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Introduction

In this chapter, we will be covering…p , g
Negative Feedback

The General Feedback StructureThe General Feedback Structure

The Four Basic Feedback Topologies

Feedback in relation with StabilityFeedback in relation with Stability

Feedback in relation with Frequency Response
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Introduction

Two types of Feedbackyp
Positive (Regenerative) Feedback

Negative (Degenerative) FeedbackNegative (Degenerative) Feedback

This chapter will focus on Negative Feedback
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Introduction – Negative FB

Negative Feedback - Trades off gain for other g g
desired properties, such as…

Desensitized gain

Reduced non-linear distortion

Reduced effect of noise

C t ll d i t d t t i dControlled input and output impedance

Extended bandwidth

These trade-offs take place under the influence ofThese trade-offs take place under the influence of 
a numeric factor called ‘amount of feedback’.
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1. The General Feedback Structure
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This is a signal-flow diagram of the 
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1. The General Feedback Structure

x + xx

fA

source ∑ A Loadsx + oxix

−

βfx

AxA o
gain loopopen :A

β⋅+
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gain loop closed :
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Note that A and β are in fact transfer functions.



2. Some Properties of Negative Feedback

As mentioned in the introduction, negative FB , g
trades off gain for some other desired 
properties. p p

It will become apparent explicitly in thisIt will become apparent explicitly in this 
section. 
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2. Some Properties of Negative Feedback

Gain Desensitivityy
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The percentage change in Af is smaller than the percentage 
change in A by the amount of feedback (≡ 1+Aβ).

9/6/2007 (c) 2007 DK Jeong 8/89



2. Some Properties of Negative Feedback

Bandwidth Extension
Consider an amplifier with a single pole, then
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The upper 3-dB frequency is increased by a factor equal to the 
amount of feedback (≡ 1+Aβ), where AM denotes the midband 
gain and ωH is the upper 3-dB frequency. However, the gain-
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bandwidth product remains constant.



2. Some Properties of Negative Feedback

Noise Reduction )(noisex
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The magnitude of noise seen at the output is reduced by the 
amount of feedback.



2. Some Properties of Negative Feedback

Reduction in Nonlinear Distortion

Consider an amplifier with the gain of 1000 in region A, 100 in 
region B, and 0 in region C.

C

Without feedback

AAbB C’ (β 0 01)
Under feedback,

βA
Aby f +

=
1

A

B

A’

B’
C (β = 0.01)

Gain in region A’ is 90.9

Feedback with β =0.01

A
Gain in region B’ is 50

Gain in region C’ is 0

The amplifier transfer characteristic is considerably linearized.

Gain in region C  is 0
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3. The Four Basic Feedback Topologies

There are four basic feedback topologies, p g ,
namely,

Series-Shunt

Shunt-Series

Series-SeriesSeries Series

Shunt-Shunt

Each has an aptitude on four different kinds of 
amplifiers discussed in Chapter 1. Correct p p
application of feedback topology idealizes the 
amplifier’s input/output impedance.
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3. The Four Basic Feedback Topologies

The term ‘shunt’ is an another expression for p
‘parallel’.

Why are the names like that?Why are the names like that?
The word before the dash describes how the feedback 
signal is ‘mixed’ into the input.

The word after the dash describes how the feedback signal 
is ‘sampled’ from the output.

Voltage is mixed in series and sampled in parallelVoltage is mixed in series and sampled in parallel.

Current is mixed in parallel and sampled in series.

Ex) Series-shunt mixes in series and samples in parallel. 
So both input and output has to be a voltage.
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3. The Four Basic Feedback Topologies

Four kinds of amplifier paired with its most p p
effective feedback topology.

