Lecture #6. Fall, 2012
Electrochemical Energy Engineering
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Thermodvnamics of the double laver
Gibbs adsorption isotherm

Suppose an interface of surface area A separating two phases, o & [3
— interfacial zone (~ 100 A) —

— excesses and deficiencies [ I
in the concentration of components

Surface excess (in # of moles of any species)
o — S R L — Interacial zone =B

n°=n>-n,

n,%: excess quantity (any extensive variable, e.g.. electrochemical free energy),

n° & n*: # of moles of species i in interfacial region for actual & reference systems

Electrochemical free energy
For the reference system. G® = GX(T, P. n%)
For the actual system, G>= G3(T. P, A, n;%)
dGR = (3GR/3T)dT + (3GR/9P) + 3 (9GR/9nF)dnR
dGS = (8GS/8T)dT + (9GS/AP)dP + (3GS/FA)dA + ¥ (9G%/anS)dn,S

At const T & P — 1¥ two terms can be dropped
(0GRan®) = |1, (electrochemical potential) — const at equilibrium



B U; = (9GX/anf) = (9G%/an?)
(0GS/dA) = y (surface tension): a measure of the energy required to produce a
unit area of new surface

Differential excess ﬁ'@f energy B
dG° = dG® — dG* = ydA + Y1 d(n’ — nf®)
dGe = ydA + > udne
Euler’s theorem for variables, A and n, (const T and P)
G° = (0G°/dA)A + 2 (9G°/an")n°
0 — \gﬂ + Zujniﬂ

— dGe = ydA + > Udne + Ady + > nedy,

Ady +>nedy;=0

Surface excess concentration, [ . =n.°/A (excesses per unit area of surface
v 1 1

-dy = 2> [, dy;
Gibbs adsorption isotherm: importance of surface tension for interfacial structure




Electrocapillary equation
Consider
Cu/Ag/AgCUK"*. ClI-, M/Hg/N1/Cu
M: neutral species
Gibbs adsorption isotherm: components of Hg electrode, ions, neutral

-dy = (I g dbg, T Fedu B8) + (Mg dig, + Fepdie) + (M di™ + T adige)
1. 7€: electrons in the mercury phase

Some linkages:

UHg = U_Cu

UKCI Uger = Mg+ Hew
UH;:D Huo

Har = Har

duHE = dqu =0

-dy = redLJ_ecu T (r};—da}:m - r}:—dam- - [_C“l-dU_Cl-) * (MydHy T T odio)



From the equilibrium at the reference interface
i s

U:ﬂgg'[il Ee b= U.-f'ag T Hei-

Since dU s,y = dUy,= 0. du . = dig,.

-dy = du o - (Mg, — M) dU S + Mgdbge + Mydiy + Minodimg

Excess charge density on the metallic side of the interface
oM=-Fl,
Opposite charge density on the solution side
_ 02=-0M=F(lg. —T¢)
dUEC“ _ dUEC‘u' — _Fd((b{:iu _ d}Cu') — -FdE-_
E : potential of the mercury electrode with respect to the reference

-dy = oMdE_ + g dige; + Myl T MaoodHimo

Gibbs-Duhem relation at const T and P
> Xdy, =0
X1: mole fraction
XmodHmo + XgodHge T XydUy =0
Remove dlgyg



-dy = OMdE_ + [k, - (XgcyXm0) moldiker + [Ny — (X Xino) moldiy
Relative surface excess: measurable parameters
[ ko) = g+ - KxerXmo)! mo
Moy = v — v Xm0 720

Cannot measure absolute surface excess of K*, but only excess relative to water
e.g.. zero excess: same mole ratio of adsorption of K* and H,O

postfive excess: K* = H,0
Water: reference component
Dilute solutions: negligible (X,/Xo)I ¢

Electrocapillary equation

-dy = 0MdE_+ g moydHker t M wgnoydHas

— all measurable parameters



Experimental evaluation of surface excesses & electrical parameters

Electrocapillarity and the DME
For DME.
tay — 2J0I. Y/ Mg
t ... drop lifetime
— . VS. E has same shape as the electrocapillary curve

Excess charge and capacitance
From electrocapillary equation,

oM = (a\g'f'llaE-)uKCI,LI"rI

the excess charge on the electrode - =
— slope of electrocapillary curve at any E L/ﬁ\h ™~

