"Tissue Engineering

- Cartilage Regeneration - "

Takashi USHIDA (Mechano-bioengineering)

ES Cell

Bone Marrow Stem Cell

Matured Cell

Organ transplantation

1. Cell sources

2. 3 dimensional scaffolds

Cell source

From who?

- 1. Autologous
- 2. Allogeneic
- 3. Heterologous

1. Autologous

merit

- No immuno-rejection
- No problem concerning virus demerit
 - Limitation of cell sources
 - Low activity of cells

2. Allogeneic

merit

- Higher activity of cells
- Capable of virus check

demerit

- Immuno-rejection
- Ethical problems in some cases

3. Heterologous

merit

- No limitation of cell sources
- Higher activity of cells demerit
 - Immuno-rejection
 - Risk of unknown virus

Cell source

From where?

- 1. ES cell
- 2. Bone marrow cell
- 3. Somatic stem cell
- 4. Matured cell

ES cell

ES (Embryonic Stem) cell

- Stem cell · Self renewal
 - Multipotential

ES cell

- Self renewal
 - Pluripotential
- Allogenic
- Ethical problem by broking zygocyte

Bone Marrow Derived Stem Cells

1. Hematopoetic Stem Cell

2. Mesenchymal Stem Cell

Differentiation of Hematopoetic Stem Cell

3. Somatic Stem Cell

Stem cells located in tissues

- 1) Neural Stem Cell
- 2) Epidermal Stem Cell
- 3) Hepatic Stem Cell
- 4) Small Intestine Epithelial Stem
- 5) Hair Root Stem Cell

Small Intestine Epithelial Stem Cell

Epidermal Stem Cell

ES Cell

Bone Marrow Stem Cell

Matured Cell

Organ transplantation

1. Cell sources

2. 3 dimensional scaffolds

Biomaterial

Collagen, Hyaluronan, Laminin, Elastin

Biodegradable polymer

PLLA, PGA, PLGA

Biopolymers Used in the Field of Tissue Engineeri

Cell - cell interaction
Cell - matrix interaction

Collagen Type I

	Туре	Molecular Formula	Polymerized Form	Tissue Distribution	
FIBRIL-FORMING (FIBRILLAR)	I	$[\alpha 1(I)]_2 \alpha 2(I)$	fibril	bone, skin, tendon, ligaments, cornea, internal organs (accounts for 90% of body collagen)	
	II	$[\alpha 1(II)]_3$	fibril	cartilage, intervertebral disc, notochord, vitreous humor of the eye	
	III	$[\alpha 1(III)]_3$	fibril	skin, blood vessels, internal organs	
	V	$[\alpha 1(V)]_2 \alpha 2(V)$	fibril (with type I)	as for type I	
	XI	$\alpha 1(XI)\alpha 2(XI)\alpha 3(XI)$	fibril (with type II)	as for type II	
FIBRIL-ASSOCIATED	IX	$\alpha 1(IX)\alpha 2(IX)\alpha 3(IX)$ with type II fibrils	lateral association	cartilage	
	XII	$[\alpha 1(XII)]_3$ with some type I fibrils	lateral association	tendon, ligaments, some other tissues	
NETWORK-FORMING	IV	$[\alpha 1 (IV)_2 \alpha 2 (IV)$	sheetlike network	basal laminae	
	VII	$[\alpha 1(VII)]_3$	anchoring fibrils	beneath stratified squamous epithelia	

Types of Collagens

Basement membrane

Structure of basement membrane

Proteoglycan

Structure of proteoglycan

Biodegradable polymer

P L L A (Polylactic acid) year

PLGA (Polylactic-acid-polyglycolic-acid-copermonth)

PGA (polyglycolic acid) week

Biomaterial

Merit

- good biocompatibility
- having cell adhesion sites

Demerit

- difficult for forming
- weak mechanical properties

Biodegradable polymer

Merit

- easy for forming
- enough mechanical properties

Demerit

- hydrophobic
- no cell adhesion site

PLGA-collagen mesh at original magnification imes 20 PLGA-collagen mesh at original magnification imes 60

SEM photomicrographs of PLGA knitted mesh & its composite with collagen

Calcium Phosphates

Ca/P		formula	
0.5	Calcium diphosphate	$Ca(H_2PO_4)_2 \cdot H_2O$ α , β , γ - $Ca(PO_3)_2$	MCPM MTCP
1.0	Calcium monophosphate	CaHPO ₄ • 2H ₂ O CaHPO ₄ α , β , γ –Ca ₂ P ₂ O ₇	DCPD DCP α, β, γ -CPP
1.34	Octa-calcium phosphate	Ca ₈ H ₂ (PO ₄) ₆ • 5H ₂ O	OCP
1.5	Caicium triphosphate	α , β , γ –Ca $_3$ (PO $_4$) $_2$	α , β , γ –TCP
1.67	Hydroxyapatite	Ca ₁₀ (PO ₄) ₆ • (OH) ₂	НАр,НА
2.0	Tetra-calciumphosphate	Ca ₄ P ₂ O ₉	TTCP

3 major diseases of articular cartilage

sport injuries

osteoarthritis (OA)

rheumatoid arthritis (RA)

Articular cartilage

Type II collagen

(Type I collagen fibrous cartilage)

no blood vessel no nerve

low regeneration activity

Lateral femoral groove stained with S-O

Clinical application of autologous chondrocyte implantation

Tissue engineered therapy for cartilage defect

Cell Transplantation

Regenerated Tissue Transplantation

SEM Photomicrographs

Gross Appearance

Single Sheet

Laminated (5-sheet)

Rolled

Thickness: 200 µm

1 mm

8 mm

Histological Results of 5-Sheet Implant

Hydrostatic pressure loading to chondrocytes by weight or moving

Chondrocytes physiologically loaded with hydrostatic pressure

Effect of Hydrostatic Pressure Loading On Matrices Production in Chondrocyte Pellets

Hydrostatic pressure+ Hydrostatic pressure — H-E staining of the pellet **Alcian-Blue staining of the pellet** Safranin-O staining of the pellet Bar=200µm

3 Essential Factors for in vitro Tissue Regeneration