(a) Voltage Amp.(series-shunt) (b) Current Amp.(shunt-series)

(c) Transconductance Amp. (d) Transresistance Amp.
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(series-series)
(d) Transresistance Amp.
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Appendix B – Two Port Network Parameters

Review of Two Port Network

VhIhV +=

1) h param.(series-shunt)
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Appendix B – Two Port Network Parameters

1) h param.(series-shunt) – I1 and V2 are the stimuli 
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Appendix B – Two Port Network Parameters

2) z param.(series-series) – I1 and I2 are the stimuli 

2221212

2121111

IzIzV
IzIzV

+=
+=

1I
+

1V
+

2V 2I

2I2221212 − −

1I

01

1
11

2 =

=
II

Vz
02

1
12

1=

=
II

Vz
−

+

1V 2I
−

+

1V

1I

1

2
21 = I

Vz
2

2
22 = I

Vz
−

+

2V 2I
−

+

2V

−

+

1V

9/6/2007 (c) 2007 DK Jeong 17/89

01 2=II 02 1=II



Appendix B – Two Port Network Parameters

3) y param.(shunt-shunt) – V1 and V2 are the stimuli 
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Appendix B – Two Port Network Parameters

4) g param.(shunt-series) – V1 and I2 are the stimuli 
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4. The Series-Shunt Feedback Amplifier

Series-Shunt (voltage amp)( g p)
=> Input is mixed in voltage(series), and 
output is sampled in voltage(shunt).p p g

Whenever voltage is mixed, the input impedance is 
increased by the amount of feedback.

Whenever voltage is sampled, the output 
impedance is reduced by the amount of feedback.
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4. The Series-Shunt Feedback Amplifier

Ideal Situation (w/o load and source res.)( )
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4. The Series-Shunt Feedback Amplifier

Ideal Situation(Cont’d) I
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4. The Series-Shunt Feedback Amplifier

Practical Situation

(a) Practical series-shunt amp.

(b) Represented by h parameters

1
21 ≡=

V
Vhβ

(c) Neglecting h21 ( similar to ideal case)

02
21

1=IV
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(c) Neglecting h21 ( similar to ideal case)



4. The Series-Shunt Feedback Amplifier

Summaryy
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4. The Series-Shunt Feedback Amplifier

Example 8.1p
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4. The Series-Shunt Feedback Amplifier

Example 8.1(Cont’d)p ( )
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4. The Series-Shunt Feedback Amplifier

Example 8.1(Cont’d)p ( )
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5. The Series-Series Feedback Amplifier

Series-Series (transconductance amp.)( p )
=> Input is mixed in voltage(series), and 
output is sampled in current(series).p p

Whenever voltage is mixed, the input impedance is 
increased by the amount of feedback.

Whenever current is sampled, the output impedance 
is increased by the amount of feedback.
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5. The Series-Series Feedback Amplifier

Ideal Situation

As shown previously,

)1(
1

β
β

ARR
A
A

V
VA

s

o
f +

=≡

)1( βARR iif +=

))()(1( ssAZZ iif β+=

9/6/2007 (c) 2007 DK Jeong 29/89



5. The Series-Series Feedback Amplifier

Ideal Situation(Cont’d)( )
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5. The Series-Series Feedback Amplifier

Practical Situation

(a) Practical series-series amp.
(b) Represented by z parameters
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(c) Neglecting z21 ( similar to ideal case)
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5. The Series-Series Feedback Amplifier

Summaryy
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5. The Series-Series Feedback Amplifier

Example 8.2p
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5. The Series-Series Feedback Amplifier

Example 8.2(Cont’d)
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5. The Series-Series Feedback Amplifier

Example 8.2(Cont’d) AIA op ( )
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6.1 The Shunt-Shunt Feedback Amplifier

Shunt-Shunt (transresistance amp)( p)
=> Input is mixed in current(shunt), and output 
is sampled in voltage(shunt).p g

Whenever current is mixed, the input impedance is 
reduced by the amount of feedback.

