### Chapter 4. Nucleophilic Substitution

 $\square$  Substitution by the ionization mechanism: S<sub>N</sub>1

- ♦ RDS: heterolytic dissociation ( $k_1$ ); □ 391 & Figure 4.1
- ♦ rate =  $k_1$ [RX]; independent of conc. or the nature of Y<sup>-</sup>
- ♦ the structure of TS resembles that of the intermediate opartial carbocation with  $sp^2$  character: planarity of TS
- ◆faster reactions: stable carbocation & unstable reactants
  ○electron donating groups & good leaving group
  ○polar solvents for neutral & nonpolar for cationic reactants
  ○bulky groups on the starting material: *sp*<sup>3</sup> → *sp*<sup>2</sup>; more space
  ○stereochemical results: racemization vs partial inversion
   ion-pair mechanism: mostly inversion but some retention



## Substitution by the S<sub>N</sub>2 Mechanism

#### □ Direct displacement mechanism: □ 394 Figure 4.2

- concerted, no intermediate, single rate-determining TS
- ♦ rate =  $k_1[RX][Y^-]$ ; dependent on conc. or the nature of Y<sup>-</sup> obetter X: rate increase to a less extent than in S<sub>N</sub>1
- ♦ a MO approach: HOMO of Y<sup>-</sup> & LUMO of C-X; <u>394 mid.</u>
   favored back-side vs disfavored front-side attack: inversion
- ◆trigonal bipyramidal TS: steric congestion & e<sup>-</sup>-rich

 $\odot$  the  $\pi$  character carbon: stabilized by vinyl, phenyl, carbonyl

the borderline behavior: kinetics & stereochemistry

○pseudo-1<sup>st</sup>-order kinetics for  $S_N^2$ : excess of Y<sup>-</sup>; constant [Y<sup>-</sup>] ○partial inversion due to <u>ion-pairs</u> in both  $S_N^1 \& S_N^2$ 



### Borderline Mechanisms in S<sub>N</sub> Reactions

□ Ion pairs: contact & solvent-separated; <u>□ 396 top</u>

- ♦ proof for the presence of ion pairs: □ 396 middle
  - isotopic scrambling without racemization: <u>□ 398 middle</u>
- ♦ small barriers between the ion pairs: □ 399 Figure 4.4
  - Oreaction profiles of the ion-pair mechanism: 
    <sup>(1)</sup> 399 Figure 4.5

⊙'uncoupled & coupled mechanism': □ 400 Figure 4.6

– an example of a coupled displacement: <u>400 bottom</u>

O2-D reaction energy diagram: □ 401 Figure 4.7

• minimum solvent participation: less nucleophilic solvents onucleophilicity:  $CF_3CO_2H < CF_3CH_2OH < AcOH < H_2O < EtOH$ ohindrance: ionization with no participation of Nu; <u>402 top</u>



#### Ion Pairs Mechanism: Borderline Reactions





### ✤ S<sub>N</sub>2(intermediate) Mechanism

carbocation-like TS with 2<sup>nd</sup>-order kinetics



#### Stereochemistry and Mechanism

□ Substrate & conditions dependent: □ 402 Sch. 4.2 ♦ <u>1<sup>o</sup> systems</u>: mostly inversion; concerted mechanism obenzylic: partial racemization due to ionization and return  $\diamond 2^{\circ}$  systems: complete inversion with moderate Nu (AcO<sup>-</sup>) Oretention product due to solvation by dioxane: <u>404 top</u>  $\odot$  dioxane not compete for the ion pair with better Nu, N<sub>3</sub><sup>-</sup> odiminished stereospecificity in benzylic derivatives ♦ <u>3° systems</u>: notable racemization with moderate Nu (benzylic) Obetter Nu  $(N_3)$ : effective inversion; Nu attack on the ion-pair oretention: bulky tertiary & H-bonding between water and anion



## ✤ Nucleophilicity (I)

- □ Nucleophilicity: effect on rate of S<sub>N</sub> reactions; kinetic
  - basicity: effect on the position of the equilibrium with acids

