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EXAMPLES OF PDE

A PDE is an equation involving one or more partial derivatives of a function.

One-D Wave equation Two-D Wave Equation
0°u ,0%u 0’u z(azu 82uj
PYCRLPN) 2 %52 T
ot 0x ot 0X 0y
One-D Heat equation Two-D Poisson equation
du , 0%u o'u . J’u
2 27 + =f(x,
0t ¢ 0x’ ox> oy’ ( y)
Two-D Laplace equation Three-D Laplace Equation
o'u  Ju 0°u 0°u 0°u
T 5270 otz t 2 =0
ox oy 0X oy 0z
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EXAMPLE OF WAVE EQUATION

» Problem, as a solution to the wave equation
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o czé—u > u(t,x)

ot 0x’

u(t,x) =sin 9t-sin x

% = (9 cos 9t)(sin 4 x)
?Ztlzl = —81 sin 9t sin +x
ﬁ—z =sin 9t-(+ cos +x)
j;l = sin 9t-(—% cos 1 x)

—81 sin 9t-sin 1x = ¢’ (—%) sin 9t-sin + x is identically true,

ifc? = (16)(81) — c= %36



EXAMPLE OF HEAT EQUATION
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ou , 0%u
ot OX
u=¢e™ cos 3x
% = —4e™ cos 3x
% = —3e¢ ™ sin 3x
2
% = —9¢™ cos 3x
X
—4e™ cos3x= —-9¢ ™ cos 3x - ¢’

if ¢’ = % an 1dentity



EXAMPLE OF LAPLACE EQUATION

Pu Pu

0x” 0y’

u=¢ siny

du .

3, ¢ siny

0°u .

2 ¢ sy

du .

5 = ¢" cosy

0’u .

ﬁ = -¢"siny

e siny - e siny = 0
0=20
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VIBRATING STRING AND THE WAVE EQUATION

Deflected string at fixed time t

A\

General assumptions for vibrating string problem:

A\

mass per unit length is constant; string is perfectly elastic and no resistance
to bending.

» tension in string is sufficiently large so that gravitational forces may be
neglected.

» string oscillates in a plane; every particle of string moves vertically only;
and, deflection and slope at every point are small in terms of absolute value.

Y
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DERIVATION OF WAVE EQUATION

Deflected string at fixed time t

T,, T, = tension 1n string at point P and Q
T, cosa =T, cos B =T, a constant (as string does not move in horizontal

dir.)

Vertical components of tension:
—T,sma and T,sinf

L\d_" "‘b\.@
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DERIVATION OF WAVE EQUATION (Cont.)

Let Ax = length @ and p = mass/unit length
Thus Ax has mass pAx

Newtonns Law: F =mass x acceleration

: : . o*u :
If u 1s the vertical position, —- = acceleration
4
: : o*u
T,smp — T smma= (pr) >
Ot
T, sin T, sin « AX O°u :
Lsng T snma =tan f — tan o = P — (equation 2)
T, cos 8 T, cos a T ot
L. . : Ju
At P(X 1s distance from orlgln), tan « 1s slope = =
x X
o ou
Likewise at Q, tan f = —
X x +Ax O E20TD
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DERIVATION OF WAVE EQUATION (Cont.)

. 1|0 o 0
Substituting and + Ax: — > el B —;1
AX | OX|y 4 Ay OX|y T ot
o%u
as Ax — 0, L.H.S. becomes —
0X
T
Letc? = —, so that
p
o%u _ 2 6°u
ot? ox>
This 1s the 1- D Wave equation
IfTT orpid )
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Solution by Separating Variables

one-dimensional wave equation

(1) &y _ 2 9w A T
e’ ax* ,

for the unknown deflection u(x. 7) of the string.

Since the string 1s fastened at the ends x =0 and x = L (see Sec. 12.2). we have the two boundary
conditions

(2) (a) wu(0,£) =0, (&) wil,t)=10 forall .

Furthermore, the form of the motion of the string will depend on 1ts initial deflection (deflection at time ¢
= 0). call it flx). and on its initial velocity (velocity at £ = 0), call it g(x). We thus have the two initial

conditions
(3) (@) u(x,0)=f(x), (B) u(x, 0) =g(x) O=x=z1)

where = cu/ct. We now have to find a solution of the PDE (1) satisfying the conditions (2) and (3) .

DHEIND
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Solution by Separating Variables

Step 1. By the “method of separating variables™ or product method, setting u(x, 1) = F(x)G(t), we
obtain from (1) two ODEs. one for F(x) and the other one for G(r).

Step 2. We determine solutions of these ODEs that satisfy the boundary conditions (2) .

