Lecture #6. Fall, 2012 Electrochemical Energy Engineering

Double layer structure & adsorption (Ch. 13)

Thermodynamics of the double layer Experimental evaluation of surface excesses & electrical parameters Models for double layer structure Helmholtz model **Gouy-Chapman theory** Stern's modification Specific adsorption Studies at solid electrodes Double layer at solids Single-crystal electrode surfaces Solid metal-solution interface Extent & rate of specific adsorption Nature of specific adsorption Adsorption isotherms Rate of adsorption Effect of adsorption of electroinactive species Double layer effects on electrode reaction rates

<u>Thermodynamics of the double layer</u> Gibbs adsorption isotherm

Suppose an interface of surface area A separating two phases, α & β

→ interfacial zone (~ 100 Å) → excesses and deficiencies in the concentration of components

Pure α

Surface excess (in # of moles of any species) $|_{A' \leftarrow \dots \rightarrow B'}$ $|_{A' \leftarrow \dots \rightarrow B'}$

Electrochemical free energy For the reference system, $\overline{G}^{R} = \overline{G}^{R}(T, P, n_{i}^{R})$ For the actual system, $\overline{G}^{S} = \overline{G}^{S}(T, P, A, n_{i}^{S})$ $d\overline{G}^{R} = (\partial \overline{G}^{R} / \partial T) dT + (\partial \overline{G}^{R} / \partial P) + \sum (\partial \overline{G}^{R} / \partial n_{i}^{R}) dn_{i}^{R}$ $d\overline{G}^{S} = (\partial \overline{G}^{S} / \partial T) dT + (\partial \overline{G}^{S} / \partial P) dP + (\partial \overline{G}^{S} / \partial A) dA + \sum (\partial \overline{G}^{S} / \partial n_{i}^{S}) dn_{i}^{S}$

At const T & P $\rightarrow 1^{st}$ two terms can be dropped $(\partial \overline{G}^{R}/\partial n_{i}^{R}) = \overline{\mu}_{i}$ (electrochemical potential) \rightarrow const at equilibrium

$$\overline{\mu_i} = (\partial \overline{\mathbf{G}}^{\mathbb{R}} / \partial \mathbf{n}_i^{\mathbb{R}}) = (\partial \overline{\mathbf{G}}^{\mathbb{S}} / \partial \mathbf{n}_i^{\mathbb{S}})$$

 $(\partial \overline{G}^{S}/\partial A) = \chi$ (surface tension): a measure of the energy required to produce a unit area of new surface

Differential excess free energy

$$d\overline{G}^{\circ} = d\overline{G}^{S} - d\overline{G}^{R} = \chi dA + \sum \overline{\mu}_{i} d(n_{i}^{S} - n_{i}^{R})$$

$$d\overline{G}^{\circ} = \chi dA + \sum \overline{\mu}_{i} dn_{i}^{\circ}$$

Euler's theorem for variables, A and n_i (const T and P) $\overline{G}^{\circ} = (\partial \overline{G}^{\circ} / \partial A)A + \sum (\partial \overline{G}^{\circ} / \partial n_i^{\circ})n_i^{\circ}$ $\overline{G}^{\circ} = \forall A + \sum \overline{\mu}_i n_i^{\circ}$

$$\Rightarrow \qquad d\overline{G}^{\circ} = \forall dA + \sum \overline{\mu}_{i} dn_{i}^{\circ} + Ad\forall + \sum n_{i}^{\circ} d\overline{\mu}_{i}$$
$$Ad\forall + \sum n_{i}^{\circ} d\overline{\mu}_{i} = 0$$

Surface excess concentration, $\Gamma_i = n_i^{\circ}/A$ (excesses per unit area of surface)

 $-dy = \sum \Gamma_i d\overline{\mu_i}$

Gibbs adsorption isotherm: importance of surface tension for interfacial structure