□ Factors on nucleophilicity: □ 408 middle

- solvation energy: the higher the solvation, the slower the rate
- strength of the new Nu-C bond: the stronger, the faster
- electronegativity: the more electronegative, the slower
- olarizability: the more easily polarizable, the better Nu
- ♦ size: the smaller the Nu, the faster the rate
- Empirical measures of nucleophilicity: □ 409 Table 4.3 • nucleophilic constant (*n*):  $n_{\text{Mel}} = \log[k_{\text{Nu}}/k_{\text{MeOH}}]$  in MeOH, 25 °C

## ✤ Nucleophilicity (II)

- Empirical measures of nucleophilicity (continued)
  - ♦ nucleophilic constant (*n*): □ 409 Table 4.3
    - o no clear correlation with basicity:  $N_3^- = PhO^- = Br^- \& N_3^- > AcO^- \& Et_3N < Ph_3P$
    - $\odot$  better correlation with basicity when attacking atom is the same: MeO<sup>-</sup> > PhO<sup>-</sup> > AcO<sup>-</sup> > NO<sub>3</sub><sup>-</sup>
    - $\odot$  decrease in nucleophilicity with increase in electronegativity: HO<sup>-</sup> > F<sup>-</sup> & PhS<sup>-</sup> > Cl<sup>-</sup> (across the periodic table)
    - increase in nucleophilicity with decrease in electronegativity, weaker solvation & increase in polarizability: I<sup>-</sup> > Br<sup>-</sup> > CI<sup>-</sup> > F<sup>-</sup> & PhSe<sup>-</sup> > PhS<sup>-</sup> > PhO<sup>-</sup> (down the periodic table)

## ✤ Nucleophilicity (III)

□ Competition: nucleophile & base; □ 410 Scheme 4.3

○ sp<sup>3</sup> carbon: soft acid as an E<sup>+</sup> vs H<sup>+</sup>: hard acid

- late TS for soft Nu/E<sup>+</sup> (newly forming bond strength) vs early TS for hard Nu/E<sup>+</sup> (electrostatic attraction)
- □ Better nucleophilicity: better e-donating ability
  - ♦ soft species: low oxidation potential; high-lying HOMO
  - $\alpha$ -effect: HO-O<sup>-</sup> > HO<sup>-</sup> & H<sub>2</sub>N-NH<sub>2</sub> = HO-NH<sub>2</sub> > NH<sub>3</sub>

 destabilizing ground state by lone pair-lone pair repulsions: relatively high energy of the nucleophile HOMO
 stabilization of the e<sup>-</sup>-deficient TS ('exploded TS')



## Solvent Effects on Nucleophilicity

- Solvation affects the nucleophilicity of anions
  - ♦ protic solvents: deactivate the hard Nu by strong solvation ○ in MeOH:  $N_3^- > I^- > {}^-CN > Br^- > CI^- (cf.: □ 409 Table 4.3)$
  - ◆aprotic solvents: activate the hard Nu by weak solvation to anion & strong solvation to cation; <u>□ 412 top</u>
     in DMSO: <sup>-</sup>CN > N<sub>3</sub><sup>-</sup> > Cl<sup>-</sup> > Br<sup>-</sup> > l<sup>-</sup>
  - ♦ solvent nucleophilicity in solvolysis: □ 413 Table 4.5
    - OWinstein-Grunwald equation: 2-adamantyl tosylate
      - Y values: 📖 362 Table 3.34



## Leaving-Group Effects

Qualitative correlation of reactivity: 414 Table 4.6
 acidity of the conjugate acid of the leaving groups

 high reactivity of triflates (sulfonates)

 effect by the type of substitution reactions: 414 Table 4.7

 larger for S<sub>N</sub>1 reactions vs smaller for S<sub>N</sub>2 reactions
 diminished leaving-group effect in S<sub>N</sub>2: 415 Table 4.8

 rate enhancement of poor leaving groups

 alcohols: H<sup>+</sup>; amines: diazotization (1405), halides: Ag<sup>+</sup>



## Steric & Strain Effects

- $\square$  Good Nu in low Y: sensitive to steric hindrance (S<sub>N</sub>2)
  - ♦RCI +  $I^-$  → RI (acetone), Me:Et:i-Pr = 93:1:0.0076
  - ◆ bulkiness & degree of ionization at TS: □ 416 Table 4.9  $\bigcirc$  RBr → RO<sub>2</sub>CH (HCO<sub>2</sub>H), Me:Et:i-Pr:*t*-Bu = 0.58:1:26.1:10<sup>8</sup>  $\bigcirc$  importance of nucleophilic participation: □ 416 middle
  - •B-strain effect:  $k_{rel}$ [t-Bu/Me] = 4.4; <u>417 top</u>