Whenever voltage is sampled, the output 
impedance is reduced by the amount of feedback.
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6.1 The Shunt-Shunt Feedback Amplifier

Ideal Situation
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6.1 The Shunt-Shunt Feedback Amplifier

Summaryy
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6.1 The Shunt-Shunt Feedback Amplifier

Example 8.3p

)100.( ,,/ Determine:Q  =βofinso RRVV

070)1(12
4799.347)07.0(7.0

++=
−

+=++=

B
C

BBC

IV
IIV

β 07.0)1(
7.4

++ BIβ

)(51
)(015.0

mAI
mAI B

≈
≈

)(7.4
)(5.1

VV
mAI

C

C

≈
≈

9/6/2007 (c) 2007 DK Jeong 39/89



6.1 The Shunt-Shunt Feedback Amplifier

Example 8.3(Cont’d) It samples voltage and mixes 
current so shunt shuntp ( )
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6.1 The Shunt-Shunt Feedback Amplifier

Example 8.3(Cont’d)p ( )
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6.1 The Shunt-Shunt Feedback Amplifier

Problem 8.42(p.866)(p )

 .R and ,R ,/VV find and usedfeedback  of  typeheIdentify t:Q outinso
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6.1 The Shunt-Shunt Feedback Amplifier

Problem 8.42(p.866) (Cont’d)(p ) ( )
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Voltage is sampled, and current is mixed. 
So shunt-shunt feedback amplifier.
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6.1 The Shunt-Shunt Feedback Amplifier

Problem 8.42(p.866) (Cont’d)(p ) ( )
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6.2 The Shunt-Series Feedback Amplifier

Shunt-Series (current amp)( p)
=> Input is mixed in current(shunt), and output 
is sampled in current(series).p

Whenever current is mixed, the input impedance is 
reduced by the amount of feedback.

Whenever current is sampled, the output impedance 
is increased by the amount of feedback.

9/6/2007 (c) 2007 DK Jeong 45/89



6.2 The Shunt-Series Feedback Amplifier

Ideal Situation

)()(1
)(

ssA
sZZ i

if β+
=

)()(1 ssA β+

))()(1( ssAZZ oof β+=

9/6/2007 (c) 2007 DK Jeong 46/89



6.2 The Shunt-Series Feedback Amplifier

Summaryy
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6.2 The Shunt-Series Feedback Amplifier

Example 8.4p

75(V))V 100,( .R and ,R ,/IIout  ind:Q Aoutininout ==βF
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6.2 The Shunt-Series Feedback Amplifier

Example 8.4(Cont’d) It samples current and mixes current, 
so shunt seriesp ( ) so shunt-series…
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6.2 The Shunt-Series Feedback Amplifier

Example 8.4(Cont’d)p ( )
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6.2 The Shunt-Series Feedback Amplifier

Example 8.4(Cont’d)p ( )
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6.2 The Shunt-Series Feedback Amplifier

Exercise 

used.feedback  of  typeheIdentify t:Q
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6.2 The Shunt-Series Feedback Amplifier

Exercise (Cont’d) ( )
Voltage is sampled and current 
is mixed, so shunt-shunt 
f db k l ffeedback amplifier.
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7. Determining The Loop Gain

Alternative Approaches L(s)=A(s)β(s)=loop transmissionpp

Approach 1

L(s)=A(s)β(s)=loop transmission

r

V
VA −=β

Approach 1.

tV

A h 2

A 11
1−

=β

Approach 2.

scoc TT
11

+
β

(R t k 1986)

9/6/2007 (c) 2007 DK Jeong 54/89

(Rosenstark, 1986)



7. Determining The Loop Gain

Example – Approach 1.p pp

μβ ⋅−=1
RA id

Q. Determine the loop gain of the following circuit.
μβ
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7. Determining The Loop Gain

Example – Approach 2.p pp

idR 1Vμ
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7. Determining The Loop Gain

Comparison of the two resultsp

)()]([ 12 RRRRRRRRRA idLidLid +++
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7. Determining The Loop Gain

Loop Equivalent with Different Op-Amp p q p p
Circuits

R 2R

+

-

R

-1R
sV

1R 2R
LR +

R LR
sV

s

1R R LR
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7. Determining The Loop Gain

Example – Approach 3. Shunt-Shunt FBp pp
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8. Stability Problem

Feedback systems do not always have a y y
tendency to stabilize. 

