
Chapter 21 The Rates of Chemical Reactions 
The concentration of reactants and products = f (time) 

The methods of monitoring the concentrations 
1. Pressure change 

2N2O5(g)→4NO2(g)+O2(g) 
the pressure of the system increases during the course of the 
reaction 

inappropriate for the reactions that leave the overall pressure 
unchanged, and for reactions in solution 

2. Spectroscopy 
H2(g)+Br2(g)→2HBr(g) 

By monitoring the intensity of absorption of visible light by the 
bromine, the progress of the reaction can be monitored. 



4. Electrochemical methods 
When a reaction changes the number or nature of ions present in a 
solution, its course may be followed by monitoring the conductivity 
of the solution. 

5. Miscellaneous methods 
e.g., mass spectrometry and chromatography 

In order to employ these techniques, a small amount of the reaction 
mixture is bled from the reacting system at a series of times after the 
initiation of the reaction, and then analyzed. 

3. Polarimetry 
When the optical activity of a mixture changes in the course of 
reaction, it can be monitored by measuring the angle of optical 
rotation. 



The rates of reactions 
A+B→Products, P 

where [A], [B], [P]: the concentrations of the species, A, B, and P. 

The rate of reaction (see Figure 21.3) 
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Three ways of applying these analytical techniques 
1. Real time analysis: the composition of the system is analyzed while 

the reaction is in progress. (See Figure 21.1.) 

2. Quenching: the reaction is frozen after it has been allowed to proceed 
for a certain time, and then the composition is analyzed by any suitable 
techniques. 

3. Flow method: the reaction continues as the thoroughly mixed 
solutions flow through the outlet tube, and observation of the 
composition at different positions (e.g. IR) is equivalent to observing 
the reaction mixture at different times after mixing. (See Figure 21.2.) 



Figure 21.1 
In the stopped-flow technique, the reagents are driven quickly into the 
mixing chamber by the driving syringes and then the time dependence 
of the concentrations is monitored.  



Figure 21.2 
The arrangement used in the flow technique for studying reaction rates. 
The reactants are injected into the mixing chamber at a steady rate. 
The location of the spectrometer corresponds to different times after 
initiation.  



Figure 21.3 
The definition of (instantaneous) rate 
as the slope of the tangent drawn to 
the curve showing the variation of 
concentration with time. For negative 
slopes, the sign is changed when 
reporting the rate, so all reaction rates 
are positive.  
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Determination of the rate law 
A direct method for determining the rate law from the raw kinetic 
data giving the concentration as a function of time is from the 
measurement of initial slopes. 

The reaction between A and B:  
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A plot of the initial rate against various concentrations of A and B gives 
the orders a and b from the slopes, and log k from the intercept. (See 
Figure 21.4.) Unfortunately, the initial slope might not reveal the full 
rate law. Integration will give and expression for the actual 
concentrations at any time. 

A + B → Product, P 



Figure 21.4 
The plot of log v0 against (a) log[I]0 for a 
given [Ar]0, and (b) log[Ar]0 for a given [I]0.  
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A+2B → 3C+D 
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The ambiguity in the definition of rate is avoided if we define the 
rate of reaction v as 
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where vJ is the stoichiometric constant of substance J. 

The first order reaction 
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(1) The concentration of A falls exponentially with time with a rate 
determined by k1. (See Figure 21.5.) 

(See Figure 21.6.) 

The second order reaction 
(i) A+A → Products, P 
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the slope is second-order rate coefficient k2. (See Figure 21.7) 
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Figure 21.5 
The exponential decay of the 
reactant in a first-order 
reaction. The larger the rate 
constant, the more rapid the 
decay: here klarge = 3ksmall.  



Figure 21.6 
The determination of the rate 
constant of a first-order reaction: a 
straight line is obtained when ln [A] 
(or, as here, ln p) is plotted against t; 
the slope gives k.  
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Figure 21.7 
The variation with time of the 
concentration of a reactant in a second-
order reaction. The dotted line is the 
corresponding decay in a first-order 
reaction with the same initial rate. For 
this illustration, klarge = 3ksmall.  
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(ii) A+B → Product, P 
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If the initial concentration of A and B are [A]0 and [B]0, then when 
the concentration of A drops [A]0− x, the concentration of B drops 
to [B]0− x, because every molecule of A that disappears entails the 
disappearance of one molecule of B. 
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When the right-hand side of this expression is plotted against t, a 
straight line is obtained and the rate coefficient k2 can be determined 
from its slope. 

The integrated rate expression rapidly become complicated, but they 
can often be simplified by Ostwald’s isolation method. This depends 
on the approximation that when a reactant is present in large excess its 
concentration is hardly changed during the course of the reaction. 
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Table 21.1  Integrated rate laws 
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If B is in large excess, the concentration [B] is virtually 
constant, [B]≈[B]0, and may be absorbed into the rate 
coefficient to give a new coefficient k1

'= k2[B]0. 
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Half-lives 
A simple indication of the rate of a chemical reaction is the 
time it takes for the concentration of a reagent to fall to half its 
initial value: this is called the half-life of the reaction, and is 
denoted t1/2. 

