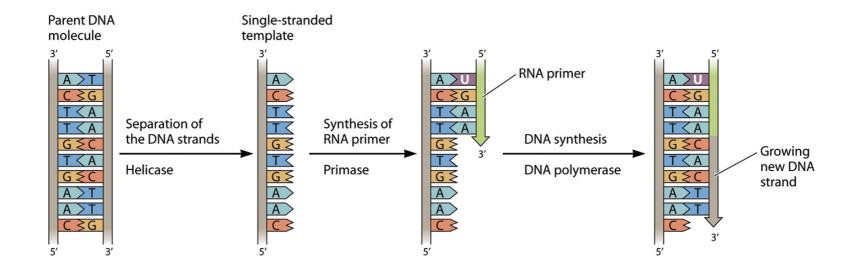

Chapter 9

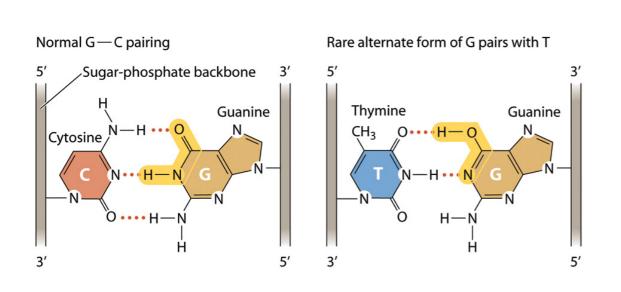
## Cells Grow and Reproduce

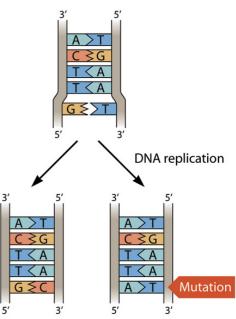



## **DNA Replication**

- DNA polymerase
  - Addition of a nucleotide to the 3' end of a growing strand
  - Use dNTPs as substrate → Release of pyrophosphate




## **Initiation of Replication**


- Replication origin
  - The site where replication starts
  - Binding of several proteins involved in replication
- Helicase
  - Separation of the DNA strands
- Primase
  - Synthesis of RNA primer

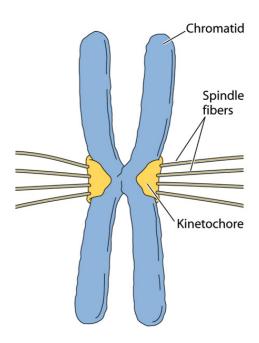


## **Proofreading of DNA Polymerase**

- Incorporation of wrong nucleotide
  - e.g. alternative form of G base pairs with T
  - Mismatch → Induction of mutation
- Preventing mutation
  - Proofreading by DNA polymerase
  - Repair system for DNA damage
  - Quality control: no cell division if damaged DNA is present



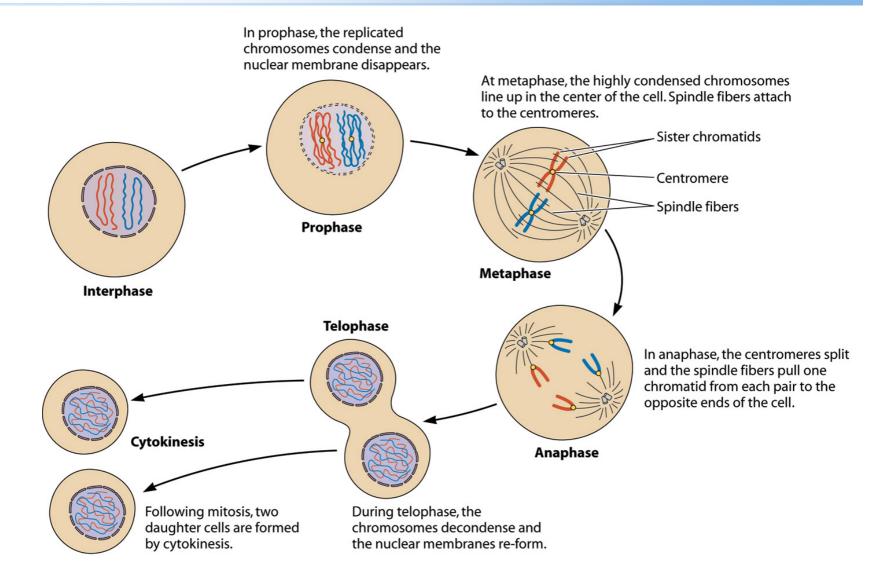



# Division of DNA molecules during cell division

#### Bacteria

Attachment of DNA to the membrane

#### Eukaryotes


- Two copies of different chromosomes (human: 23)
- Connected two daughter chromosome after DNA replication
  - Chromatids
  - Joined at centromere
  - kinetochore: centromere + binding proteins
- Mitosis: Distribution of chromosome to daughter cells