-

Drop time of a DME in 0.1 M KCl vs. E

Tmpw B

20 F

|':.I;'\.l' 1A, SGE'l



Electrocapillary curve in different electrolyte
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— the existence of a maximum in surface tension

— potential at maximum: “electrocapillary maximum (ECM)”

— curve slope = 0 at ECM — “potential of zero charge” (PZC)
oM=0%=0




At more negative potentials — the electrode surface has a negative excess charge
At more positive potentials — positive surface charge
— Plots of surface charge can be made by differentiating electrocapillary curves
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The capacitance of the interface — its ability to store charge in response to a
perturbation in potential

C, = (30M/3E)

Differential capacitance: the slope of the plot of oM vs. E

Slope of tangent = £ at —1.0 V‘u
,

*, Slope of chard ]
=Coat-1.0Yy )
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Integral capacitance. C, (or K): ratio of total charge density (o™) at potential E to
the total potential difference

C,= o™M/(E - E,)
E,: PZC



C,=] C,E/] dE

Average of C, over the potential range from E; to E
Differential capacitance is the more useful quantity, in part it is precisely
measurable by impedance techniques

Capacitance can be obtained from the electrocapillary curves by double
differentiation

¥ =] C4E
Relative surface excesses

From electrocapillary equation, relative surface excess of K* at the interface

rK+(HEDj = -(9Y/IUgc)E.

Since Higer = UﬂK{jjl + RT‘F'F?HKCI

&gy = -(VRT)(@Y/Inagc)e. i

I

— relative surface excess [ o) at any potential E- by measuring surface tension
for several KC1 activities (at const M)



Relative surface excess of CI: from the charge balance (0% =-0™=F(T, — )

Fig. 13.2.9: relative surface excess of 0.1 M KF in contact with mercury

At potentials positive of E; — surface excess of K™: negative — K™ conc 1in the
interface 1s smaller than in the bulk (reverse for CI)

At potentials negative of E; — opposite
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Fig. 13.2.6: 0.1 M KBr
At potentials positive of E, (i.e.. for o™ > 0)— surface excess of K™: positive —
specific adsorption of Br- on mercury
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Models for double laver structure
The Helmholtz model

Two sheets of charge. having opposite polarity. separated by a distance of molecular

order — equivalent to a parallel-plate capacitor

Relation of stored charge density, O, and voltage drop V between the plate

-

0= (ggy/d)V

g: dielectric const of the medium, £,: permittivity of free space. d: spacing

Differential capacitance
00/0V =Cy=€gy/d

Weakness of this model: predict C, is const
e.g.. Fig. 13.3.1

Differential capacitance vs. E

in Hg/NaF interface

— potential dependence

— more sophisticated model needed

, pFiem®

FrT 1T T T 17T

g 04

0D -04 0B -12 -1.8
E-E, (V)



The Gouy-Chapman theory
Charge on the electrode is confined to the surface
Charge 1n the solution: diffusion laver

Laminas e du
o i

PN

1 | |

B

Reference lamina

i

|

i - @ & & & @& in bullc 2alution
|

Elzcirode Electrobyte

Population 1n any lamina (number concentration of species)
n, = n,’exp(-z,e¢/kT)

n.%: bulk concentration. ¢: electrostatic potential (¢ measured with respect to the
bulk)

Total charge per unit volume in any lamina
p(x) = 2 nze = > nze exp(-zedp/kT)



0(x) 1s related to the potential at distance x by the Poisson equation
0(x) = -eg,(d*¢/dx?)
Poisson-Boltzmann equation
d*d/dx* = -(e/egy)> n zexp(-z,ed/kT)
d*d/dx? = (1/2)(d/dd)(dd/dx)?

— (dd/dx)? = (2kT/eey)> n'lexp(-zed/kT) — 1]

For z:z electrolyte  dd/dx = -(8kTn"/e&,)"*sinh(ze$/2kT)

(a) Potential profile in the diffusion layer

0g: potential at x = 0 relative to the bulk solution

= potential drop across the diffusion layer

tanh(zed/4kT)/tanh(zey/4kT) = e ™=

Where K = (2n°Z%e¥ e kT)1>

For dilute aqueous solution (& = 78.49) at 25°C

K=(3.29x 10")zC™1?
C”: bulk z:z electrolyte conc in mol/L. K: cm!