For a first-order reaction, 
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In general, the half-life depends on the initial concentration in a 
characteristic way for reactions of different orders, and so its 
measurement gives a guide to the order. 
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(i)   t1/2 may readily be determined from a plot of the time 
dependence of [A]t, and so this is very rapid method of 
measuring the first-order rate coefficient. 

Two significant points of t1/2 of first order reaction 
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The value of t1/2 clearly depends on the initial concentration. If t1/2 is 
determined for a series of different initial concentration, a plot of its 
value against 1/[A]0 should be straight line so that the second-order rate 
coefficient can be determined from its slope (see Figure 21.9). 

(ii)  t1/2 of a first-order reaction is independent of the concentration 
(Figure 21.8), thus if the concentration at arbitrary stage of the 
reaction is [A]', the concentration will have fallen to          after a 
further interval of ln 2/k1. 



Figure 21.8 

For a first-order reaction, 
one-half of the reactant 
disappears in t1/2 independent 
of the initial concentration. 
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Figure 21.9 
Determination of the rate-
coefficient of a second-order 
reaction. 
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where A and Ea are the pre-exponential factor (independent of 
temperature) and the activation energy (determined from a plot of 
ln k2 against 1/T). (See Figure 21.10) 
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Once the activation energy of a reaction has been determined it is 
a simple matter to predict how the rate will respond to a change 
of temperature. 

The temperature dependence of the rates of 
simple reactions 
The rates of most reactions increase as the temperature is raised. 
A good rule of thumb is that the rate doubles for every 10 K 
increase in temperature. 

The temperature dependence of the rate coefficient has been 
found to fit the expression proposed by Arrhenius: 
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Figure 21.10 
A plot of ln k against 1/T is a 
straight line when the reaction 
follows the behavior described by 
the Arrhenius equation. The slope 
gives −Ea/R and the intercept at 1/T 
= 0 gives ln A.  
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Consider a bimolecular reaction. There are two criteria to fulfill in 
order to have a reaction. 

First, the molecules must come together. In a gas we call this a 
collision, in a liquid we call it an encounter. 

Z: the rate at which these collisions occur per unit volume, collision                                                                            
frequency. 
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If the occurrence of a collision were the only factor for a reaction, all 
gas phase reactions at 1 atm pressure would be complete in about 10−

9 s, which is contrary to the facts. 

However, in order to react, the molecules must collide with 
enough energy. If we suppose that the molecules must collide with 
at least an energy Ea for reaction to ensue, the collision frequency 
must be multiplied by the proportion of molecules colliding with at 
least the kinetic energy Ea along the line of approach.  



rate exp aEZ
RT
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The collision frequency itself is temperature dependent, whereas the 
experimental results seem to demand that the pre-exponential factor Z is 
temperature independent. In fact, the exponential temperature 
dependence is much stronger than the square-root dependence of Z, and 
it is very difficult experimental problem to detect deviations from the 
exponential form. 

e.g.  typical activation energies = 50~100 kJ/mol 
       10 K rise in temperature → the rate doubles, but collision 

1
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K
K
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This proportion is given by the Boltzmann distribution, and 
exp(−Ea/RT) for a system at a temperature T. 



Figure 21.12 A potential energy 
profile for an exothermic 
reaction. The height of the 
barrier between the reactants 
and products is the activation 
energy of the reaction. 



Reactions moving toward equilibrium 
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Assume both forward and backward reactions are first-order: 
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If the initial amount of A is [A]0, and if initially there is no B present, 
then [A]+[B]=[A]0 at all times: 
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The solution of this first-order differential equation is (see Figure 21.13) 
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If             (no reverse reaction), the equation becomes 
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Figure 21.13 
The approach of concentrations to 
their equilibrium values as predicted 
by the equation for a reaction        
that is first-order in each direction, 
and for which               .  
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What is the final state of the system? 
t → ∞
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The same type of calculation for the simple bimolecular, second-
order reaction, 
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Note that we emphasize simple reaction: the conclusion that 
K=kn/k-n is valid for a simple, one-step reaction but is not 
necessarily valid for a general second-order reaction that is the 
consequence of several steps. 



     The term relaxation denotes the return of a system to equilibrium. 
It is used in chemical kinetics to indicate that an externally 
applied influence has shifted the equilibrium position of a 
reaction, normally suddenly, and that the reaction is adjusting to 
the equilibrium composition characteristic of new conditions. 