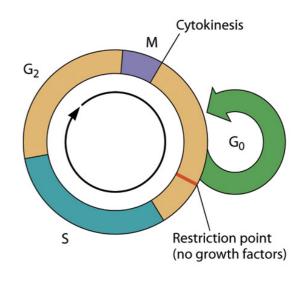


#### **Mitosis**

- DNA replication
- Mitosis
  - Prophase
    - Condensation of chromosomes and disappearance of nuclear membrane
  - Metaphase
    - Alignment of chromosome in the center
    - Pulling by spindle fibers attached to the kinetochore
  - Anaphase
    - Splitting of chromatids and pulling to the opposite ends of the cell
  - Telophase
    - Decondensation of chromosome
    - Formation of new nuclear membrane
- Cytokinesis
  - Cell division after mitosis
- Interphase
  - The time between cell division and the next mitosis

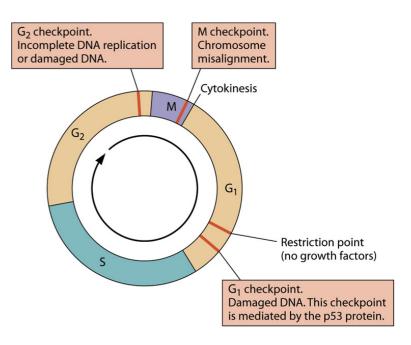
## **Mitosis and Cytokinesis**




## The Cell Cycle

#### Cell Cycle

- S phase: DNA synthesis
- G<sub>1</sub>, G<sub>2</sub>: G strands for gap between
  S and M phase
- M phase: mitosis


#### Regulation of cell cycle

- Restriction point : late G<sub>1</sub>
  - With growth factor → S phase
  - Without growth factor → G<sub>0</sub>: metabolism without growing
    e.g. platelet-derived growth factor during blood clotting → Growth of
    - skin fibroblasts
- Ras protein
  - Activated by many growth factors
  - Signal transduction to induce DNA synthesis



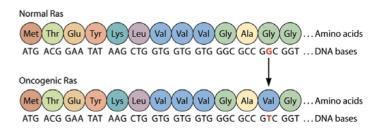
## **Cell Cycle Checkpoints**

- Roles of cell cycle checkpoints
  - Prevent entry into the next phase before the completion of the previous phase
  - DNA damage checkpoints
- Cell cycle checkpoints
  - G₁ check point
    - P53 : activated by damaged DNA → activates the G1 check point → stops DNA replication
      - Success in damage repair → proceeds DNA replication
      - Fail in damage repair → Apoptosis : programmed cell death
  - G<sub>2</sub> check point
    - Activated by damaged DNA and unreplicated DNA
  - M check point



#### **Unregulated Cell Division: Cancer**

- Cancer: caused by failure in regulation of cell division
  - Carcinoma
    - Originated from epithelial cells (85%)
  - Sarcomas
    - Originated from cells of connective tissue, bone, or muscle tissue
  - Adencarcinomas
    - Originated from glandular tissue
  - Gliomas and astrocytomas
    - Cancers of the nonneuronal cells of the brain
- Tumor: A mass of cancer cells derived from a single parent cell
  - Benign: no invasion
  - Malignant: invasion of surrounding tissue
    - Metastasis: migrate to new sites and establish new tumors


#### **Genes Involved in Cancer**

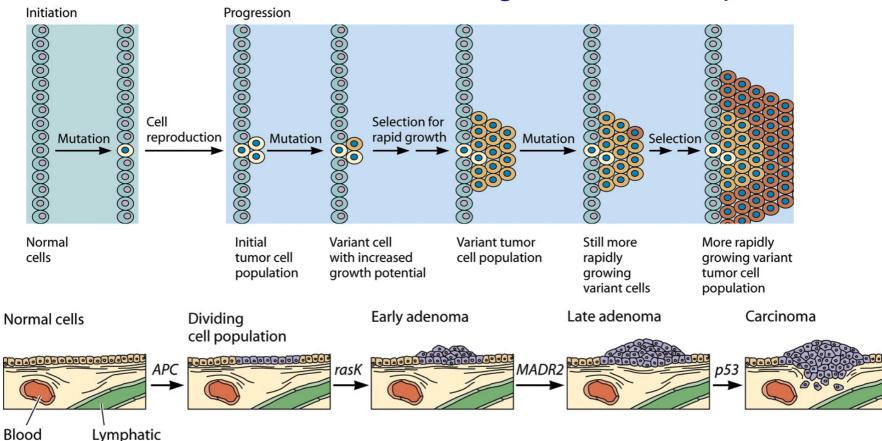
#### Oncogenes

- Mutant genes that promote cell division
  - Genes in signaling pathway to cell division
  - Ras, PDGF receptor
- Mutant ras
  - constitutively active → cell division
  - 20% of human cancer

