Spring Semester, 2011 Energy Engineering 에너지공학

Fluid mechanics for energy conversion

Ref. ch.3

1. Basic physical properties of fluids

Density (p): mass per unit volume of a fluid. Kgm⁻³. ($\rho_{water} \sim 10^3$ kgm⁻³ & $\rho_{air} \sim$

3. Mass continuity

Conservation of mass (or mass continuity): one of fundamental laws of fluid mechanics \rightarrow mass flow per second is constant along the stream tube

 $\rho uA = const.$

(a)

u: speed of fluid, A: cross-sectional area

4. Energy conservation in an ideal fluid: Bernoulli's equation

 $p/\rho + gz + \frac{1}{2}u^2 = \text{const.}$

z: a given depth

For a stationary fluid, $u = 0 \rightarrow p/\rho + gz = co$

Derivation:

Bernoulli's equation: the pressure in a moving fluid decreases as the speed increases

e.g. 3.2

e.g. 3.3

e.g. 3.4

5. Dynamics of a viscous fluid

Laminar viscous flow between parallel plates in relative motion

Laminar flow(층류) & turbulent flow(난류)

1. Basic physical properties of fluids

Density (p): mass per unit volume of a fluid. Kgm⁻³. ($\rho_{water} \sim 10^3$ kgm⁻³ & $\rho_{air} \sim 1.2$ kgm⁻³ at T = 20 °C and p = 1 atm)

Pressure (p): force per unit area in a fluid (수직방향의 힘). Pascal or Nm⁻². (1 atmosphere ~ 1 bar = 10⁵ Nm⁻² = 10⁵ Pa)

Viscosity: force per unit area due to int relative motion between neighbour direction.

Turbine

1. Basic physical properties of fluids

1. Basic physical properties of fluids

Average cycles to failure N

1. Basic physical properties of fluids

1. Basic physical properties of fluids

Density (p): mass per unit volume of a fluid. Kgm⁻³. ($\rho_{water} \sim 10^3$ kgm⁻³ & $\rho_{air} \sim 1.2$ kgm⁻³ at T = 20 °C and p = 1 atm)

Pressure (p): force per unit area in a fluid (수직방향의 힘). Pascal or Nm⁻². (1 atmosphere ~ 1 bar = 10⁵ Nm⁻² = 10⁵ Pa)

Viscosity: force per unit area due to relative motion between neigh⁽ⁿ⁾ direction.

1. Basic physical properties of fluids

- Pressure (p): force per unit area in a fluid (수직방향의 힘). Pascal or Nm⁻². (1 atmosphere ~ 1 bar = 10⁵ Nm⁻² = 10⁵ Pa)
- Viscosity: force per unit area due to internal friction in a fluid arising from the relative motion between neighbouring elements in a fluid. Tangential direction.

1. Basic physical properties of fluids

Density (p): mass per unit volume of a fluid. Kgm⁻³. ($\rho_{water} \sim 10^3$ kgm⁻³ & $\rho_{air} \sim 1.2$ kgm⁻³ at T = 20 °C and p = 1 atm)

Pressure (p): force per unit area in a fluid (\uparrow atmosphere ~ 1 bar = 10⁵ Nm⁻² = 10⁵ Pa)

Viscosity: force per unit area due to internal f relative motion between neighbouring el direction.

1. Basic physical properties of fluids

1. Basic physical properties of fluids

Density (p): mass per unit volume of a fluid. Kgm⁻³. ($\rho_{water} \sim 10^3$ kgm⁻³ & $\rho_{air} \sim 1.2$ kgm⁻³ at T = 20 °C and p = 1 atm)

Pressure (p): force per unit area in a fluid (수직방향의 힘). Pascal or Nm⁻². (1 atmosphere ~ 1 bar = 10⁵ Nm⁻² = 10⁵ Pa)

1. Basic physical properties of fluids

Density (p): mass per unit volume of a fluid. Kgm⁻³. ($\rho_{water} \sim 10^3$ kgm⁻³ & $\rho_{air} \sim 1.2$ kgm⁻³ at T = 20 °C and p = 1 atm)

Pressure (p): force per unit area in a fluid (수직방향의 힘). Pascal or Nm⁻². (1 atmosphere ~ 1 bar = 10⁵ Nm⁻² = 10⁵ Pa)

1. Basic physical properties of fluids

Density (p): mass per unit volume of a fluid. Kgm⁻³. ($\rho_{water} \sim 10^3$ kgm⁻³ & $\rho_{air} \sim 1.2$ kgm⁻³ at T = 20 °C and p = 1 atm)

Pressure (p): force per unit area in a fluid (수직방향의 힘). Pascal or Nm⁻². (1 atmosphere ~ 1 bar = 10⁵ Nm⁻² = 10⁵ Pa)

1. Basic physical properties of fluids

Density (p): mass per unit volume of a fluid. Kgm⁻³. ($\rho_{water} \sim 10^3$ kgm⁻³ & $\rho_{air} \sim 1.2$ kgm⁻³ at T = 20 °C and p = 1 atm)

Pressure (p): force per unit area in a fluid (수직방향의 힘). Pascal or Nm⁻². (1 atmosphere ~ 1 bar = 10⁵ Nm⁻² = 10⁵ Pa)

1. Basic physical properties of fluids

Density (p): mass per unit volume of a fluid. Kgm⁻³. ($\rho_{water} \sim 10^3$ kgm⁻³ & $\rho_{air} \sim 1.2$ kgm⁻³ at T = 20 °C and p = 1 atm)

Pressure (p): force per unit area in a fluid (수직방향의 힘). Pascal or Nm⁻². (1 atmosphere ~ 1 bar = 10⁵ Nm⁻² = 10⁵ Pa)