Under some conditions, the system will 
diverge and oscillatediverge and oscillate.
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8. Stability Problem

In an iterative process inside the loop…p p

Source ∑ A Loadsx + oxix
Source ∑ A Load

β
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fx
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βββ AAAAxo ⋅⋅⋅⋅⋅−−−=∞ 1(1(1[)(xs

1
1          

1 βA

β
β

βββ

A
AA

AAAA

+
−−

⋅=

⋅⋅⋅⋅⋅−+−=
∞

1
)(1          

)()(1[          32

βAx
Ax

x

f

o

i

       
         

1         

)1(
)1(

1

ββ
β

β

AA
AA

A

−
−

−

))1(1(
))1(1(

)1(1

βββ
ββ

ββ

AAA
AAA

AA

−−
−−

−−

βA+1f ))(( βββ

9/6/2007 (c) 2007 DK Jeong 61/89



8. Stability Problem

Conditions for stability under negative FB.y g
The system is stable IFF x0(∞) converges.

stableusly simultaneooccur events All => )( ωjA
unstable  loop in thedelay  a is  thereifwhat 

y
=>

(−Αβ)2

)()(1
)()(
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=

ωβω
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jjA
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|)()(|            
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)(=
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ejjA
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o
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Magnitude of oscillation will grow until some
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[unstable] Magnitude of oscillation will grow until some 
nonlinearity eventually makes |Aβ|=1.



8. Stability Problem

Problem 8.63(p.869)(p )

Q. Find the value of k above which the closed-loop 
amplifier becomes unstable.

410
1

1000)( ssA
+

=
2

4 )
10

1(
)( s

ks
+

=βGiven
410 410
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8. Stability Problem

Problem 8.63(p.869) (Cont’d)(p ) ( )

1801tan3180))()(( ωβ −°ssAAng )/(103 4 d×4
180

10
tan3180))()(( β −=°−=ssAAng )/(103 4

180 srad×=ω

If |Aβ| <1 the system is stableIf |Aβ|ω=ω180 
<1 the system is stable. 

110 3

<
k 1

)3(1)3(1 22
<

+
⋅

+

008.0<k
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8. Stability Problem

Nyquist plot exampleyq p p

)/1)(/1)(/1(
)()(

321 ωωω
β

sss
AssA o

+++
=

Because the magnitude of the loop gain is anBecause the magnitude of the loop gain is an 
even function and the phase is an odd function, 
the nyquist plot for negative frequency is a 
mirror image of nyquist plot of the positivemirror image of nyquist plot of the positive 
frequency.

If the nyquist plot intersects the real axis on the left of (-1, 0), then the system is unstable.
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yq p ( ) y
-> The plot encircles the point (-1,0), thus the system is unstable.



9. Effect of Feedback on The Amplifier Poles

Stability and pole locationy p
( )

te
eeetv

n
t

tjtjt nn

ωσ

ωωσ

cos2
)(
=

+= −

⎩
⎨
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<
≥

stable
unstable

:0
:0

σ
σ

( ) ( ) ( )sVsHsV =

Poles of FB system
( ) ( ) ( )
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1
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( ) ( ) 01 =+ ssA β

Characteristic equation
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9. Effect of Feedback on The Amplifier Poles

Amplifier with one polep p

Root-locus as 
|A0| varies

X marks the 
location of the 
poles.

(Real-axis)

A ( ) 011 0++
AsA ββCharacteristc Eq.
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Solve this to find where the  pole is.



9. Effect of Feedback on The Amplifier Poles

Amplifier with two polesp p
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Peaking starts to show in frequency domain at Q > 0.707.

Ringing starts to show in time domain at Q > 0.5.
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9. Effect of Feedback on The Amplifier Poles

oAlog20 )0( =βloopopenog

ββ oo AA log20)1log(20 ≈+

)(βpp

)0( >βloopclosedsmall:β

β
1log20

ωω 2pω1pω

oAlog20
707.0=Q

ββ oo AA log20)1log(20 ≈+gelar:β

β
1log20

1pω 2pω
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9. Effect of Feedback on The Amplifier Poles

Amplifier with more poles or zerosp p

Too complex for hand analysisToo complex for hand analysis

Use CAD tool + Intuition
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9. Effect of Feedback on The Amplifier Poles

Example 8.5p

K
VO

Q: find k for maximally flat frequency response.
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9. Effect of Feedback on The Amplifier Poles

Example 8.5 (Cont’d)p ( )
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9. Effect of Feedback on The Amplifier Poles

Example 8.5 (Cont’d)p ( )

,1Q = 22
2 1
=ω

2
OO KV ω⋅

= ,
3 K

Q
− 22CRoω

22
O

OS sQsV ωω +⋅+
=

1
2

1
=Q

11

일 때 maximally flat – no peaking !!