Electrocapillary equation

Consider

Cu'/Ag/AgCl/K+, Cl-, M/Hg/Ni/Cu

M: neutral species

Gibbs adsorption isotherm; components of Hg electrode, ions, neutral

 $-d \chi = (\Gamma_{Hg} d \overline{\mu}_{Hg} + \Gamma_{e} d \overline{\mu}_{e}^{Hg}) + (\Gamma_{K+} d \overline{\mu}_{K+} + \Gamma_{Cl-} d \overline{\mu}_{Cl-}) + (\Gamma_{M} d \overline{\mu}^{M} + \Gamma_{H2O} d \overline{\mu}_{H2O})$

 $\overline{\mu}_e^{Hg}$: electrons in the mercury phase

Some linkages: $\overline{\mu}_{e}^{Hg} = \overline{\mu}_{e}^{Cu}$ $\overline{\mu}_{KC1} = \mu_{KC1} = \overline{\mu}_{K^{+}} + \overline{\mu}_{C1}$ $\overline{\mu}_{H20} = \mu_{H20}$ $\overline{\mu}_{M} = \mu_{M}$ $d\overline{\mu}_{Hg} = d\overline{\mu}_{Hg}^{0} = 0$ $-d\gamma = \Gamma_{e}d\overline{\mu}_{e}^{Cu} + (\Gamma_{K^{+}}d\overline{\mu}_{KC1} - \Gamma_{K^{+}}d\overline{\mu}_{C1^{-}} + \Gamma_{C1}d\overline{\mu}_{C1^{-}}) + (\Gamma_{M}d\mu_{M} + \Gamma_{H20}d\mu_{H20})$ From the equilibrium at the reference interface $\overline{\mu}_{AgC1} + \overline{\mu}_{e}^{Cu'} = \overline{\mu}_{Ag} + \overline{\mu}_{C1}$. Since $d\overline{\mu}_{AgC1} = d\overline{\mu}_{Ag} = 0$, $d\mu_{e}^{Cu'} = d\mu_{C1}$.

 $-d \chi = \Gamma_e d \overline{\mu_e}^{Cu} - (\Gamma_{K^+} - \Gamma_{Cl^-}) d \overline{\mu_e}^{Cu'} + \Gamma_{K^+} d \mu_{KCl} + \Gamma_M d \mu_M + \Gamma_{H2O} d \mu_{H2O}$

Excess charge density on the metallic side of the interface

$$\sigma^{M} = -F\Gamma_{e}$$

Opposite charge density on the solution side

$$\sigma^{S} = -\sigma^{M} = F(\Gamma_{K^{+}} - \Gamma_{C1^{-}})$$
$$d\mu_{e}^{Cu} - d\mu_{e}^{Cu'} = -Fd(\phi^{Cu} - \phi^{Cu'}) = -FdE_{-}$$

E: potential of the mercury electrode with respect to the reference

$$-d\gamma = \sigma^{M}dE_{-} + \Gamma_{K+}d\mu_{KCl} + \Gamma_{M}d\mu_{M} + \Gamma_{H2O}d\mu_{H2O}$$

Gibbs-Duhem relation at const T and P

$$\sum X_i d\mu_i = 0$$

Xi: mole fraction

$$X_{H2O}d\mu_{H2O} + X_{KCI}d\mu_{KCI} + X_Md\mu_M = 0$$

Remove dµ_{H2O}

 $-d\chi = \sigma^{M}dE_{-} + [\Gamma_{K^{+}} - (X_{KCI}/X_{H2O})\Gamma_{H2O}]d\mu_{KCI} + [\Gamma_{M} - (X_{M}/X_{H2O})\Gamma_{H2O}]d\mu_{M}$

Relative surface excess: measurable parameters

Cannot measure absolute surface excess of K⁺, but only excess relative to water e.g., zero excess: same mole ratio of adsorption of K⁺ and H₂O positive excess: K⁺ > H₂O Water: reference component Dilute solutions: negligible (X_i/X_s)Γ_s

Electrocapillary equation

 $-d\chi = \sigma^{M}dE_{-} + \Gamma_{K+(H2O)}d\mu_{KC1} + \Gamma_{M(H2O)}d\mu_{M}$

→ all measurable parameters

Experimental evaluation of surface excesses & electrical parameters Electrocapillarity and the DME For DME,

$$t_{max} = 2\pi r_c \gamma/mg$$

 t_{max} : drop lifetime $\rightarrow t_{max}$ vs. E has same shape as the electrocapillary curve