     1. Temperature jump                                                                                      
2. Pressure-jump technique 
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where x0 is the departure from equilibrium immediately after the 
temperature jump and x is the departure from equilibrium at the 
new temperature after a time t. 

Relaxation methods 

Consider  
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Since                , its value may be combined with the relaxation 
time measurement to find the individual ka and kb. 
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Figure 21.20 
The relaxation to the new 
equilibrium composition when a 
reaction initially at equilibrium at 
a temperature T1 is subjected to a 
sudden change of temperature, 
which takes it to T2.  



Consecutive reactions and the steady state 
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We suppose that only A is present initially, and that its 
concentration is then [A]0. 
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If this result is inserted into the equation for B and the condition [B]0=0 
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The solution for [B] 
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Rearranging eq (5) 
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(i) The three equations for [A], [B] and [C] indicate how to analyze a 
reaction scheme consisting of two consecutive first-order reactions: 
the proposed mechanism has to be confirmed by checking that 
these equations are obeyed. If they are obeyed, the values of the 
rate coefficients can be obtained. 

(ii)The “rate-determining step” 
If k1

’>>k1, whenever B molecules is formed it decays quickly into 
C. 
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The formation of C is seen to depend only on the smaller rate 
coefficient, as anticipated. For this reason, the step with the 
slowest rate is called the rate-determining step of the reaction. 
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Figure 21.15 In these diagrams of reaction 
schemes, heavy arrows represent fast steps 
and light arrows represent slow steps. (a) 
The first step is rate determining; (b) the 
second step is rate-determining; (c) 
although one step is slow, it is not rate-
determining step because there is a fast 
route that circumvents it. 

Figure 21.16 the reaction profile for a 
mechanism in which the first step 
(RDS) is rate-determining. 



Can an approximation be found, based on the present exact 
solution, which will lead to much simpler equations? 

The steady-state approximation assumes that during the 
major part of the reaction, the concentrations and rates of 
change of all reaction intermediates are constant and 
small. 

(iii) The third point established by the calculation is the rapidity 
with which sets of kinetic equations develop mathematical 
complexity. 



A I Pa bk k→ →

Figure 21.13 
The concentrations of A, I, and P in 
the consecutive reaction scheme 
A→I→P. The curves are plots with 
ka = 10kb. If the intermediate I is in 
fact the desired product, it is 
important to be able to predict when 
its concentration is greatest. 



Figure 21.14 
The basis of the steady-state 
approximation. It is supposed 
that the concentrations of 
intermediates remain small and 
hardly change during most of 
the course of the reaction.  
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a bk k→ →A I P

Figure 21.17 A comparison of the 
exact result for the concentrations of a 
consecutive reaction and the 
concentrations obtained by using the 
steady-state approximation (red lines) 
for kb=20ka. (The curve for [A] is 
unchanged.) 
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Another type of consecutive reaction 

Suppose that the intermediate (AB) falls apart into C only very 
slowly in comparison with the rates at which it both forms from and 
decays back into A and B. 

the steady-state approximation 

Therefore the reaction has overall second-order kinetics. 



An example of a consecutive reaction with 
pre-equilibrium 

3
2 22 2NO O NOk+ →

(1) The reaction is third-order. This would require the 
simultaneous collision of three molecules, and such events are 
rare. 

(2) The reaction rate decreases with increasing temperature. 
A mechanism that accounts for the rate law and the temperature 
dependence is a pre-equilibrium. 

2

2 2

2
[ ] 2 [ ] 2 [

2 2
2 2 2

2 2 2 2

22
2 2 2 2

[N O ]NO NO N O
[NO]

N O O NO bimolecular reaction
NO N O ][O NO] [O ]

k

K

d k k K
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→+ =←

+ →

= =

This is a third-order rate law, as required by experiment, and the 
third-order rate coefficient can be identified as k3=2k2K. 



The reason for the anomalous temperature dependence of the 
rate is that the equilibrium between NO and N2O2 shifts to the 
left (K decreases) as the temperature is raised (K decreases with 
temperature because the dimerization reaction is exothermic) 
although k2 probably behaves normally and increases with 
temperature. 



The unimolecular reactions 

Lindemann-Hinshelwood mechanism 

'
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If the unimolecular step is slow enough to be the rate-determining 
step, the overall reaction will have the first-order kinetics. 
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Figure 21.21 
A representation of the Lindemann-
Hinshelwood mechanism of 
unimolecular reactions. The species A 
is excited by collision with A, and the 
excited A molecule (A*) may either be 
deactivated by a collision with A or go 
on to decay by a unimolecular process 
to form products.  
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The Lindemann-Hinshelwood mechanism can be tested because it 
predicts that as the concentration (and therefore the partial pressure) of 
A is reduced the reaction should switch to overall second-order 
kinetics. The physical reason for the change of order is that at low 
pressures the rate-determining step is the bimolecular formation of A*. 
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The expression for the effective rate-constant can be rearranged to 
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Equation (*) can be written 
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Hence, a test of the theory is to plot 1/k against 1/[A], and to 
expect a straight line.  



