string moves vertically only; 

and, deflection and slope at every point are small in terms of absolute value.

Deflected string at fixed time t
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DERIVATION OF WAVE EQUATION

Deflected string at fixed time t

T1, T2 = tension in string at point P and Q
T1 cos a = T2 cos b = T, a constant (as string does not move in horizontal 
dir.)

Vertical components of tension:
– T1 sin a and   T2 sin b
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DERIVATION OF WAVE EQUATION (Cont.)
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DERIVATION OF WAVE EQUATION (Cont.)
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Solution by Separating Variables
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Solution by Separating Variables
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Solution by Separating Variables
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Solution by Separating Variables
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Solution by Separating Variables
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Solution by Separating Variables
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From prior work the heat equation is:

In one dimension (laterally insulated):  

Some boundary conditions at each end:

u(0, t) = u(L, t) = 0, 
for all t

Initial Condition:
u(x, 0) = f(x), 

specified    0 ≤ x ≤ L

HEAT EQUATION
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CONVERT TO
ORDINARY DIFFERENTIAL EQUATIONS

U(x,t) = F(x)G(t)
FG' = c2F"G
¸ FGc2

G'/(c2G) = F"/F = -p2

F" + p2F = 0, 
and

G' +  (cp)2G = 0
Solution for F is:

F = A cos px +B sin px

Applying boundary conditions at x = 0 and x = L gives A = 0 and
sin pL = 0, which results in pL = np, or:

p = (np)/L.
Now 

Fn = sin (npx/L)

let ln = (cnp/L), and proceed to time solution
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TIME-DEPENDENT SOLUTION

Gn = Bnexp(-ln
2t)

Combined solution in terms of space and time:

This solution must satisfy the initial condition that u(x,0) equals f(x)

Thus:

As before, the constants Bn must be the coefficients of the Fourier sine 
series:
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SOME OBSERVATIONS

Ø The exponential terms in u(x,t) approach zero for increasing time, and 
this should be expected, as the edge conditions (x = 0 and x = L) are at 
zero, and there is no internal heat generation.

Ø Since exp(-0.001785t) is 0.5, whenever the exponent for the nth term, 
lnt, is -0.693, the temperature has decreased by 1/2.

Ø If the ends of the bar were perfectly insulated, then over time the bar 
temperature will approach some uniform value
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VIBRATING MEMBRANE AND
THE TWO-DIMENSIONAL WAVE EQUATION

Three Assumptions:

Ø The mass of the membrane is constant, the membrane is perfectly 
flexible, and offers no resistance to bending;

Ø The membrane is stretched and then fixed along its entire boundary 
in the x-y plane.  Tension per unit length (T) which is caused by 
stretching is the same at all points and in the plane and does not 
change during the motion;

Ø The deflection of the membrane u(x,y,t) during vibratory motion is 
small compared to the size of the membrane, and all angles of 
inclination are small
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GEOMETRY OF VIBRATING "DRUM"

Vibrating Membrane
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NOW FOR NEWTON'S LAW

Divide by rDxDy:

Take limit as  Dx ® 0, Dy ® 0  

This is the two-dimensional wave equation       
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WAVE EQUATION

Ø In Laplacian form:

where 
c2 = T/r

§ Some boundary conditions:  u = 0 along all edges of the 
boundary.

§ Initial conditions could be the initial position and the initial 
velocity of the membrane

§ As before, the solution will be broken into separate functions 
of x,y, and t.

§ Subscripts will indicate variable for which derivatives are 
taken.
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SOLUTION OF 2-D WAVE EQUATION

Let 
u(x, y, t) = F(x, y)G(t)

substitute into wave equation:

divide by c2FG, to get:

This gives two equations, one in time and one in space.  For time, 

where l = cn, and, what is called the amplitude function:

also known as the Helmholtz equation.

( )
&&G
G

Fxxc
 =  1

F
 +  F  2 yy = -n2

&&G G  +  =  02l

( )FG F G Gxx
&& ; =  c +  F2

yy

F F xx  +  F  +  =  0yy n2



25
B.D. Youn
2010 Engineering Mathematics II Module 4

SEPARATION OF THE HELMHOLTZ EQUATIONS

Let                                    F(x, y)=H(x)Q(y)

and, substituting into the Helmholtz:

Here the variables may be separated by dividing by HQ:

Note:  p2 = n2 – k2

As usual, set each side equal to a constant, -k2 .  This leads to two ordinary 
linear differential equations:
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