#### Tumor suppressor genes

- Genes that halt cell replication
  - Mutation cause cancer
- P53 : DNA damage check point protein
  - 50% of human cancers; leukemias, brain tumors, breast, colon, and lung cancer
- BRAC1, and BRAC2
  - Breast cancer
- MADR2 and APC
  - Colon cancer




#### **Genes Involved in Cancer**

**Table 9.1** Some cancer genes and the normal physiological roles of their products

| Gene                   | Normal physiological role                                                                                                                                                       |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oncogenes              |                                                                                                                                                                                 |
| sis                    | Growth factor                                                                                                                                                                   |
| erbB, fms, neu         | Growth factor receptors                                                                                                                                                         |
| ras, src, abl          | Signal transmission within the cell                                                                                                                                             |
| bcl2                   | Blocks programmed cell death                                                                                                                                                    |
| myc, fos, myb          | Regulators of transcription                                                                                                                                                     |
| Tumor suppressor genes |                                                                                                                                                                                 |
| rb                     | Regulation of replication and transcription                                                                                                                                     |
| p53                    | Regulation of cell division cycle; stops cells from<br>dividing if their DNA is damaged, allowing time<br>for repair; initiates programmed cell death if DNA<br>is not repaired |

## **Development of Cancer**

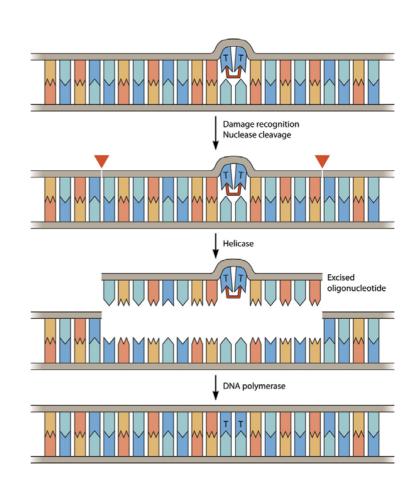
Accumulation of mutations during cancer development



vessel

vessel

## Inherited Mutation in Tumor Suppressor Genes


- Mutation and inheritance
  - Mutations in somatic (soma, body) cells
    - No inheritance
  - Mutations in reproductive cells (eggs, sperm)
    - Inheritance
- Inherited mutations and cancer
  - Breast cancer genes
    - BRCA1: involved in DNA repair
      - 80% chance of developing breast cancer (normal; 10%)
      - 40% chance of developing ovarian cancer
    - Mutations of BRCA1 and BRCA2 in 5 to 10% of breast cancers → sporadic mutations are the major cause

## **DNA Damage and Repair**

- DNA damaging agents
  - Mutagens : mutation-promoting agents
  - Carcinogen : cancer-inducing agents
- Environmental carcinogens
  - UV
    - Thymine dimer formation → blocking transcription and DNA replication
  - DNA-binding chemicals
    - Benzopyrene
      - Smoke from cigarette, burning leaves, diesel exhaust etc.
      - Bind to DNA G residue and induce mutation

## **Repair System**

- Mismatch repair
- Excision repair
  - Repair distorted DNA (T-T, benzopyrene binding)
  - Excision of damaged region by nuclease and helicase, and repair by DNA polymerase
  - Xeroderma pigmentosum (XP)
    - Mutation in excision repair system
    - Extreme sensitive to UV → skin cancer



## **Cancer Drugs**

- Classic anticancer treatment
  - Targeting rapidly dividing cells
  - Side effects to other fast growing cells
    - Blood cell progenitors, cells lining the digestive tract, hair follicle cells
- Cancer-specific drugs
  - Tamoxifen
    - Mimic estrogen: binding to estrogen receptor of estrogen-sensitive cancer cells
  - Herceptin
    - Binding to and inactivate Her2 (receptor for EGF): inhibit the growth of Her2-overproducing breast cancer cells
  - Greevec
    - Inhibition of Abl in chronic myelogenous leukemia