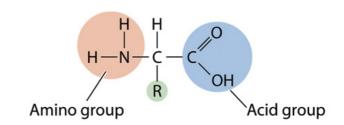
Chapter 5

Protein Structure and Function

Amino Acids and Primary Structure

Amino acids


- Amino group
- Carboxyl group
- R group; 20 Side chains

Peptide bond

 Between NH₂ and COOH

Polypeptide

- A chain of amino acids
- N terminus and C terminus

A
$$H - N - C - C$$

$$OH$$

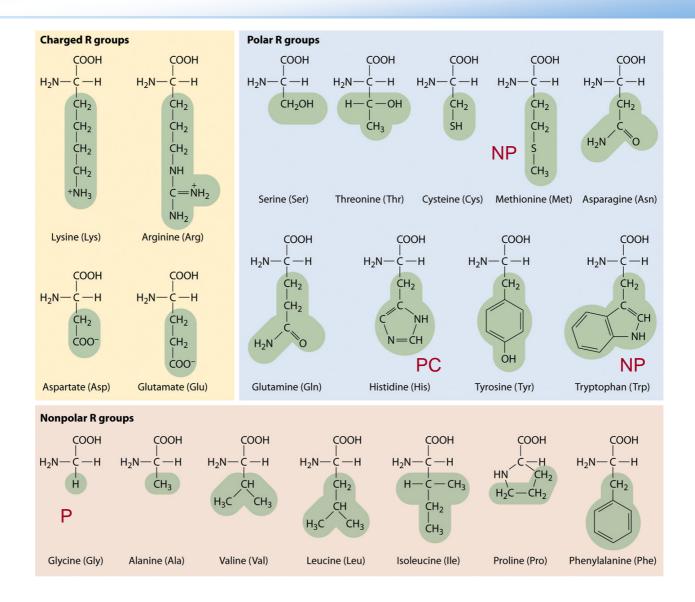
$$H - N - C - C$$

$$OH$$

$$H - N - C - C$$

$$OH$$

$$H - N - C - C - N - C - C$$

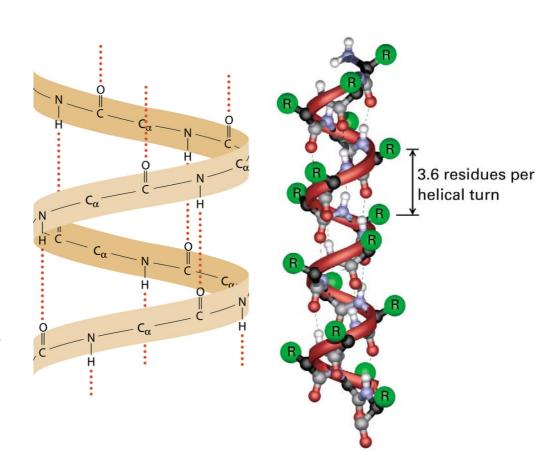

$$R_1$$

$$R_2$$

$$OH$$

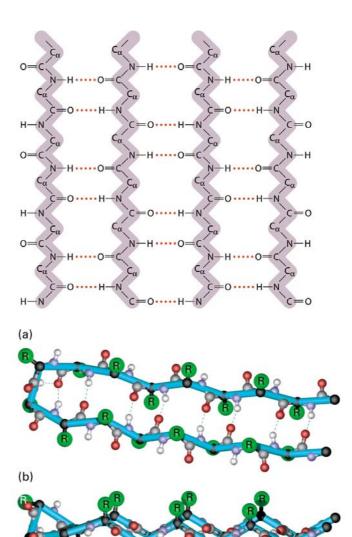
$$R_3$$

Amino Acids



Primary and Secondary Structure

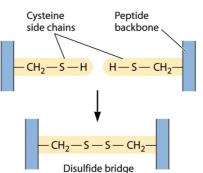
- Primary structure
 - Linear arrangement (sequence) of amino acids
- Secondary structure
 - Core elements of protein architecture
 - Neutralization of partial charges of the peptide backbone by hydrogen bonding
 - Local folding of polypeptide chain
 - α helix, β sheet : 60% of the polypeptide chain
 - Random coils and U-shaped turn


α-Helix

- Hydrogen bond between carbony O (n) and amid H (n+4)
- Directionality on the helix: The same orientation of H bond donor
- Side chains point outward :
- Determine hydrophobic or hydrophilic quality

β-Sheet

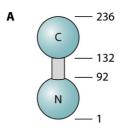
- Laterally packed β strands of 5 to 8 residue
- Hydrogen bonding between β strands → β sheet, pleated sheet
- Parallel or antiparallel

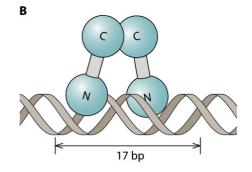


Tertiary Structure

- Tertiary structure
 - Overall folding of a polypeptide chain
 - Stabilization
 - weak interaction
 - Hydrophobic interaction between nonpolar side chains
 - Hydrogen bond between polar side chains and peptide bonds

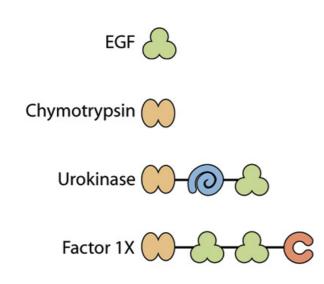
$$N-H$$
 $O=C$ $N-H$ O $N-H$ N


Disulfide bond formation



Higher Levels of Structure

Domains


- Completely folded region of polypeptide
- Fundamental units of protein structure and function
 - Structural feature:
 - proline-rich, acidic
 - Functional feature:
 - DNA binding, membrane
- e.g. lambda repressor (236 aa)
 - N terminal domain : DNA binding
 - C terminal domain : Dimerization
 - →Interaction with C terminal domain of another molecule