Step 3. Finally. using Fourier series. we compose the solutions gained in Step 2 to obtain a solution of
(1) satisfying both (2) and (3) . that s, the solution of our model of the vibrating string.

Step 1. Two ODEs from the Wave Equation (1)

4) u(x, i) =F(x)0(2)
u_py Lu_prg WM FG=F'G
at* ax*
Dividing by ¢*FG and simplifying gives
é B Fxl B
GG F =k.
(5) F'"—kF =0 (6) G—c%G=0
QUEDP
R
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Solution by Separating Variables

B.D. Youn

2010

Step 2. Satisfying the Boundary Conditions (2)

u = FG satisfies the boundary conditions (2) .

(7) 2(0,8) =F(0)F(z) =0, u(l, ) =F(L )G () =10 for all £ .

We first solve (5) . If G =0, then u = FG = 0, which 1s of no interest. Hence G 0 and then by (7) ,
(8) (@) F(0)=0, (&) F(L)=0
We show that &£ must be negative. For & = 0 the general solution of (5) 1s F = ax + b. and from (8) we

obtain @ = b =0, so that F = 0 and # = FG = 0. which is of no interest. For positive k¥ = a general
solution of (5) 1s

F=A4e" 4 Be™
and from (8) we obtain F' = 0 as before (verify!). Hence we are left with the possibility of choosing &
negative. say. k= —p*. Then (5) becomes F"+ p*F = 0 and has as a general solution
F(x)=Acospx + Bsinpx .
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Solution by Separating Variables

From this and (8) we have
F0)=A=0 andthen F(L)=F8smpl =0
We must take B # 0 since otherwise F = 0. Hence sin pL = 0. Thus

(9) pL =nm, 50 that = %T (» integer) .
Setting B = 1. we thus obtain infinitely many solutions F(x)=F (). where
(10) Fn{r):sﬁl"i—ﬁx n=1,2 )

We now solve (6) with k= _Pz = —(rm.-"L)E resulting from (9) . that 1s,

(117%) G 4 MNG=0 where }.nchzcz—:_

A general solution 1s
Gy () = B, cos,t + By sind,f .
Hence solutions of (1) satisfying (2) are u, (x, 1) = F, (x)G, (1) = G, ()F, (x), written out

(11) 16y (%, £) = (Bycos Ayt + By s\ sm"}l—"—‘x (=12,

These functions are called the eigenfunctions, or characteristic functions, and the values A= enm/L are
called the eigenvalues, or characteristic values, of the vibrating string. The set {A,. &,. - } 1s called the

spectrum.
B.D. Youn . . : ; . “é
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Solution by Separating Variables

Discussion of Eigenfunctions. We see that each v, represents a harmonic motion having the frequency
A /21 = cn/2L cycles per unit time. This motion is called the nth normal mode of the string. The first

normal mode is known as the fundamental mode (n = 1), and the others are known as overtones,
musically they give the octave. octave plus fifth. etc. Since in (11)

snBTE g g gx—L& 2L om=1;
L noon »

the nth normal mode has # — 1 nodes. that 1s, points of the string that do not move (in addition to the
fixed endpoints): see Fig. 284.

V.. VR ik T TR . TR i R i Y i
0 L 0 Sasebll, O “Begs 0 TG DAL

n=1 n=2 n=3 n=4

Fig. 284. Normal modes of the vibrating string

Fig. 285. Second normal mode for various values of ¢
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Solution by Separating Variables

Step 3. Solution of the Entire Problem. Fourier Series

The eigenfunctions (11) satisfy the wave equation (1) and the boundary conditions (2) (string fixed at

the ends). A single #_will generally not satisfy the mitial conditions (3) .
- =

(12) w(x, 8= D unlx, )= 2 (BycosAyt B;smf\,ﬂz)sm%x _
n=1 n=1
Satisfving Initial Condition (3a) (Given Initial Displacement). From (12) and (3a) we obtain
(13) u(x, 0) = 22 Bpsin“rx = f (x) |
n=1 L

2 [+ x
(14) 3,,,2—/ F(x)sin A gx, n=1,2,

LS, L

Satisfyving Initial Condition (3b) (Given Initial Velocity). Similarly. by differentiating (12) with
respect to 7 and using (3b) . we obtain

i o —
SI; = I:E (= Bypsindpt + By, cosA,t) sin nzx ]
f=0 n=1 f=0
lL J—
= 3 By, sinZEE = g(x).
n=l1 L
2 [t oam
(15) By* == [ g(x)sin?ttdx, n=1,2 -
R o I
N LEIND
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HEAT EQUATION

B.D. Youn

From prior work the heat equation is:

ou k . —
- = szzu C2 = 0 x=L
5‘[ Gp Fig. 291. Bar under consideration
In one dimension (laterally insulated): .
u
ot OX