2
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3
1

=
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∴
K

23 K 23 =− K

586.123 =−=K

9/6/2007 (c) 2007 DK Jeong 73/89

586.123K



10. Stability Study Using Bode Plots

Bode Plot 

Every pole contributes to 
magnitude change of 20dBmagnitude change of 20dB 
decrease per decade beyond 
its location.

Every pole contributes to 
phase change of 90˙ decrease 
through two consecutive 
decades where it is nested at 
the center.
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10. Stability Study Using Bode Plots

Gain margin and phase marging p g

Gain margin is the differenceGain margin is the difference 
between the value of |Aβ| at 
ω180 and unity(0dB).

Phase margin is the difference 
between the phase angle from 
the point where gain crosses 
unity(0dB) to 180˙.y( )
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10. Stability Study Using Bode Plots

Conditions for Stabilityy
Stable = Phase margin is greater than 0.

However, system with phase margin close to 0 , y p g
suffers from severe peaking in its 
closed loop-gain. (freq. domain)

Typically, system with phase margin above 45˙ is 
well accepted to be stable.
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10. Stability Study Using Bode Plots

Phase margin of 45˙g
θβω jejAloopgain −×== 1)( 1

(Where )ih180 °θ

Loop gain is unity at ω1.

(Where    )marginphase-180=θ

β
ωωf jA

jAjA
+

=
)(1
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1

1

)( 1
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j
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f
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=
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If the phase margin is 45˙ 
θje−+1

             

ω 131)( =jA

-> θ = 135 ˙

β
ω 3.1)( 1 =jAf

Closed loop gain peaks by 30% at ω1 from the low frequency gain of 1/β. 
P ki ld h h i h 0˙
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10. Stability Study Using Bode Plots

Alternative approach for Investigating Stabilitypp g g y
It would be very tiresome to find the best value for β 
by numerical iteration. 

There is an alternative method to graphically 
estimate the value of β by using, 

dBingainlooplog201log20)(log20 == βω AjA dBin gain looplog20log20)(log20 ==− β
β

ω AjA

See nextSee next
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10. Stability Study Using Bode Plots

Q: System has poles at 105 Hz, 106Hz, and y p , ,
107Hz. Find β that yields phase margin of 72˙?

1. Draw 20 log |A(jw)|
2. Draw the phase graph 
3 Draw a line for 20 log 1/β so as it

Lower value of β

3. Draw a line for 20 log 1/β so as it 
intersects 20 log|A(jw)| at the 
frequency that gives the needed 
phase marginphase margin.

The area enclosed by 20 log |A(jw)| and 20 log 1/β 
redrawn with 20 log 1/β  line as f-axis becomes the 
graph of the loop gain (20 log |A(jw)β|).
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10. Stability Study Using Bode Plots

Q: (Cont’d) 105( )

)
10

1)(
10

1)(
10

1(

10

765
fjfjfj

A
+++

=

fff )]
10

(tan)
10

(tan)
10

([tan 7
1

6
1

5
1 fff −−− ++−=φ

f180 ≒ 3.2 x 106 Hz
(f180 ≒ 3.34x106 Hz with more iteration)(f180 ≒ 3.34x10 Hz with more iteration) 

f108 ≒ 5 6x105Hz |A(jw108)| = 85dBf108 ≒ 5.6x10 Hz |A(jw108)|  85dB

β = 5.623x10-5
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10. Stability Study Using Bode Plots

Rule of thumb for stabilityy

biliS t t!! To guarantee stability, 
the 20 log 1/β should intersect the 20 

log |A| on its -20 dB/dec segment.

