
Quantum Mechanics: Principles 

Reading: Atkins, ch. 8 (p. 260)

- Information in wavefunction: probability density, eigenfunction &  
eigenvalue, operator, expectation value

- The uncertainty principle 
- Postulates of quantum mechanics



mass m particle, free to move parallel to x-axis with zero potential energy

The information in a wavefunction



(a) The probability density

if B = 0, Ψ
 

= Aeikx

where is the particle? → Probability of finding the particle

⎪Ψ⎢2 = (Aeikx)*(Aeikx) = (A*e-ikx)(Aeikx) = ⎢A⎢2

equal probability of finding the particle 
→ cannot predict where we will find the particle

same if A = 0, ⎪Ψ⎢2 = ⎢B⎢2



if A = B, Ψ
 

= A(e-ikx + eikx) = 2Acoskx
⎪Ψ⎢2 = 4⎢A⎢2cos2kx



(b) eigenvalues and eigenfunctions
total energy: k2 ħ2/2m = E = Ek + V(= 0) = Ek = p2/2m
⇒ p = k ħ

 
= (2π/λ)(h/2π) = h/λ: de Broglie’s law

k: wave vector (= 2π/λ), independent of A, B

Schrödinger equation 

Hψ
 

= Eψ

1-D,    H = 

H: Hamiltonian operator: carried out a mathematical operation on the function ψ
→ correspondence between hamiltonian operator and energy
→correspondence of operators and classical mechanical variables are 
fundamental to the quantum mechanics 

cf. 19 century mathematician William Hamilton



Mathematical operation on the function ψ

(operator)(function) = (constant factor) x (same function)
ΩΨ

 
= ωΨ

Ψ: eigenfunction
ω: eigenvalue of the operator Ω

e.g., Hψ
 

= Eψ; eigenvalue is the energy, eigenfunction is wavefunction
⇒

 
“solve the Schrodinger equation” = “find the eigenvalues and 

eigenfunctions of the hamiltonian operator for the system”



e.g., show that eax is an eigenfunction of the operator d/dx, find    
eigenvalue

eax2 ?

----------------------------
(operator)Ψ

 
= (value of observable) x Ψ

observables: energy, momentum, dipole moment 



(c) operators
Ω: operator (Ω

 
carat)

Position operator:
Momentum operator: 



(d) Superpositions and expectation values



if Ψ
 

= Aeikx, px = +kħ
 

: travelling to the right, but we cannot predict the 
position of the particle (⎢Ψ⎢2 = ⎢A⎢2)

if the momentum is specified precisely, it is impossible to predict the location 
of the particle

Heisenberg uncertainty principle
“It is impossible to specify simultaneously, with arbitrary precision, both the 

momentum and the position of a particle”

if we know a definite location, Ψ
 

must be large there and zero everywhere 
else. To do so, an infinite number of linear combinations of wavefunctions 
is needed 

The uncertainty principle 



→
 

perfect localization →
 

lost all information about its momentum; 
completely unpredictable 



quantitatively, 
ΔpΔq ≥

 
½ħ

( and ΔtΔE ≥
 

½ħ) 

Δp: uncertainty in position along that axis
Δq: uncertainty in the linear momentum parallel to the axis q 

if Δq = 0 (exact position) → Δp = ∞
Δp = 0 → Δq = ∞



e.g., 1g particle, speed 1 x 10-6 m/s, minimum position uncertainty?

Electron in 2a0



General uncertainty principle: the Heisenberg uncertainty principle 
applies to any pair of observables called “complementary 
observables”

e.g., position & momentum

C.M.: position & momentum of a particle could be specified 
simultaneously with arbitrary precision
Q.M.: position and momentum are complementary



(1) Physical state of a particle at time t is fully described by a wavefunction 
Ψ(x,t)

(2) Ψ(x,t), ∂Ψ(x,t)/∂x, ∂2Ψ(x,t)/∂x2 must be continuous, finite and single 
valued for all values of x

(3) Any quantity that is physically observable can be represented by a 
Hermitian operator. Hermitian operator is a linear operator F that satisfies

(4) 
Ψi : eigenfunction of F with eigenvalue fi

(5) average or expectation value <F>

The postulates of quantum mechanics (1-D) 



(6) Quantum mechanical operator is constructed by the classica l 
expression of x, px , t, E and converting the expression to an operator by 
means of following rules,



(7) Ψ(x,t) is a solution of time-dependent Schrödinger equation



(1) commute → in Q.M., many operators do not commute
cf: uncertainty principle 

Operator: fundamental in Q.M. 



(2) linear operation → Q.M: deal with linear operators 



(3) Hermitian operator: Q.M. operators must be hermitian operators: Operators 
generally are complex quantities but certainly the eigenvalues must be real 
quantities (experimental measurement) 



(4) orthogonal: the eigenfunctions of hermitian operators are orthogonal 



(1) The Schrödinger equation is the equation for the wavefunction of a particle
(2) The Schrödinger equation can be formulated as an eigenvalue problem
(3) C.M. quantities are represented by linear operators in Q.M.
(4) Wavefunctions have a probabilistic interpretation
(5) Wavefunctions are normalized
(6) Average value, expectation is given by 

Summary 
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