Application to Vibrational Motion

Schrödinger equations for three basic types of motion: translation, vibration, rotation \rightarrow "quantization"

Vibrational motion

Harmonic oscillator

e.g., diatomic molecule: N₂

Force,
$$F = -kx$$
, k: force constant
 $F = -dV/dx \Rightarrow V = 1/2kx^2$

 N_2

Schrödinger equation

$$-(\hbar^2/2m)(d^2\Psi/dx^2) + 1/2kx^2 \Psi = E\Psi$$

Solution of this equation: (notebook copies will be provided)

$$\therefore E = (h/2\pi)(2\pi\nu_0)(v + \frac{1}{2}) = h\nu_0(n + \frac{1}{2}) = \hbar\omega (v + \frac{1}{2}), v = 0,1,2...$$

$$\Delta E = E_{v+1} - E_v = \hbar \omega \text{ (same } \Delta E)$$

if $m \uparrow \Rightarrow \omega \rightarrow 0 \Rightarrow \Delta E \rightarrow 0$: classical mechanics

- zero point energy

$$E_0 = \frac{1}{2}\hbar\omega$$

- \Rightarrow ~ 3 x 10⁻²⁰ J, 0.2 eV, 15 kJ/mol
- ⇒ uncertainty of position, momentum → kinetic energy c.f. C.M.: particle can be perfectly still

- particle in a box vs. harmonic oscillator

Wavefunction for harmonic oscillator

$$\Psi(x) = N \ x \ (polynomial \ in \ x) \ x \ (Gaussian \ function)$$

$$\Psi_v(x) = N_v H_v(y) e^{-y2/2}, \ y = x/\alpha, \ \alpha = (\hbar^2/mk)^{1/4}$$

N_v: normalization constant

H_v(y): Hermite polynomial

Gaussian function: e^{-y2/2}

Hermite polynomials, $H_v(y)$

V	$H_{v}(y)$	
0	1	
1	2y	
2	$2y$ $4y^2-2$	
3	$8y^3-12y$	
••••	<i>J</i>	

∴
$$v = 0$$
 (wavefunction for ground state)
⇒ $\Psi_0(x) = N_0 H_0(y) e^{-y^{2/2}} = N_0 e^{-x^{2/2}\alpha^2}$

$$\Psi_0^2(x) = N_0^2 e^{-x^2/\alpha^2}$$

lagest at zero displacement (x = 0)

-v = 1 (1st excited state)

$$\Rightarrow \Psi_1(x) = N_1 2y \ e^{-y^2/2} = (2N_1/\alpha)xe^{-x^2/2\alpha^2}$$

node at x = 0maximum probability at $x = \pm \alpha$ ($y = \pm 1$) Ψ^2

- f(x) = f(-x): even
- f(x) = -f(-x): odd
- oscillator may be found at extensions with V>E that are forbidden by classical mechanics (negative kinetic energy)
- ⇒ Lowest energy: 8% in classical forbidden region "tunnel effect": independent of k, m
- \Rightarrow v (quantum number) $\uparrow \Rightarrow$ probability \downarrow v $\rightarrow \infty \Rightarrow$ probability $\rightarrow 0$

$$-v=\infty$$

$$E_k = 0$$
 at turning point, velocity = 0, probability: highest

largest amplitudes near the turning points of the classical motion (at $V=E, \, kinetic \, energy=0)$

- expectation values

_

- 예: The potential energy curve for H_2 is close to a harmonic oscillator. The first vibrational transition is at 4000 cm^{-1} .
- (a) Calculate the force constant *k* of the hydrogen molecule.
- (b) Calculate the vibrational transition energy for D_2 (in cm⁻¹) assume same force constant with H_2 .
- (c) Calculate the zero point energy of this H_2 .