Chapter 2. Molecular Biotechnology Biological System

1. Prokaryotic and Eukaryotic Organisms

Prokaryotic and Eukaryotic Organisms

Prokaryotic cells

- Prokaryote (pro; before, karyon: kernel or nucleus)
- No nuclear membrane
- \Box Small (0.2-2 μ m), mostly single-celled organisms
 - Eubacteria : common bacteria, e.g. *E.coli*, blue-green algae
 - Archaea (Archaebacteria)

Eukaryotic cells

- □ Eukaryote (well-formed nucleus)
- \Box Nuclear and internal membranes \rightarrow organelles
- \Box Larger than prokaryotes (10-100 μ m)
 - Single-celled: yeast, green algae, amoebae
 - Multicellular: fungi, plant, animal

Eukaryotic cell

Escherichia coli

- One of the most studied organisms
- Gram-negative, nonpathogenic, motile, rod shaped
- Naturally found in the intestines of humans
- About 22 min doubling time in rich medium at 37°C
- Facultatively anaerobic
 - Both aerobic and anaerobic growth
- Useful for recombinant protein production
 - □ Aeration is important for productivity
- Other microorganisms for molecular biotechnology applications
 - Bacillus, Corynebacterium, Streptomyces, Pseudomonas, Zymomonas etc.

Gram negative vs. Gram positive

Bacterial Cell Walls (Peptidoglycan)

Bacterial cell wall

- □ Alternating Nacetylglucosamine (β1→4) N-acetymuramic acid
- Polysaccharide chains are linked by bacterial specific peptide linkage

Saccharomyces cerevisiae

- Eukaryotic version of *E. coli*
- Nonpathogenic, single-celled (5 μm) yeast
- Basic research
 - Eukaryotic model system
 - e.g. cell cycle regulation, disease model
 - □ The first eukaryotic genome sequenced (1996)
 - Yeast artificial chromosome
- Biotechnology
 - Production of ethanol
 - Alcoholic beverages and bread, bioenergy
 - Production of recombinant proteins from eukaryotic organisms
 - Provide protein modification
 - Other yeast for protein production
 - Pichia pastoris, Hansenula polymorpha
 - Schizosaccharomyces pombe, Yarrowia lipoltica

S. cerevisiae

Eukaryotic Cell Culture

Primary cell culture

- □ Isolation of a small sample of tissue
- □ Treatment with protease to release cells from extracellular matrix
- □ Growth in medium containing nutrients and growth factors
- Monolayer growth
- Passage or subculture after confluent growth
- □ Limited cell division: 50~ 100 cell generations
- Useful to study biochemical features of various tissues

Established cell lines

- □ Indefinite growth by genetic changes (chromosomal change)
- □ Useful for maintaining virus and protein expressions

Animal Cell Culture

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2. Secretion Pathway in Prokaryotes

Secretion Pathways

Function of secretory proteins

- Nutrient acquisition
- Cell-to-cell communication
- Protection
- □ Structure of outer surface of cell membrane
- N-terminal amino acid sequence determines secretion
 - □ Signal peptide, signal sequence, leader sequence, leader peptide

Membrane barrier of prokaryotes

- Gram negative bacteria
 - Inner membrane, periplasmic space, outer membrane
- Gram positive bacteria
 - Single membrane

Eukaryotic secretory proteins

- Modifications of secretory proteins during secretion
 - Glycosylation, acetylation, sulfation, posphorylation

Secretion in Gram-positive Bacteria

Sec complex

- Membrane-bound
- Facilitate secretion of protein through a channel
 - Direct contact with the signal peptide
 - Signal recognition complex + signal peptide
 - → SRP receptor → Sec complex
- Signal peptidase
 - Removal of signal peptide
 - Releasing the protein
- Crossing the porous cell wall and proper folding

Secretion in Gram-negative bacteria

Sec-dependent :General secretion pathway (GSP)