Excess charge and capacitance

From electrocapillary equation,

$$\sigma^{\rm M} = (\partial \gamma / \partial E_{\rm L})_{\mu \rm KC1, \mu \rm M}$$

the excess charge on the electrode → slope of electrocapillary curve at any E

Drop time of a DME in 0.1 M KCl vs. E

Electrocapillary curve in different electrolyte

 \rightarrow the existence of a <u>maximum</u> in surface tension

→ potential at maximum: "electrocapillary maximum (ECM)"

 \rightarrow curve slope = 0 at ECM \rightarrow "potential of zero charge" (PZC)

 $\sigma^{M} = \sigma^{S} = 0$

At more negative potentials \rightarrow the electrode surface has a negative excess charge At more positive potentials \rightarrow positive surface charge

→ Plots of surface charge can be made by differentiating electrocapillary curves

The capacitance of the interface → its ability to store charge in response to a perturbation in potential

 $C_d = (\partial \sigma^M / \partial E)$

<u>Differential capacitance</u>: the slope of the plot of σ^{M} vs. E

Integral capacitance, C_i (or K): ratio of total charge density (𝑘) at potential E to the total potential difference

 $C_i = \sigma^{M/(E - E_Z)}$

E_Z: PZC

 $C_i = \int C_d dE / \int dE$

Average of C_d over the potential range from E_Z to E
 Differential capacitance is the more useful quantity, in part it is precisely measurable by impedance techniques
 Capacitance can be obtained from the electrocapillary curves by double differentiation

$$\chi = \iint C_d dE$$

Relative surface excesses

From electrocapillary equation, relative surface excess of K⁺ at the interface

$$\Gamma_{K+(H2O)} = -(\partial \chi / \partial \mu_{KCI})_{E-,\mu}$$

Since $\mu_{\text{KCl}} = \mu_{\text{KCl}}^0 + \text{RT} \ln a_{\text{KCl}}$

 $\Gamma_{\rm K+(H2O)} = -(1/RT)(\partial \chi / \partial ln a_{\rm KCl})_{\rm E-,\mu M}$

→ relative surface excess Γ_{K+(H2O)} at any potential E- by measuring surface tension for several KCl activities (at const M)

Relative surface excess of Cl⁻: from the charge balance ($\sigma^{S} = -\sigma^{M} = F(\Gamma_{K+} - \Gamma_{Cl-})$)

Fig. 13.2.9: relative surface excess of 0.1 M KF in contact with mercury At potentials positive of E_Z → surface excess of K⁺: negative → K⁺ conc in the interface is smaller than in the bulk (reverse for Cl⁻) At potentials negative of E_Z → opposite

Fig. 13.2.6: 0.1 M KBr At potentials positive of E_Z (i.e., for σ^M > 0)→ surface excess of K⁺: positive → specific adsorption of Br⁻ on mercury

<u>Models for double layer structure</u> The Helmholtz model

Two sheets of charge, having opposite polarity, separated by a distance of molecular order → equivalent to a parallel-plate capacitor Relation of stored charge density, σ, and voltage drop V between the plate

 $\sigma = (\varepsilon \varepsilon_0/d) V$

 ϵ : dielectric const of the medium, ϵ_0 : permittivity of free space, d: spacing

Differential capacitance

 $\partial \sigma / \partial V = C_d = \epsilon \epsilon_0 / d$

Weakness of this model: predict C_d is const e.g., Fig. 13.3.1 Differential capacitance vs. E in Hg/NaF interface → potential dependence

 \rightarrow more sophisticated model needed

The Gouy-Chapman theory

Charge on the electrode is confined to the surface Charge in the solution: *diffusion layer*

Population in any lamina (number concentration of species) $n_i = n_i^0 \exp(-z_i e \phi/kT)$

 n_i^{0} : bulk concentration, ϕ : electrostatic potential (ϕ measured with respect to the bulk)