Potential profile for several different ¢,: potential decay away from the surface

At large ¢, (a highly charged electrode), the drop is precipitous because the
diffusion layer is relatively compact
As 0, smaller, the decline 1s more gradual
If ¢, 1s sufficiently low (tanh(ze$/kT) ~ zed/kT)
O/Qy=e =

Good approximation for ¢, < 50/z mV at 25°C
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Reciprocal of K: unit of distance and characterizes the spatial decay of potential
— kind of characteristic thickness of the diffusion layer
— thicker as conc of electrolyte falls

CH(M)” 1#(A)
(b) Relation between o™ and ¢
Suppose Gaussian surface l_ , 30
10 9.6
_— Electuoge surtace 102 30.4
Gaussian nciosure 102 96.2
/ 1074 304

)
End surfaca

X-’-'
rad
AmBE=A4
R
hd E =0
Hurtace against electnde ol

Gauss law, charge

q-= Esﬂjsurface E-dS
= £g,A(dd/dx),
Using ¢/A = 0° and dd/dx = -(8kTn%ee,)V*sinh(zed/2kT)



g% = -o™M = (8kTn"c&,)*sinh(zed /2K T)

For dilute solution at 25°C
oM =11.7C""*sinh(19.5z¢,)
Where C™ 1s in mol/L for o™ in pC/cm?

(c) Differential capacitance
= doM/db, = (2z°%e’ce,n%kT)’cosh(zed/2kT)

For dilute aqueous solutions at 25°C
C,=228zC*cosh(19.5zd,)
where C, is in UF/cm?

500

Predicted plot (V-shape) vs. observed one
i) low conc & near PZC K| A Bt S At
i) AT WSXECH AN B2

— need better theory!

Smaller in experiment than in prediction




Stern’s modification
Gouy-Chapman model: unlimited rise in differential capacitance with ¢,
— 1ons are not restricted with respect to location in solution phase
(point charge can approach the surface arbitrarily closely)
— not realistic: 1ons have a finite size & cannot approach the surface any closer than
the ionic radius. If solvated. larger radius. Solvent layer should be considered

X,: outer Helmholtz plane (OHP)

hetal

T Specifically adsorbed ankon

= Sal lecul :
O RIS Figure 1.2.3  Proposed model of the

E— - double-layer region under conditions
where anions are specifically adsorbed.




Poisson-Boltzmann equation for x = x,

tanh(ze®/4kT)/tanh(ze ®,/4kT) = e ~x-%2)
Where @, 1s the potential at x,

Field strength at x,,  (d¢/dx),_,, = -(8kTn"/eg,)?sinh(zed,/2kT)

Total potential drop across the double layer

by = &y — (dd/dx),_rX,

oM =-0% =-gg,(ddp/dx),_, = (8kTn s g )t *sinh(zed,/2kT)
oM = (8kTnce,) *sinh[ze/2kT(d, — oMx,/E8,)]

Differential capacitance
C,=doMdo, = (2z°e’cen%kT) *cosh(zed,/2kT)/[1 +
(X,/e8)(288,2%e*nYkT)V*cosh(zed,/2kT)]

1/C,=x,/ee,+ 1/[(2e5,z7e’nkT) *cosh(zed,/2kT)]
Two components
1/C,=1/Cq + 1/Cy
Cp: capacitance of the charge at OHP, Cp: truly diffuse charge



Gouy-Chapman-Stern model
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Cy: independent of potential

Cp: varies in V-shaped depending potential

C4: V-shaped near PZC with low electrolyte conc (characteristic of Cp)
At large electrolyte conc or large polarization — Cp 1s so large — Cy

— Gouy-Chapman-Stern (GCS) model

High elactrolyte
concentration
"‘«'E:',,:‘ = ':,:';:I

= ' . minima at E—E., =0

o Dip due to ¢,

L

i Low electrolyte

.3 Cy concentration

J |
(+) 0 (-}
E—E. (V)



Specific adsorption

Fig.13.2.2

Potential more negative than PZC: decline & same regardless composition (GCS
model)