Sweet spot!!

(then the phase margin > 45˙)
More generally, if β is a 
function of frequency

The difference of slopes (= rate of 
closure) at the intersection of 

function of frequency…

)
20 log 1/β(jw) and 20 log |A(jw)| should 

not exceed 20dB/dec.
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11. Frequency Compensation

Theoryy
A system can be made stable by introducing a new pole or 
moving the location of its existing pole.

1 A l !

1. Place a new pole so as to 
guarantee that the slope difference of 

2. Move an existing pole

1. A new pole!
g p
20 log |A(jw)| and 20 log 1/β does 
not exceed 20 dB/dec.

OR
2. Move an existing pole the same 
way as 1 (preferred)

OR

way as 1. (preferred)

STABLE

9/6/2007 (c) 2007 DK Jeong 82/89

STABLE



11. Frequency Compensation

Implementationp
Assume that the first pole fp1 is introduced at the interface 
between the two stages.

( )’ ll l l(a)’s small signal equivalent circuit 
can be simplified to the circuit shown 

in (b).

By adding Cc we are capable of 
moving the location of fp1 to a lower 

frequency.

xx
P RC

f

1
2

1
1 =

π

xcx
D RCC

f
)(2

1'
+

=
π

However, the required value of Cc is usually large
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However, the required value of Cc is usually large 
and Cc has an secondary effect on poles other than fp1.



11. Frequency Compensation

Miller compensation and pole splittingp p p g
A miller effect is used in ICs to minimize Cc(Cf).

Assume that C1 includes the Miller component due to Cμ, C2

i l d th i t it f th b t tincludes the input capacitance of the subsequent stage.
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11. Frequency Compensation

Miller comp.& pole splitting(Cont’d)p p p g( )
Pole locations without Cf
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Pole locations with Cf
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The zero is usually at a much higher 

frequency, so we will neglect its effect.
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11. Frequency Compensation

Miller comp.& pole splitting(Cont’d)p p p g( )

1221212211
1

1
)(

1'
RCRgRRRRgCRCRC fmmf

P ≅
++++

=ω
)(

'
2121

2 CCCCC
Cg

f

fm
P +++

≅ω

Miller effect

1221212211 fmmf )( 2121 f

As Cf↑, ω’p1↓ and ω’p2↑ : Pole Splitting

This method not only reduces the size of the neededThis method not only reduces the size of the needed 
compensation capacitance with miller effect, but also 

sends the second pole to a higher frequency. 
> Wider bandwidth-> Wider bandwidth.

Two goods in one package!!
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11. Frequency Compensation

Example 8.6p

1.for  stable sticcharacteri loop-open
 followingwith amplifier   themake  toneeded C of  value theFind:Q f

≤β

 ground. and B nodebetween  placed C 1.       
 : cases for two (Solve

f

path.)feedback in theplacedC2.      f

40mA/V.gand5pF,C100pF,CGiven m21 ===
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11. Frequency Compensation

Example 8.6(Cont’d) – case 1.p ( )

1 101 5

112
1

RC
f p π
= )(

2
10

2
1

11
1 Ω==

ππ pfC
R

)(101 5

ΩR )(
2 22

2 Ω==
ππ pfC

R

Cf moves fp1. To make the amplifier stable, f p1 p ,
the first pole must be moved so that the 
20 log |A(s)| intersects 0dB at fp2(=1MHz).

11
1 )(2
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Hzf
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p +
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π
uFC f 1≈
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11. Frequency Compensation

Example 8.6(Cont’d) – case 2.p ( )

12
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RCRg
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fm

P π
≅

Cg
))((2

'
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2 CCCCC
Cg

f
f

fm
P +++

≅
π

A C >>C ThAssume Cf >>C2. Then,

MHz
CC

gf m
P 6.60

)(2
'

21
2 =

+
≅

π )( 21

fP2’ is higher than fP3, so the second pole of 
the system will be fP3(=10MHz). Thus,
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P π
=≅ pFC f 5.78=
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Smaller Cf & higher fp1’