Total charge per unit volume in any lamina $\rho(x) = \sum n_i z_i e = \sum n_i^0 z_i e \exp(-z_i e \varphi/kT)$ $\rho(x)$ is related to the potential at distance x by the Poisson equation $\rho(x)=-\epsilon\epsilon_0(d^2\varphi/dx^2)$

Poisson-Boltzmann equation

$$\begin{split} d^2\varphi/dx^2 &= -(e/\epsilon\epsilon_0)\sum n_i^0 z_i exp(-z_i e\varphi/kT) \\ d^2\varphi/dx^2 &= (1/2)(d/d\varphi)(d\varphi/dx)^2 \end{split}$$

 $\rightarrow \qquad (d\phi/dx)^2 = (2kT/\epsilon\epsilon_0)\sum n_i^0 [exp(-z_ie\phi/kT) - 1]$

For z:z electrolyte $d\phi/dx = -(8kTn^0/\epsilon\epsilon_0)^{1/2}\sinh(ze\phi/2kT)$

(a) Potential profile in the diffusion layer

For dilute aqueous solution ($\varepsilon = 78.49$) at 25°C $\kappa = (3.29 \text{ x } 10^7)\text{zC}^{*1/2}$ C*: bulk z:z electrolyte conc in mol/L, κ : cm⁻¹ Potential profile for several different ϕ_0 : potential decay away from the surface

At large ϕ_0 (a highly charged electrode), the drop is precipitous because the diffusion layer is relatively compact As ϕ_0 smaller, the decline is more gradual If ϕ_0 is sufficiently low $(tanh(ze\phi/kT) \sim ze\phi/kT) = \frac{\phi}{\phi_0} = e^{-\kappa x}$

Good approximation for $\phi_0 \leq 50/z \text{ mV}$ at 25°C

Reciprocal of κ : unit of distance and characterizes the spatial decay of potential \rightarrow kind of characteristic thickness of the diffusion layer

 \rightarrow thicker as conc of electrolyte falls

$C^{*}(M)^{b}$	1/κ(Å)
1	3.0
10^{-1}	9.6
10^{-2}	30.4
10^{-3}	96.2
10^{-4}	304

Gauss law, charge

 $q = \varepsilon \varepsilon_0 \int_{\text{surface}} E \cdot dS$ = $\varepsilon \varepsilon_0 A (d\phi/dx)_{x=0}$ Using $q/A = \sigma^S$ and $d\phi/dx = -(8kTn^0/\varepsilon \varepsilon_0)^{1/2} \sinh(ze\phi/2kT)$ $\sigma^{S} = -\sigma^{M} = (8kTn^{0}\epsilon\epsilon_{0})^{1/2}sinh(ze\varphi_{0}/2kT)$

For dilute solution at 25°C

 $\sigma^{M} = 11.7 C^{*1/2} \sinh(19.5 z \phi_{0})$ Where C^{*} is in mol/L for σ^{M} in μ C/cm²

(c) Differential capacitance $C_d = d\sigma^{M/d\varphi_0} = (2z^2 \epsilon \epsilon_0 n^{0/k}T)^{1/2} \cosh(ze\varphi_0/2kT)$

For dilute aqueous solutions at 25°C $C_d = 228zC^{*1/2}\cosh(19.5z\varphi_0)$ where C_d is in µF/cm²

Predicted plot (V-shape) vs. observed one i) low conc & near PZC에서만 유사 ii) 실험치가 예측치보다 훨씬 작음 → need better theory!

Smaller in experiment than in prediction

Stern's modification

Gouy-Chapman model: unlimited rise in differential capacitance with φ_0

- → ions are not restricted with respect to location in solution phase (point charge can approach the surface arbitrarily closely)
- → not realistic: ions have a finite size & cannot approach the surface any closer than the ionic radius. If solvated, larger radius. Solvent layer should be considered

X₂: outer Helmholtz plane (OHP)

Poisson-Boltzmann equation for $x \ge x_2$

 $\frac{\tanh(ze\varphi/4kT)/\tanh(ze\varphi_2/4kT)}{(ze\varphi_2/4kT)} = e^{-\kappa(x-x^2)}$ Where φ_2 is the potential at x_2 Field strength at x_2 , $(d\varphi/dx)_{x=x^2} = -(8kTn^0/\epsilon\epsilon_0)^{1/2}\sinh(ze\varphi_2/2kT)$