- Passage through inner membrane
 - SecB + signal peptide-containing protein \rightarrow SecA \rightarrow Sec complex
 - Removal of signal peptide after transport and folding in periplasm
- Passage through outer membrane
 - Autotransporter pathway
 - A region of the protein generates channel structure and removed after transport of the other part
 - □ Release of the functional portion of the protein by proteolytic cleavage
 - Single accessory pathway
 - □ Transport across a single outer membrane channel
 - Chaperone/usher pathway
 - Proteins that form P pili
 - Type II secretion pathway
 - □ Gsp complex spans the periplasmic space

Type II Secretion Pathway in Gram-negative Bacteria

Secretion in Gram-negative bacteria

Sec-independent

- Own protein complex that extends from the inner to the outer membrane
- Type I secretion system
- Type III secretion system
 - Bacterial flagella protein

3. Secretion Pathway in Eukaryotes

Protein Targeting in Eukaryotes

 Protein Targeting to specific compartment (ER, Nucleus, Mitochondria) is guided by signal peptide (tags)

Overview of Protein Sorting Pathway

Translocation of Secretory Proteins into ER

Signal sequence

- □ N-terminal hydrophobic 16 to 30 residues
- Direct the nascent proteins to ER
- □ Binds to SRP (signal recognition particle)

Mechanisms of Protein Translocation

Single-Pass Transmembrane Protein with Start and Stop Transfer Sequence

Single-Pass Transmembrane Protein with Internal Signal Sequence

 Location of + charged region relative to the signal sequence determines the orientation of the protein

Double Transmembrane Protein

Protein Secretion

ER lumen

- Protein folding
- Glycosylation
- Golgi apparatus
 - Budding off from ER and fusion with cis Golgi
 - Trans Golgi
 - Posttranslational modification
- Secretory vesicle
- Fusion with the membrane

Glycosylation

- N-linked glycosylation
 In ER lumen
 - 90% of glycoproteins

- O-linked glycosylation
 - In Golgi
 - Ser, Thr, hydroxylysine

Secretory and Enodocytic Pathway

Vesicle Budding and Fusion

(a) Coated vesicle budding

- Coat proteins: bind to cytosolic domain of cargo proteins
 - → Removed after budding
- Fusion of membranes by joining of v-SNARE with t-SNARE

Coated Vesicles in Vesicular Traffic

- COPII : from ER to Golgi
- COP I: Retrograde between Golgi cisternae, and from the cis Golgi to the rough ER
- Clathrin: From the plasma membrane and trans-Golgi network to late endosomes

Clathrin-Coated Vesicles

- Outer layer: clathrin
 - Triskelions
 - □ 3 Heavy chain (180 kDa) and 3 light chain (35-40 kDa)
 - □ Clathin coat contain 36 triskelions
- Inner layer: adapter protein (AP) complex
 - Determine specificity of cargo proteins

Formation of Clathrin Coated Vesicles

Formation of COPII Coated Vesicles

Docking of Transport Vesicles with Target Membranes

- GTP bound Rab
- Different Rab proteins depending on the vesicles
 - Interact with transport vesicle via a lipid anchor
 - Binds to an effector protein on target membrane

Fusion of Transport Vesicles with Target Membranes

- Assembly of SNARE complex
 - □ v-SNARE (VAMP)
 - t-SNARE (synthaxin)
 - □ SNAP-25
- Forms 4 a helices
- Membrane fusion after SNARE complex formation

Model for SNARE-Mediated Membrane Fusion

Dissociation of SNARE Complex after Fusion

- NSF with a-SNAP (soluble NSF-associated protein)
- Dissociate SNARE complex by ATP hydrolysis

Types of Secretion

Constitutive secretion

- Collagen from fibroblast
- Serum protein from hepatocytes
- Antibody from B cells

Regulated secretion

- Peptide hormones from endocrine cells
- Precursors of digestive enzymes
- Neurotransmitters

Synaptic vesicle