Figure 21.22 
The pressure-dependence of the 
unimolecular isomerization of tran-
C2H2D2 showing a pronounced 
departure from the straight line 
predicted by the Lindemann-
Hinshelwood mechanism. 
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The kinetics of complex reactions 

Many reactions in the gas phase proceed through a series of steps 
involving free radicals. 

Chain reactions 

3 3 3 4 2 3CH +CH CH CH + CH CH⋅ → ⋅

The radicals produced, in this case the ethyl radical •CH2CH3, can 
go on to react either by producing yet another radical by attack on a 
molecule, or by meeting and combining with another free radical. 
This sequence of reactions, of radicals producing radicals, is the 
basis of the name chain reaction.  



Four steps of chain reactions 
1. Initiation step:  the step that the radicals are formed from 

ordinary molecules 

                               - A Lindemann-type process, where the molecule  
 pick up enough energy by collision with other  
 molecules, and then falls apart in a subsequent  
 unimolecular step 

 

                               - By the absorption of a photon 
2e.g. Cl 2Cl→ ⋅

2Cl 2Clhν+ → ⋅

2. Propagation step: the attacks of the free radical on other molecules 

4. Termination step: dimerization or some reaction with the walls of  
the containing vessel 

3. Inhibition step: the step that a radical attacks a product 



Example 1 

2 2H + Br 2HBr→

empirical rate law: [ ] [ ][ ]
[ ] [ ]
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2
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2

HBr H Br
Br HBr

d k
dt k

=
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The mechanism that has been proposed: 

Initiation: 2
aBr 2Brk→ ⋅

Propagation: 2

2

b

c

Br H HBr +H

H Br HBr +Br

k

k

⋅+ → ⋅

⋅+ → ⋅

Inhibition: 2
dH HBr H +Brk⋅+ → ⋅

Termination: 2
eBr Br Brk⋅+ ⋅ →
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the steady state approximation 
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These two simultaneous equations may be solved for [H•] and [Br •] 
and the result substituted into the equation for         . 
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Example 2 3 3 2 2 2CH CH CH =CH H→ +

empirical rate law: [ ] [ ]2 2
1 3 3

CH =CH
CH CH

d
k

dt
=

The reaction sequence is known as the Rice-Herzfeld mechanism. 

Propagation: 

Termination: 

3 3 3
aCH CH 2CHk→ ⋅
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Assignment: Prove the above relation. 

Initiation: 



Polymerization 
Addition polymerization of ethylene,  propylene, styrene etc. 

1. Initiation 

I 2R

R M M

d

i

k

k

→ ⋅

⋅+ → ⋅

: Rate determining step 

2. Propagation 

2

2 3
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M +M M

M M M

M M Mn n

pk⋅ → ⋅

⋅+ → ⋅

⋅+ → ⋅



3. Termination 
tM M Mn m n m

k
+⋅+ ⋅ →
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f : the initiator efficiency factor 

at the steady state 

[ ] [ ]

[ ] [ ]

2
d t

1
2

d

t

2 I 2 M

M I

fk k

f k
k

= ⋅

 
∴ ⋅ =  

 

the propagation rate (the rate at which the monomer is consumed) 
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The kinetic chain length (ν) is defined as the ratio of the rate of 
propagation to the rate of initiation. It is also defined as the ratio 
of the number of monomer units consumed per active center 
produced in the initiation step. 
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Step polymerization: e.g. polyamides (Nylon), polyesters 

[ ]

2 2 6 2 2 4

2 2 6 2 4 2

2 6 2 4

H N(CH ) NH HOOC(CH ) COOH

H N(CH ) NHCO(CH ) COOH + H O

H NH(CH ) NHCO(CH ) CO OH
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n n
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2
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d d d
k
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Assumption: The rate constant for the condensation is independent 
of  the chain length. 



For most polymerizations, the concentration of the two functional 
groups are very nearly stoichiometric: 
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where [A]0 is the initial concentration of [A]. 

The extent of reaction p 
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Combining eq. (3) and (4), 

[ ]0

1 1 A (5)
1

kt
p

= +
−

where p is equal to the probability that a group                             has 
formed a link to another molecule:  

[ ]2COOH or NH
0, 0; , 1.t p t p= = = ∞ =

The probability that a polymer consists of n monomers (n-mer) is 
therefore equal to the probability that it has n−1 reacted groups and 
one unreacted A group. 
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1probability np −=

total probability pn 

-1(1 )= −n
np p p



Normalizing the probability function 
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Calculate the average chain length  
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From eq. (5), 
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Figure 21.23 
The average chain length of 
a polymer as a function of 
the fraction of reacted 
monomers, p. 
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