 $O[(^{t}Bu)_{3}C-OPNB] : [Me_{3}C-OPNB] = 13,500:1$ 

orelief of the steric crowding at trigonal TS from tetravalent C

♦ larger B-strain effect in rigid system

oraised ground-state energy of the starting compound

oreluctance to form strained substitution products



### Rearrangement to Unstrained Products







## Conjugation Effects on Reactivity

#### □ vinyl & phenyl: stabilizing effect; □ 417 bottom

 $\diamond$  stabilizing both types of S<sub>N</sub>2 reactions: cationic & anionic

♦α-carbonyl: depends on the nature of S<sub>N</sub> reactions
○ stabilizing anionic S<sub>N</sub>2 with strong Nu: □ 418 Table 4.10
○ destabilizing cationic S<sub>N</sub>2 reactions with weak Nu



interaction of  $sp^2$ hybridized substitution center with  $\pi$  LUMO



interaction of empty  $sp^2$ orbital with  $\pi$  HOMO



interaction of empty  $sp^2$ orbital of benzyl cation with HOMO aromatic  $\pi$  system



## Neighboring-Group Participation

- $\square$  Involvement of nearby substituents in S<sub>N</sub> reactions
  - ♦ solvolysis rate:  $k_{\text{trans}} / k_{\text{cis}} \cong 670$ ; □ 419 mid.
  - ◆structure dependent: ring size; □ 421 Table 4.11
    - ○participation of an alkoxy group: □ 421 Table 4.12 & middle
  - ♦ cyclization of S<sub>N</sub>2 reactions: □ 422 Table 4.13
  - participation of olefinic  $\pi$ -e<sup>-</sup>:  $\square$  423 top

oformation of a bicyclic byproduct: <u>423 middle</u>

◆participation of aromatic  $\pi$ -e<sup>-</sup>: phenonium ion; <u>□ 424 top</u> ○bridged intermediate: *erythro* → retention, *threo* → racemic ○extent of aryl rearrangement in solvolysis: <u>□ 425</u> <u>Table 4.14</u>



#### Anchimeric Assistance: Oxygen Atoms



OCCH<sub>3</sub>

#### Anchimeric Assitance: p Orbitals







## Carbocations (I)

- $\square$  Relative stability of carbocations: p $K_{R+}$ ;  $\square$  426 middle
  - the larger the p $K_{R+}$ , the more stable:  $\square$  427 <u>Table 4.15</u>
    - ostabilizing: alkyl, aryl, cyclopropenyl, cycloheptatrienyl
  - ♦ hydride affinity in solution: □ 428 Table 4.16
    - $O\Delta H$  of ionization in SbF<sub>5</sub>/SO<sub>2</sub>CIF:  $\Box$  429 <u>Table 4.17</u>
- □ Stabilizing groups: delocalization of cations
  - ♦ cyclopropyl: bisected conformation; <u>□ 427 bottom</u>
  - •cyclopropenyl & tropylium: aromaticity
  - ◆alkyl groups: hyperconjugation, C-H vs C-C; □ 430
     stabilization by a bridged structure or rearrangements: □ 432



# Carbocations (II)

□ Stabilizing groups (continued)

- ♦halogens: resonance by e<sup>-</sup>-donation; <u>□ 434 middle</u>
- ♦ nitrile & carbonyl: weak  $\pi$  donors; <u>□ 434 Table 4.18</u>
- ♦ unstable carbocations: <u>□ 435-436</u>
- □ NMR study of carbocations: □ 437 Scheme 4.4
  - rearrangement to the most stable isomeric cations
    - onon-nucleophilic superacid: FSO<sub>3</sub>H-SbF<sub>5</sub>-SO<sub>2</sub> (magic acid)
  - ♦ measurement of <u>butanol</u>: rearranged to the 3° cation at <u>0 °C</u>
- □ Substitution vs elimination: <u>□ 439 Figure 4.10</u>