Potential more positive than PZC: depend specifically on the composition

— specific adsorption of anions: their center: inner Helmholtz plane (IHP), x,
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Fig.13.2.6 Br



(i) Specifically adsorbed ion — considering the slopes of z;FI'j 50y VS. 6™
oM = '[FFK+(H20) - FFBr-(HZO)]

In the absence of specific adsorption: charge on the electrode is counterbalanced by
the excess of one ion and a deficiency of the other (Fig.13.2.5)

— Fig. 13.2.6: more positive than PZC — superequivalent adsorption of bromide
(considering slopes & compare with Fig. 13.2.5)

(i1) Esin-Markov effect: shift in PZC with change in electrolyte conc

Concentration, B

Table by “Grahame” Electrolyte M V vs. NCE
— shift : linear with In[activity] NaF 1.0 ~0.472
— slope: Esin-Markov coefficient at cM = 0 i e
(non-specific adsorption: EM coeff =0 0.001 0.482
NaCl 1.0 —0.556
0.3 —0.524
(1/RT)(CE ./0lna,) o\ = (OE /011t om 0.1 0.505
KBr 1.0 —0.65
0.1 —0.58
0.01 —0.54
KI 1.0 —0.82
0.1 —(.72

0.01 -0.66
0.001 —0.59




Studies at solid electrodes

Double layer at solids

Most measurements on mercury

— solid electrode: difficulty to reproduce same & clean surface, not atomically
smooth...

Well-defined single crystal electrode surfaces

Different crystal faces exhibit different properties (e.g., PZC, work function..)
Pt, Pd, Ag, Ni, Cu: FCC crystal structures

— low-index crystal faces: stable, polishable

— higher-index planes: more edges, step & kink sites

Basal Plane

Reconstruction: minimize surface energy j

Carbon: highly oriented pyrolytic graphite 7T g Ral o
HOPG NP asuirguir s T
( ) Edge Plane — é‘ﬁ)———* (}gx{;%_l_
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Potential of zero charge

Table 1. Potentials of zero charge of sp metals, E,—o (V) vs. the standard hydrogen electrode (SHE).*

Hg Sb Bi Bi(111) Sn Pb In In(Ga) Tl TI(Ga) Ga Cd Zn

-0.19 =017  -0.38 —-0.41 -039 -060 -065 -067 -071 =069 -0.69 -0.75 -091

“The uncertainty varies mostly between 0.01 and 0.02'V, but it is higher for d metals and lower (0.001 V) for Hg. (Reproduced from Trasatti and Lust
(1999)t16] by permission of Plenum.)

Table 2. Potentials of zero charge of sd metals, E,—y (V) vs. SHE.*

Ag Ag(111) Ag(100) Ag(110) Au Au(111) Au(100) Au(110) Cu Cu(110)

~0.70 —0.45 —0.62 —0.74 0.20 0.56 0.32 0.20 —0.64 —0.69

“As per Table 1.

cf. Pt: 0.18 V, Ni: -0.33V



Different crystal faces exhibit different properties (e.g., PZC, work function..)
e.g., PZC on Ag(111) (-0.69 V vs. SCE), Ag(110) (-0.98 V),
— -0.8 V: carry negative charge in (111), positive charge in (110)

190 t (100)

Different catalytic & adsorption properties ; o
e.g., different CV in Pt (0.5 M H,SO,) zo— (@rdses =205
W l
I~N NHE
[ Pt (111)
B= (Q0)des = 95
_ (On)des = 240
ﬂ“E 20—-
E/VNHE
160 — Pt (110)
[ (Qo)des = 195
— (Qn)des = 200
wE 40 -
0I1 [ I I I Y A | 1%



Solid metal-solution interface

Information on PZC & interface from capacitance measurements
Capacitance curves for Ag(100) at different conc of KPF, and NaF

(top to bottom 100, 40, 20, 10, and 5 mM)

Independence of min in capacitance — weakly specificallyadsorbed on Ag
PZC from capacitance minimum

C/uF - om™

C/uF-cm™




PZC depends upon crystal faces (e.g., Ag)
calculated: polycrystalline (46% (110), 23% (100), 31% (111))

C(uF-cm™)

ESCe(V)