Total potential drop across the double layer

 $\phi_0 = \phi_2 - (d\phi/dx)_{x=x2}x_2$

 $\sigma^{M} = -\sigma^{S} = -\varepsilon\varepsilon_{0} (d\phi/dx)_{x=x2} = (8kTn^{0}\varepsilon\varepsilon_{0})^{1/2} \sinh(ze\phi_{2}/2kT)$

 $\sigma^{M} = (8kTn^{0}\epsilon\epsilon_{0})^{1/2}sinh[ze/2kT(\varphi_{0} - \sigma^{M}x_{2}/\epsilon\epsilon_{0})]$

Differential capacitance

$$\begin{split} \mathrm{C}_{d} &= d\sigma^{M}\!/d\varphi_{0} = (2z^{2}\epsilon\epsilon_{0}n^{0}\!/kT)^{1/2} \mathrm{cosh}(ze\varphi_{2}\!/2kT)/[1 + (x_{2}\!/\epsilon\epsilon_{0})(2\epsilon\epsilon_{0}z^{2}e^{2}n^{0}\!/kT)^{1/2} \mathrm{cosh}(ze\varphi_{2}\!/2kT)] \end{split}$$

 $1/C_{d} = x_{2}/\varepsilon\varepsilon_{0} + 1/[(2\varepsilon\varepsilon_{0}z^{2}e^{2}n^{0}/kT)^{1/2}\cosh(ze\phi_{2}/2kT)]$

Two components

$1/C_{d} = 1/C_{H} + 1/C_{D}$

C_D: capacitance of the charge at OHP, C_D: truly diffuse charge

Gouy-Chapman-Stern model

C_H: independent of potential

C_D: varies in V-shaped depending potential

Cd: V-shaped near PZC with low electrolyte conc (characteristic of CD)

At large electrolyte conc or large polarization $\rightarrow C_D$ is so large $\rightarrow C_H$

→ Gouy-Chapman-Stern (GCS) model

Specific adsorption

Fig.13.2.2

Potential more negative than PZC: decline & same regardless composition (GCS model)

Potential more positive than PZC: depend specifically on the composition \rightarrow <u>specific adsorption</u> of anions: their center: *inner Helmholtz plane* (IHP), x₁

Fig.13.2.6 Br

(i) Specifically adsorbed ion \rightarrow considering the slopes of $z_i F \Gamma_{i(H2O)}$ vs. $\sigma^M = -[F \Gamma_{K+(H2O)} - F \Gamma_{Br-(H2O)}]$

In the absence of specific adsorption: charge on the electrode is counterbalanced by the excess of one ion and a deficiency of the other (Fig.13.2.5)

→ Fig. 13.2.6: more positive than PZC → superequivalent adsorption of bromide (considering slopes & compare with Fig. 13.2.5)

(ii) Esin-Markov effe	t: shift in PZC with	h change in electrolyte co	onc
-----------------------	----------------------	----------------------------	-----

Concentration, E_7 , Table by "Grahame" V vs. NCE^{b} Electrolyte M \rightarrow shift : linear with *ln*[activity] 1.0 -0.472NaF 0.1-0.472 \rightarrow slope: Esin-Markov coefficient at $\sigma^{M} = 0$ 0.01 -0.480(non-specific adsorption: EM coeff = 00.001 -0.4821.0 -0.556NaCl 0.3 -0.524 $(1/\text{RT})(\partial E_{+}/\partial \ln a_{\text{salt}})_{\sigma M} = (\partial E_{\pm}/\partial \mu_{\text{salt}})_{\sigma M}$ 0.1 -0.5051.0 -0.65KBr 0.1 -0.58-0.540.01 KI 1.0 -0.820.1 -0.72-0.660.01 0.001 -0.59

Studies at solid electrodes

Double layer at solids

Most measurements on mercury

→ solid electrode: difficulty to reproduce same & clean surface, not atomically smooth...