#### NMR Study of Carbocations (II)



## Rearrangement of Carbocations

□ Driving force: formation of more stable carbocations

 $1^{\circ}$  carbocations <  $2^{\circ}$  <  $3^{\circ} \cong \sim 25$  kcal/mol >  $\sim 10 > 0$ 

♦ from 3° to 3°: so rapid at -160 °C,  $\Delta E_a < 5$  kcal/mol;  $\Box$  440

Mechanism of 1,2-shift: bridged ions; <u>440 bottom</u>

♦ symmetric 2-butyl cation on NMR:  $\Delta E_a \le 2.5$ ; <u>□ 441 middle</u> ○H migration via a bridged cyclopropyl ion: <u>□ 443 top</u>

orelative energy & profile: <u>□ 441 bottom</u> & □ <u>442 Figure 4.11</u>

○isotopic labeling: <u>□ 443 bottom</u> & <u>□ 444 top</u>

- ♦ rearrangement of 2-pentyl cation: □ 444-5 Figure 4.12
- ♦ rearrangement of a cyclohexyl cation: <u>□ 445-6</u>





Carey-Chap4-5ed

#### Isotopic Labeling Study of Rearrangement



**1** 24

# Bridged (Nonclassical) Carbocations (I)

Evidences for nonclassical carbocations

- ◆2-norbornyl brosylate: k<sub>exo</sub>: k<sub>endo</sub> = 350; <u>447-8</u>
   retention for *exo* isomer vs inversion for *endo* isomer
   100% racemization for chiral *exo*-brosylate
   93% racemization for chiral *endo*-brosylate
- ♦bicyclo[2.2.2]octyl brosylate: 82 ± 15% retention

○bicyclo[2.2.2]octyl & bicyclo[3.2.1]octyl acetate: □ 448 bottom

□ Arguments against: rapid equilibrium

- ♦ small difference in rate compared to <u>5-ring brosylate</u>
- ♦ large difference even for <u>classical 3<sup>o</sup> carbocation</u>
- □ Stable/unstable intermediate? or TS?: <u>□ 449 Fig. 4.13</u>



#### Nonclassical Norbornyl Cations: Achiral







classical: 'chiral'



#### Nonclassical Bicyclooctyl Cations: Chiral







### Evidences Against Nonclassical Cations



➤ retention of stereochemistry in solvolysis



### Question on Nature of Nonclassical Cations





### Bridged (Nonclassical) Carbocations (II)

Direct observation of the norbornyl cation

<u>1H & <sup>13</sup>C NMR</u> in super acid (SbF<sub>5</sub>-SO<sub>2</sub>-SOF<sub>2</sub>)
upfield <sup>13</sup>C δ of the cation than that of classical 2-propyl cation
at -100 °C: 3 types of Hs [H1/H2/H6 & H3/H5/H7 & H4] & Cs
at -159 °C: 5 types of Hs [H1/H2 & H6 & H3/H7 & H5 & H4] & Cs
stabilization *E*: 6±1 kcal (MM), 11 (Experimental), 13.6 (MO)



#### Norbornyl Cation Observation by NMR

Fast hydride shift between H1, H2 and H6: - 100 °C
 - 3 types of Hs [H1/H2/H6 & H3/H5/H7 & H4] & Cs



Slow hydride shift between H1, H2 and H6 : - 159 °C
 - 5 types of Hs [H1/H2 & H6 & H3/H7 & H5 & H4] & Cs



## Bridged (Nonclassical) Carbocations (III)

- □ Substituent effects at C-4/5/6/7: C1-C6 participation stronger by C-6 substituents & more sensitive exo isomer Theoretical energy diagram: <u>452 Fig. 4.14</u> □ Other nonclassical carbocations: □ 452 Scheme 4.5 ♦ cyclobutonium ion: equivalent 3 CH<sub>2</sub> on NMR: <u>□ 453 top</u> □ A rule of thumb: the nature of carbocations ♦ 3° cations: usually classical structure; more stable ◆ 2<sup>o</sup> cations: bridged where possible; strained & poor solvation
  - $\bullet$  1° cations: rearrangement to 2°/3° cations via bridged ions