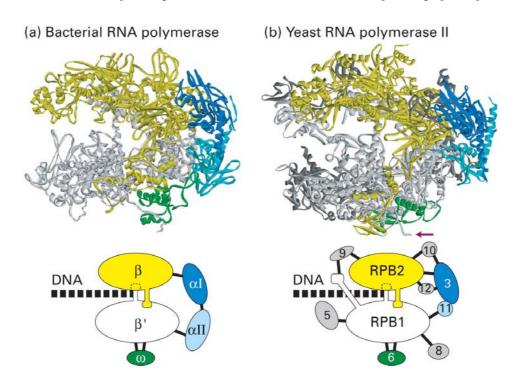
Modular proteins

- New proteins by combination of functional domains
- Biotechnological application

Domains that are homologous to EGF, a small polypeptide of 53 amino acids

A two-domain, 254-amino-acid, protein-cleaving unit homologous to the enzyme chymotrypsin

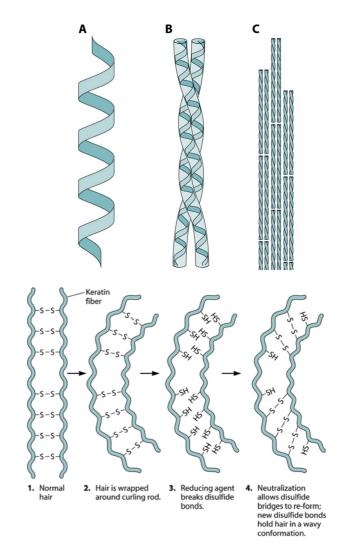
A Kringle domain of 85 amino acids that contains three disulfide bridges



A calcium-binding domain

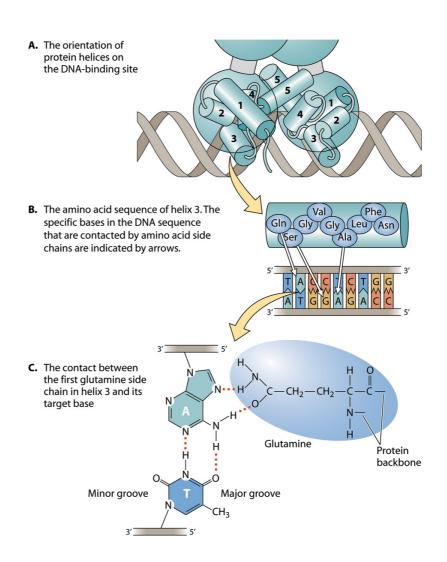
Quaternary Structure

- Association of multiple polypeptide chains
 - Lambda repressor : dimer
 - E. coli RNA polymerase : Five polypeptide chains


Disruption of Protein Structure

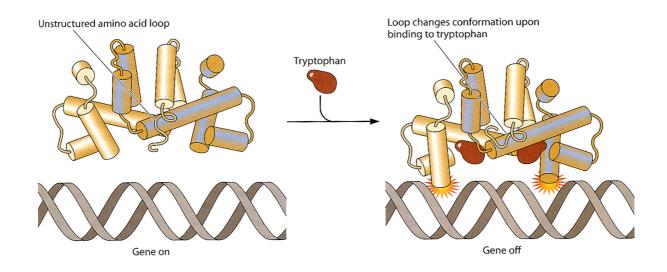
- Factors disrupting protein structure
 - Heat, extreme pH, organic solvent, detergent
- Denaturation
 - Complete unfolding of amino acid chain
 - Sometimes irreversible : e.g. boiled egg
 - Melting temperature (Tm)
 - Denaturation temperature for a given protein
 - Depending on protein structure
 - Proteins from organisms living in thermal vents have high Tm
 - Disulfide bridge increases protein stability

Examples of Protein Structure and Function


Keratin

- Structural protein for hair, wool, feathers, nails, scales, hooves, horns, skin
- Very strong and water insoluble
 - Hydrophobic alpha helices
 - Long α-helix with hydrophobic amino acids (A, I, V, M, F)
 - Forming fibers by hydrophobic interactions
 - Disulfide bonds
 - The more S-S bonds the harder the structure
 - Permanent wave
 - » Reducing of disulfide bond → Generation of new disulfide bond

Examples of Protein Structure and Function


- LambdaRepressor
 - Binding of Nterminal domain helix 3 to specific bases within the DNA binding sequence

Examples of Protein Structure and Function

Trp Repressor

- If plenty of Trp in the cytosol
- Binding of Trp into Trp Repressor and change the conformation
- Trp repressor binds to DNA and represses expression of genes involved in Trp synthesis

Predicting Protein Structure

- It is difficult to predict three dimensional structure from the amino acid sequence
- Comparison to other proteins with known function or structure
 - Easy access of information through public database
 - NCBI (National center for Biotechnology Information) run by National Institutes of Health (NIH)
 - http://www.ncbi.nlm.nih.gov
 - Testing structure-function prediction
 - Using molecular biological tools

Protein Engineering

- Manipulation of protein's amino acid sequence to change its function or properties
- Chemical manufacturing
 - Develop enzymes more suitable for industrial applications
 - Increasing enzyme stability
 - e.g. bacteriophage lysozyme: introduce S-S bond to increase heat resistance
 - Proteases in detergent