Well-defined single crystal electrode surfaces

Different crystal faces exhibit different properties (e.g., PZC, work function..)

- Pt, Pd, Ag, Ni, Cu: FCC crystal structures
- \rightarrow low-index crystal faces: stable, polishable
- \rightarrow higher-index planes: more edges, step & kink sites

Reconstruction: minimize surface energy

Carbon: highly oriented pyrolytic graphite (HOPG)

Face-centered cubic (FCC) structure

Potential of zero charge

Hg	Sb	Bi	Bi(111)	Sn	Pb	In	In(Ga)	Tl	Tl(Ga)	Ga	Cd	Zn
-0.19	-0.17	-0.38	-0.41	-0.39	-0.60	-0.65	-0.67	-0.71	-0.69	-0.69	-0.75	-0.91

Table 1. Potentials of zero charge of sp metals, $E_{\sigma=0}$ (V) vs. the standard hydrogen electrode (SHE).^a

^aThe uncertainty varies mostly between 0.01 and 0.02 V, but it is higher for d metals and lower (0.001 V) for Hg. (Reproduced from Trasatti and Lust (1999)^[16] by permission of Plenum.)

Table 2.	Table 2. Potentials of zero charge of sd metals, $E_{\sigma=0}$ (V) vs. SHE. ^a									
Ag	Ag(111)	Ag(100)	Ag(110)	Au	Au(111)	Au(100)	Au(110)	Cu	Cu(110)	
-0.70	-0.45	-0.62	-0.74	0.20	0.56	0.32	0.20	-0.64	-0.69	

^aAs per Table 1.

cf. Pt: 0.18 V, Ni: -0.33 V

Different crystal faces exhibit different properties (e.g., PZC, work function..) e.g., PZC on Ag(111) (-0.69 V vs. SCE), Ag(110) (-0.98 V), \rightarrow -0.8 V: carry negative charge in (111), positive charge in (110)

Different catalytic & adsorption properties e.g., different CV in Pt (0.5 M H_2SO_4)

Solid metal-solution interface

Information on PZC & interface from capacitance measurements Capacitance curves for Ag(100) at different conc of KPF₆ and NaF (top to bottom 100, 40, 20, 10, and 5 mM) Independence of min in capacitance \rightarrow weakly specificallyadsorbed on Ag

PZC from capacitance minimum

PZC depends upon crystal faces (e.g., Ag) calculated: polycrystalline (46% (110), 23% (100), 31% (111))

Another complication: surface reconstruction Au(100): reconstructed (5 x 20) during flame heating <+0.5 V: maintained (5 x 20) ~+0.7 V: converted to original (100)

Extent and rate of specific adsorption Nature and extent of specific adsorption

Commensurate: molecules adsorb in exact corresponding pattern with surface atoms e.g., $1.5 \ge 10^{15}$ Au atoms/cm² on Au(111), spacing 2.9 Å \rightarrow if adsorbate atoms on atop sites: (1 x 1) superlattice (2.5 x 10⁻⁹ mol/cm²)

Iodine or 4-aminothiophenol: $(\sqrt{30} \times \sqrt{30})R30^\circ \rightarrow 1/3$ Au (8.3 x 10⁻¹⁰ mol/cm²) Lower coverage for larger molecules

Roughness factor: actual area/projected area ($\sim 1.5 - 2$ for smooth electrode)

Adsorption isotherms

Equal electrochemical potentials for bulk & adsorbed species i at equilibrium

$$\mu_{i}^{A} = \mu_{i}^{b}$$

$$\mu_{i}^{0,A} + \text{RT} \ln a_{i}^{A} = \mu_{i}^{0,b} + \text{RT} \ln a_{i}^{b}$$

Standard free energy of adsorption

$$\Delta G_i^{\ 0} = \mu_i^{\ 0,A} - \mu_i^{\ 0,b}$$
$$a_i^{\ A} = a_i^{\ b} e^{-\Delta Gi0/RT} = \beta_i a_i^{\ b}$$
$$\beta_i = exp(-\Delta G_i^{\ 0}/RT)$$

Where

Langmuir isotherm

Assumption:

- (a) No interactions between the adsorbed species on the electrode surface
- (b) No heterogeneity of the surface
- (c) At high bulk activities, saturation coverage of the electrode by adsorbate (e.g., to form a monolayer) of amount of Γ_s

$$\Gamma_i/(\Gamma_s-\Gamma_i)=\beta_i a_i{}^b$$

Fractional coverage, $\theta = \Gamma_i / \Gamma_s$

$$\theta/(1-\theta) = \beta_i a_i^t$$

$$\Gamma_{i} = \Gamma_{s}\beta_{i}C_{i}/(1+\beta_{i}C_{i})$$

If two species i & j are adsorbed competitively,

$$\Gamma_{i} = \Gamma_{i,s}\beta_{i}C_{i}/(1 + \beta_{i} + \beta_{j})$$

$$\Gamma_{j} = \Gamma_{j,s}\beta_{j}C_{j}/(1 + \beta_{i} + \beta_{j})$$

<u>Logarithmic Temkin isotherm</u> Interactions between adsorbed species $\Gamma_i = (RT/2g)\ln(\beta_i a_i^b) \quad (0.2 < \theta < 0.8)$

<u>Frumkin isotherm</u>

Electrochemical free energy of adsorption is linearly related to Γ_i $\Delta G_i^{0}(Frumkin) = \Delta G_i^{0}i(Langmuir) - 2g\Gamma_i$

 $\beta_i a_i^{b} = [\Gamma_i / (\Gamma_s - \Gamma_i)] exp(-2g\Gamma_i / RT)$

g: J/mol per mol/cm² \rightarrow increased coverage changes the adsorption E of i Positive g: interactions between adsorbed molecules are attractive Negative g: repulsive interactions As g \rightarrow 0, Frumkin isotherm approaches the Langmuir isotherm

Rate of adsorption When $\beta_i C_i \ll 1$, $\Gamma_i = \Gamma_s \beta_i C_i = b_i C_i$ Where $b_i = \beta_i \Gamma_s$ $\Gamma_i(t) = b_i C_i(0,t)$ $C_i(x,0) = C_i^*$, $\lim C_i(x,t) = Ci^*$ $\Gamma_i(t) = \int D_i [\partial C_i(x,t)/\partial x]_{x=0} dt$ $\rightarrow \qquad \Gamma_i(t)/\Gamma_i = 1 - \exp(D_i t/b_i^2) \operatorname{erfc}[(D_i t)^{1/2}/b_i]$

 $\Gamma_i(t)/\Gamma_i$ is independent of C_i^* , but actually depend on.

Effect of adsorption of electroinactive species

→ such adsorption inhibit (or poison) an electrode reaction or accelerate the electrode reaction (e.g., hydrogen or oxygen)

$$k^0 = k_{\theta=0}^{\quad 0}(1-\theta) + k_c^{\quad 0}\theta$$

Where $k_{\theta=0}^{0}$ is the standard rate const at the bare surface & k_c^{0} that at the filmed portions

For completer blockage by the film, $k_c^0 = 0$ For catalysis by the filmed area, $k_c^0 > k_{\theta=0}^0$

Effect of adsorbed substances Hydrogen & oxygen CO & organics

Summary

Electrochemical potential $(\mu_i) = (\partial G / \partial n_i)$: const at equilibrium

Surface tension $(\gamma) = (\partial G/\partial A)$: a measure of the energy required to produce a unit area of new surface

Surface excess concentration (Γ_i) = n_i/A : excess per unit area of surface

Gibbs adsorption isotherm: $-d\gamma = \Sigma \gamma_i d\mu_i$ <u>for general interface</u>

Electrocapillary equation: $-d\gamma = \sigma^{M}dE + \Sigma\Gamma_{i}d\mu_{i}$

for electrochemical interface

The excess charge density on the metallic side of interface: $\sigma^{M} = -\sigma^{S}$

 \rightarrow surface tension (γ) vs. charge density: $\sigma^{M} = -(\partial \gamma / \partial E)_{\mu}$

Surface tension (γ) vs. charge density: $\sigma^{M} = (\partial \gamma / \partial E)_{\mu}$

