
Application to Translational Motion

Reading: Atkins, ch. 9 
Schrödinger equations for three basic types of motion: translation,  

vibration, rotation → “quantization”
1. Translational motion 

(1) Free motion
(2) Particle in a box
(3) Tunnelling



V = 0,  
HΨ

 
= EΨ, H = (ħ2/2m)(d2Ψ/dx2)

General solutions, Ψk = Aeikx + Be-ikx, Ek = k2ħ2/2m
⇒ Hk Ψk = Ek Ψk

- all values of k, all values of the energy are permitted →
 

the translational energy 
of a free particle is not quantized

- eikx is an eigenfunction of operator px with eigenvalue +kħ: motion toward +x
e-ikx is an eigenfunction of the operator px with eigenvalue –kħ: motion toward -x
⇒ ⎪Ψ⎪2 is independent of x

→ the position of the particle is completely unpredictable 
(uncertainty principle, x, px do not commute)

(1) Free motion 



- a particle of mass m is confined between two walls at x = 0 and x = L
- Infinite square wall: V(x) = 0 inside the box, infinity at the walls

e.g.,  a gas phase molecule in 1-D container
π-electrons in a linear conjugated hydrocarbon 

(2) Particle in a box in 1-D 



Schrödinger equation

i) 0 ≤
 

x ≤
 

L, V(x) = 0

ii) x <0, x > L, V = ∞



Boundary conditions
- physically impossible for the particle to be found with an infinite potential 
energy → the wavefunction must be zero (Ψ

 
= 0) at x < 0, x > L

- wavefunction should be continuous
⇒Ψk (0) = 0, Ψk (L) = 0

x = 0 ⇒Ψk (0) = 0 = D = 0,  ∴D = 0
x = L ⇒Ψk (L) = C sin kL

if C = 0, Ψ
 

= 0 for all x: no particle → the particle must be somewhere
⇒∴sin kL = 0
→ kL = nπ, n = 1,2,3…. (n ≠

 
0 since if n = 0 →Ψ = 0 everywhere)

∴Ψn (x) = C sin (nπx/L),   n = 1, 2 …. 



- Normalization

En = 

n: “quantum number” (integer, in some case, a half-integer)



- the properties of the solutions

(i) Energy is quantized  
En ∝

 
n2

→ only certain wavefunctions are acceptable



(ii) ψ
 

vs. n

Ψ1 (x) = (2/L)1/2 sin (πx/L)
Ψ2 (x) = (2/L)1/2 sin (2πx/L)
……………

→ same amplitude (2/L)1/2, different wavelength

- n↑→
 

λ↓, Ek = p2/2m, p = h/λ, λ↓, p↑, Ek ↑
- n↑→

 
λ↓

 
→ Ek ↑

- n↑→
 

number of nodes↑ ⇒ Ψn has n-1 nodes



(iii) linear momentum 

<px > = 

However, each wavefunction is a superposition of momentum eigenfunctions

Ψn = (2/L)1/2 sin (nπx/L) = 1/2i (2/L)1/2 (eikx – e-ikx) 

⇒ +kħ
 

for half, -kħ
 

for half
⇒ equal probability for opposite directions



(iv) Emin ≠
 

0
cf) C.M. allow zero energy (stationary particle)

n ≠
 

0, “zero-point energy”
E1 = h2/8mL2 ≠

 
0

uncertainty principle: non zero momentum → kinetic energy

curvature in a wavefunction → possession of kinetic energy 



(v) En+1 – En = (h2/8mL2)(2n + 1)

L↑ ΔE → 0: 
not quantized for complete free particles

(vi) probability

Ψ2(x) = (2/L) sin2 (nπx/L) 

low n → nonuniformity
n →∞, uniform ⇒ classical mechanics

(independent of position)

“correspondence principle”



(vii) orthogonality
∫ Ψn * Ψn′

 

dτ
 

= 0, n′ ≠ n : orthogonal

wavefunctions corresponding to different energies are orthogonal
ex. Ψ1 Ψ3

<n ⎢n′> = 0 (n′ ≠ n): Dirac bracket notation
<n ⎢

 
“bra” ⇒Ψn *,  ⎢n′> “ket” ⇒Ψ

normalized,  <n ⎢n> = 1

<n ⎢n′> = δnn′

 

: kronecker delta,     n = n′ ⇒ 1
n ≠

 
n′ ⇒ 0

Orthogonality: important in Q.M.: eliminate a large number of integrals →
 central role in the theory of chemical bonding and spectroscopy



e.g.) model of 1-D particle in a box: π
 

electrons in linear conjugated 
hydrocarbons 



partial differential equations →
separation of variables techniques: 
divide equation into two or more 
ordinary differential equations 

(3) Particle in a box in 2-D



- Short λ

- long λ

E = EX + EY

3-D: same, additional term, n3 & L3



- Degeneracy
ket ⎢n1 n2 >

if L1 = L2 = L (square)
Ψn1,n2 (x, y) = (2/L) sin (n1 πx/L) sin (n2 πy/L) 
En1,n2  = (n1

2 + n2
2) (h2/8mL2) 

if n1 =1,  n2 = 2 and n1 =2,  n2 = 1 
Ψ1,2 (x, y) = (2/L) sin (πx/L) sin (2πy/L), E1,2  = 5h2/8mL2

Ψ2,1 (x, y) = (2/L) sin (2πx/L) sin (πy/L), E1,2  = 5h2/8mL2

⇒
 

Different wavefunctions, same energy ⇒
 

“degeneracy”
energy level 5h2/8mL2 is doubly degenerate
⎢1 2> and ⎢2 1>  are degenerate

degeneracy: many examples in atoms, symmetry properties



3-D: same, additional term, n3 & L3



- if the potential energy of a particle does not rise to infinite in the wall & E < 
V →Ψ does not decay abruptly to zero 

- if the walls are thin → Ψ oscillate inside the box & on the other side of the 
wall outside the box →

 
particle is found on the outside of a container: 

leakage by penetration through classically forbidden zones “tunnelling”
cf) C.M.: insufficient energy to escape 

(4) Tunnelling



(I) x < 0, V = 0, 

(II) 0 ≤
 

x ≤
 

L , E < L →

(III) X > 0, V = 0

In region III, no reflected wave, B′
 

= 0



Conditions

at x = 0 and x = L, must be continuous
1. ΨI (0) = ΨII (0), ΨII (L) = ΨIII (L)

slope (1st derivatives) must also be continuous
2. Ψ ′ I (0) = Ψ ′ II (0), Ψ ′ II (L) = Ψ ′ III (L)

Transmission probability: probability that the particle passes the barrier



- high, wide barrier κL >> 1

⇒ T decrease exponentially with thickness of the barrier, with m1/2

⇒ low mass particle → high tunnelling *tunnelling is important for electron

enhanced reflection (antitunnelling)



e.g) proton transfer reaction
STM (scanning tunnelling microscopy) 
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