Another complication: surface reconstruction

Au(100): reconstructed (5 x 20) during flame heating

< +0.5 V: maintained (5 x 20)
~+0.7 V. converted to original (100)

Or—T—T1—T1T T
Au(100): (5 x 20) — (1 x 1)
0.01M HCIO,

50 -

= A=
|
&
(&)
W
=
O 30 —
20 — P
1,3
10 l | | I |
-0.4 -0.2 0.0

0.4

0.6



Extent and rate of specific adsorption

Nature and extent of specific adsorption

Commensurate: molecules adsorb in exact corresponding pattern with surface atoms
e.g., 1.5 x 1015 Au atoms/cm? on Au(111), spacing 2.9 A

— if adsorbate atoms on atop sites: (1 x 1) superlattice (2.5 x 10~ mol/cm?)

lodine or 4-aminothiophenol: (V30 x V30)R30° — 1/3 Au (8.3 x 1020 mol/cm?)
Lower coverage for larger molecules
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Roughness factor: actual area/projected area (~1.5 — 2 for smooth electrode)

Adsorption isotherms
Equal electrochemical potentials for bulk & adsorbed species i at equilibrium
WA =
woA+ RT InaA = 1% + RT In &P
Standard free energy of adsorption
AGO = pOA — | 0b
aiA — aib e-AGiO/RT — Biaib

Where B; = exp(-AG;%/RT)

Langmuir isotherm
Assumption:
(a) No interactions between the adsorbed species on the electrode surface
(b) No heterogeneity of the surface
(c) At high bulk activities, saturation coverage of the electrode by adsorbate (e.g., to
form a monolayer) of amount of T,
[T —T) = B

Fractional coverage, 6 = I'//T,
0/(1 - 0) = B;a°



I =TBCH(1 + BiC)
If two species | & j are adsorbed competitively,

[ =T BiGH( + B + By)
[ =T 3Gl (L + B + By)

Logarithmic Temkin isotherm
Interactions between adsorbed species
[, = (RT/2g9)In(B;a?) (0.2<6<0.8)

Frumkin isotherm
Electrochemical free energy of adsorption is linearly related to T,
AG?(Frumkin) = AG;% (Langmuir) — 29T,

Biai® = [L/(I's - T')]exp(-2gT/RT)
g: J/mol per mol/cm? — increased coverage changes the adsorption E of i
Positive g: interactions between adsorbed molecules are attractive
Negative g: repulsive interactions
As g — 0, Frumkin isotherm approaches the Langmuir isotherm



Rate of adsorption
When B,C; << 1, [, =T'BiC, = b,C
Where b; = B,[,
I(t) = b;Ci(0,1)
Ci(x,0) =C;", lim C(x,t) = Ci”
() = [ D,[6C;(x,0)/dX], -, ot

— [, ()T, = 1 — exp(D;t/b;?)erfc[(Dit)Y?/b;]

[, (t)/T; is independent of C,”, but actually depend on.

0.8 —

bC*/IT,

0 0.08 0.32 0.72
2



Effect of adsorption of electroinactive species

— such adsorption inhibit (or poison) an electrode reaction or accelerate the
electrode reaction (e.g., hydrogen or oxygen)

kO =Ky_,0(1 —6) + k.00

Where k,_, is the standard rate const at the bare surface & k. that at the filmed
portions

For completer blockage by the film, k.= 0

For catalysis by the filmed area, k. > k,_,"

Effect of adsorbed substances oo R E—
Hydrogen & oxygen T R e <N B
CO & organics T

1.2 1.0 0.8 0.6 0.4 0.2 0
E(V vs. NHE)



Summary
Electrochemical potential (p;) = (0G/on;): const at equilibrium

Surface tension (y) = (0G/0A). a measure of the energy required to
produce a unit area of new surface

Surface excess concentration (I';) = n,/A: excess per unit area of surface

Gibbs adsorption isotherm: -dy = Zy,dp;  for general interface

Electrocapillary equation: -dy = eMdE + XI',dp,

for electrochemical interface

The excess charge density on the metallic side of interface: eM=-¢°

— surface tension (y) vs. charge density: o™ = -(dy/0E),



Surface tension (y) vs. charge density: ™ = (0y/0E),

Curve slope = 0: “potential of zero charge”(pzc)
' 1 - oM=6°=0

] - excess charge
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