Some boundary conditions at each end:

u(0,t)=u(LL,t) =0,
forall t

Initial Condition:
u(x, 0) = f(x),
specified 0<x<L

Y
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CONVERT TO
ORDINARY DIFFERENTIAL EQUATIONS
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U(x,t) = F(x)G(t)
FG'=c¢’F"G
+ FGc?
G'/(c*G) =F"/F = -p?
F" +p’F =0,
and
G'+ (cp)’G=0
Solution for F is:
F = A cos px +B sin px

Applying boundary conditions at x =0 and x =L gives A =0 and
sin pL = 0, which results in pL = nm, or:

p = (nm)/L.
Now
F, = sin (nnx/L)

let A, = (cnm/L), and proceed to time solution

Engineering Mathematics Il Module 4 17



TIME-DEPENDENT SOLUTION

G, = B exp(-A*t)
Combined solution in terms of space and time:

un(x, t) = B, sinn—zX 6_7”211t

This solution must satisfy the initial condition that u(x,0) equals f(x)
Thus: u(x, 0) = ZBH sinn—iX = (x)

As before, the constants B, must be the coefficients of the Fourier sine
series:

1’1

= %J; sin dx

B.D. Youn . ) .
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SOME OBSERVATIONS

» The exponential terms in u(x,t) approach zero for increasing time, and
this should be expected, as the edge conditions (x =0 and x = L) are at
zero, and there 1s no internal heat generation.

» Since exp(-0.001785¢) 1s 0.5, whenever the exponent for the nth term,
A2, 1s -0.693, the temperature has decreased by 1/2.

» If the ends of the bar were perfectly insulated, then over time the bar
temperature will approach some uniform value

x f O0=x=L/2,
L—x of Li2=x<1L.

t=05
¢
T x u/\
U

[

f(x)={

t=0.1 T oz
u t=2
R . Y
Iy o
T x

T oz Qe
Y
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VIBRATING MEMBRANE AND
THE TWO-DIMENSIONAL WAVE EQUATION
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Three Assumptions:

» The mass of the membrane is constant, the membrane is perfectly
flexible, and offers no resistance to bending;

» The membrane is stretched and then fixed along its entire boundary
in the x-y plane. Tension per unit length (T) which is caused by
stretching is the same at all points and 1n the plane and does not
change during the motion;

» The deflection of the membrane u(x,y,t) during vibratory motion is
small compared to the size of the membrane, and all angles of
inclination are small

V [
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GEOMETRY OF VIBRATING "DRUM™

Vibrating Membrane
Membrane

¥+ Ay

«ﬁ%
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NOW FOR NEWTON'S LAW

TAy(sind — sina) = TAy(tan 7 — tan a)
= TAy [uy(x + Ax, y1) —uy(x, ¥4)]

o2
(pAXAy) 8’[—; = TAy[uX(X + AX, Y1) - ux(x, yz)] + TAX[uy( X, ¥yt Ay) - uy(xz, y)]

Divide by pAxAy:

Pu _ Tiwm(x A y) —u(xy) u(xy +AY) - uy(x )

ot? p Ax Ay

Take limit as Ax — 0, Ay —> 0

T
P

This is the two-dimensional wave equation
o*u 5 [@2u quj
—7 ~ S\ 2t 7
ot? Ox dy

Y
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WAVE EQUATION

» In Laplacian form:
— = ¢’ Vu

where
c?=T/p

= Some boundary conditions: u = 0 along all edges of the
boundary.

= Initial conditions could be the 1nitial position and the initial
velocity of the membrane

= As before, the solution will be broken into separate functions
of x,y, and t.

= Subscripts will indicate variable for which derivatives are
taken.
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SOLUTION OF 2-D WAVE EQUATION
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Let
ux, y, ) = F(x, y)G(t)
substitute into wave equation:
FG = cz(FXXG + Fny);
divide by ¢’FG, to get: ..
G 1
2 - _(FXX T FYY) :_Vz
c“G F
This gives two equations, one in time and one in space. For time,
G+AMG=0
where A = cv, and, what is called the amplitude function:
Fo +Fy +V’F=0

also known as the Helmholtz equation.
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2 2
d“H d
+ kK°H=0 IR 2o=0
2 ’ 2
dx dy
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SEPARATION OF THE HELMHOLTZ EQUATIONS

Let F(x, y)=H(x)Q(y)
and, substituting into the Helmholtz:
2 2
d ij - | n? g + v HQ
dx dy

Here the variables may be separated by dividing by HQ:

2 2
10 _ 1 [d_Q ﬂzQ] e
H dx Q

Note: p?=v?—k?

As usual, set each side equal to a constant, -k>. This leads to two ordinary
linear differential equations:




