Application to Translational Motion

Reading: Atkins, ch. 9 Schrödinger equations for three basic types of motion: translation, vibration, rotation \rightarrow "quantization"

1. Translational motion

- (1) Free motion
- (2) Particle in a box
- (3) Tunnelling

(1) Free motion

V = 0, $H\Psi = E\Psi, H = (\hbar^2/2m)(d^2\Psi/dx^2)$

General solutions, $\Psi_k = Ae^{ikx} + Be^{-ikx}$, $E_k = k^2\hbar^2/2m$ $\Rightarrow H_k\Psi_k = E_k\Psi_k$

- all values of k, all values of the energy are permitted \rightarrow the translational energy of a free particle is not quantized

- e^{ikx} is an eigenfunction of operator p_x with eigenvalue +kħ: motion toward +x e^{-ikx} is an eigenfunction of the operator p_x with eigenvalue -kħ: motion toward -x $\Rightarrow |\Psi|^2$ is independent of x

 \rightarrow the position of the particle is completely unpredictable (uncertainty principle, x, p_x do not commute)

(2) Particle in a box in 1-D

- a particle of mass m is confined between two walls at x = 0 and x = L

- Infinite square wall: V(x) = 0 inside the box, infinity at the walls

e.g., a gas phase molecule in 1-D container π -electrons in a linear conjugated hydrocarbon

Schrödinger equation

i) $0 \le x \le L$, V(x) = 0

ii) x <0, x > L, V = ∞

Boundary conditions

- physically impossible for the particle to be found with an infinite potential energy \rightarrow the wavefunction must be zero ($\Psi = 0$) at x < 0, x > L

- wavefunction should be continuous $\Rightarrow \Psi_k(0) = 0, \ \Psi_k(L) = 0$

$$\begin{aligned} x &= 0 \Rightarrow \Psi_k(0) = 0 = D = 0, \quad \therefore D = 0 \\ x &= L \Rightarrow \Psi_k(L) = C \text{ sin } kL \\ \text{ if } C &= 0, \ \Psi = 0 \text{ for all } x \text{: no particle} \rightarrow \text{ the particle must be somewhere} \\ \Rightarrow \therefore \sin kL = 0 \\ \rightarrow kL = n\pi, \ n = 1,2,3... (n \neq 0 \text{ since if } n = 0 \rightarrow \Psi = 0 \text{ everywhere}) \end{aligned}$$

 $\therefore \Psi_{n}(x) = C \sin(n\pi x/L), \quad n = 1, 2 \dots$

- Normalization

$E_n =$

n: "quantum number" (integer, in some case, a half-integer)

- the properties of the solutions

(i) Energy is quantized $E_n \propto n^2$

 \rightarrow only certain wavefunctions are acceptable

(ii) ψ vs. n

.

 $\Psi_1(\mathbf{x}) = (2/L)^{1/2} \sin (\pi \mathbf{x}/L)$ $\Psi_2(\mathbf{x}) = (2/L)^{1/2} \sin (2\pi \mathbf{x}/L)$

 \rightarrow same amplitude (2/L)^{1/2}, different wavelength

-
$$n\uparrow \rightarrow \lambda \downarrow$$
, $E_k = p^2/2m$, $p = h/\lambda$, $\lambda \downarrow$, $p\uparrow$, $E_k\uparrow$
- $n\uparrow \rightarrow \lambda \downarrow \rightarrow E_k\uparrow$

- n \uparrow → number of nodes \uparrow ⇒ Ψ_n has n-1 nodes

(iii) linear momentum

 $< p_x > =$

However, each wavefunction is a superposition of momentum eigenfunctions

$$\Psi_{\rm n} = (2/L)^{1/2} \sin (n\pi x/L) = 1/2i (2/L)^{1/2} (e^{ikx} - e^{-ikx})$$

 \Rightarrow +kħ for half, -kħ for half

 \Rightarrow equal probability for opposite directions

(iv) $E_{min} \neq 0$ cf) C.M. allow zero energy (stationary particle)

 $n \neq 0$, "zero-point energy" $E_1 = h^2/8mL^2 \neq 0$

uncertainty principle: non zero momentum \rightarrow kinetic energy

curvature in a wavefunction \rightarrow possession of kinetic energy

(v) $E_{n+1} - E_n = (h^2/8mL^2)(2n+1)$

 $L^{\uparrow} \Delta E \rightarrow 0$: not quantized for complete free particles

(vi) probability

 $\Psi^2(x) = (2/L) \sin^2(n\pi x/L)$

low $n \rightarrow$ nonuniformity $n \rightarrow \infty$, uniform \Rightarrow classical mechanics (independent of position)

"correspondence principle"

(vii) orthogonality $\int \Psi_n^* \Psi_{n'} d\tau = 0, n' \neq n$: orthogonal

wavefunctions corresponding to different energies are orthogonal ex. $\Psi_1 \, \Psi_3$

<n | n'> = 0 (n' \neq n): Dirac bracket notation <n | "bra" $\Rightarrow \Psi_n *$, | n'> "ket" $\Rightarrow \Psi$ normalized, <n | n> = 1

$$\langle n \mid n' \rangle = \delta_{nn'}$$
: kronecker delta, $n = n' \Rightarrow 1$
 $n \neq n' \Rightarrow 0$

Orthogonality: important in Q.M.: eliminate a large number of integrals \rightarrow central role in the theory of chemical bonding and spectroscopy

e.g.) model of 1-D particle in a box: π electrons in linear conjugated hydrocarbons

(3) Particle in a box in 2-D

partial differential equations → separation of variables techniques: divide equation into two or more ordinary differential equations

$$E = E_X + E_Y$$

3-D: same, additional term, $n_3 \& L_3$

- Degeneracy ket $|n_1 n_2>$

if $L_1 = L_2 = L$ (square) $\Psi_{n1,n2}(x, y) = (2/L) sin (n_1\pi x/L) sin (n_2\pi y/L)$ $E_{n1,n2} = (n_1^2 + n_2^2) (h^2/8mL^2)$

if $n_1 = 1$, $n_2 = 2$ and $n_1 = 2$, $n_2 = 1$ $\Psi_{1,2}(x, y) = (2/L) \sin (\pi x/L) \sin (2\pi y/L)$, $E_{1,2} = 5h^2/8mL^2$ $\Psi_{2,1}(x, y) = (2/L) \sin (2\pi x/L) \sin (\pi y/L)$, $E_{1,2} = 5h^2/8mL^2$

⇒ Different wavefunctions, same energy ⇒ "degeneracy" energy level 5h²/8mL² is doubly degenerate
 | 1 2> and | 2 1> are degenerate
 degeneracy: many examples in atoms, symmetry properties

3-D: same, additional term, $n_3 \& L_3$

(4) Tunnelling

- if the potential energy of a particle does not rise to infinite in the wall & E < $V \rightarrow \Psi$ does not decay abruptly to zero
- if the walls are thin → Ψ oscillate inside the box & on the other side of the wall outside the box → particle is found on the outside of a container: leakage by penetration through classically forbidden zones "tunnelling"
 cf) C.M.: insufficient energy to escape

(I) x < 0, V = 0, (II) $0 \le x \le L$, $E < L \rightarrow$

(III) X > 0, V = 0

In region III, no reflected wave, B' = 0

Conditions

at x = 0 and x = L, must be continuous 1. $\Psi_{I}(0) = \Psi_{II}(0), \Psi_{II}(L) = \Psi_{III}(L)$

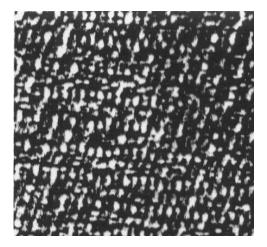
slope (1st derivatives) must also be continuous 2. $\Psi'_{I}(0) = \Psi'_{II}(0), \Psi'_{II}(L) = \Psi'_{III}(L)$

Transmission probability: probability that the particle passes the barrier

enhanced reflection (antitunnelling)

- high, wide barrier $\kappa L >> 1$

 \Rightarrow T decrease exponentially with thickness of the barrier, with m^{1/2} \Rightarrow low mass particle \rightarrow high tunnelling *tunnelling is important for electron



e.g) proton transfer reaction STM (scanning tunnelling microscopy)