
Graph Optimization
(4541.554 Introduction to Computer-Aided Design)

School of EECS
Seoul National University

Shortest (Longest) Path Problems

Shortest (Longest) Path Problems
• Assume no negative (positive) cycles

negative (positive) cycles + simple path --> NP-
complete

• Directed edge weighted graph G(V, E, W), source
vertex v0

• Bellman’s equation
– path weight s0 = 0

si = min(sk + wk,i) , i = 1, 2, ..., n
• Acyclic

– Topological sort (O(|V| + |E|))
– Solve Bellman’s equation in the topological order

k≠ i sk si

wk,i

Shortest (Longest) Path Problems

– Cyclic
• if all weights are positive, use Dijkstra’s algorithm
• DIJKSTRA (G(V, E, W)) {

s0 = 0;
for (i = 1 to n)

si = w0,i;
repeat {

select an unmarked vertex vq such that sq is minimal;
mark vq
foreach (unmarked vertex vi)

si = min{si, (sq + wq,i)};
} until (all vertices are marked);

}

Implementation of priority queue
• linear list: O(|V|2 + |E|)
• heap: O(|V|log|V| + |E|log|V|)

vq
vi

wq,i

Shortest (Longest) Path Problems

– Cycles + negative weights (but no negative cycle)
• Bellman-Ford algorithm

– Refine path weights iteratively
– BELLMAN_FORD (G(V, E, W)) {

s0
1 = 0;

for (i = 1 to n) si
1 = w0,i ;

for (j = 1 to n) {
for (i = 1 to n) {

si
j+1 = min{si

j , (sk
j + wk,i)};

}
if (si

j+1 == si
j for all i) return (TRUE);

}
return (FALSE)

}
– Converge within |V| - 1 iterations

– O(|V| |E|) solution path

k≠ i O(|E|)

vq
vi

wq,i

Shortest (Longest) Path Problems

• Liao- Wong
– G(V, E ∪ F, W) , F: set of feedback edges
– LIAO_WONG (G(V, E ∪ F, W)) {

for (j = 1 to |F| + 1) {
foreach vertex vi

lij+1 = longest path in G(V, E, WE) ; -- O(|V|+|E|+|F|)
flag = TRUE;
foreach edge (vp, vq) ∈ F {

if (lqj+1 < lpj+1 + wp,q) {
flag = FALSE;
E = E ∪ (v0, vq);
w0,q = (lpj+1 + wp,q);

}
}
if (flag) return (TRUE)

}
return (FALSE)

}

Shortest (Longest) Path Problems

– converge within |F| + 1 iterations

– O((|V| + |E| + |F|) |F|)

solution path

r feedback edges need r iterations

Shortest (Longest) Path Problems

• Shortest path lengths between all pairs of
vertices
– Floyd’s algorithm

for k=1 to n
for i=1 to n

for j =1 to n
if dik + dkj < dij

dij = dik + dkj ;

dij is the length of the shortest among the paths that
pass thru only the vertices with labels ≤ k

j k

i

k

dij dik

dkj

i

1
2

k

j

Compaction

Compaction
• Minimize area satisfying the design rule
• Two dimensional problem
• Classification

– 1-D compaction
• Alternate x-compaction and y-compaction

– 2-D compaction
• Objects can move in both directions.
• NP-hard

x-compaction
first

y-compaction
first

area: 63

area: 56

7

9

7

1

6
6

4

3

8

7

Compaction

• Compaction based on Constraint Graph
– Graph construction

• Nodes: objects
• Directed edges: constraints
• Edge weights: lower bounds (spacing)

upper bounds (connectivity)
slacks

• Add a source and a sink

– Find the longest path (critical path) from the source
(leftmost object) to the sink (rightmost object)

A B

B ≥ A + d

C

D

|C – D| ≤ d

A Bd
C D

-d
-d

|C – D| ≤ d

-d ≤ C – D ≤ d

D ≥ C – d
C ≥ D – d

Compaction

– Example

A

B

C

D

A

B

C

D

E

F

G

S

E

F

G Z

A

B

C

D

E

F

G

Shadow propagation to avoid
generating unnecessary
constraints (edges)

Shortest (Longest) Path Problems

– Linear program
• constraint graph : xj ≥ xi + wi,j

minimize cT x, where cT = [1, ..., 1] or
ci = 1 for sink and ci = 0 otherwise

subject to AT x ≥ b, A : incidence matrix

xi xj

≥ wi,j

AT x =
ei,j

vi vj

-1 1
x ≥≥

wwi,ji,j

Shortest Spanning Tree

Shortest Spanning Tree
• Spanning tree of G

– Subgraph of G that is a tree containing all vertices of G
– Can be used for net length estimation

• Prim’s algorithm
1

4
3

65

2

6 5

5
1

5
2

4

6

3 6

1

4
3

65

2
1

1

4
3

65

2
1

4

1

4
3

65

2 5
1

2
43

1

4
3

65

2 5
1

2
4

1

4
3

65

2
1

2
4

• PRIM (G(V, E, W)) {
mark v1;
for (i = 2 to n)

si = w1,i;
repeat {

select an unmarked vertex vq such that sq is minimal; --- |V|2,
|V|log|V|

mark vq
foreach (unmarked vertex vi)

si = min{si, wq,i }; --- |E|, |E|log|V|
} until (all vertices are marked);

}

implementation of priority queue
• linear list: O(|V|2 + |E|)
• heap: O(|V|log|V| + |E|log|V|)

Shortest Spanning Tree

1

4
3

65

2

6 5

5
5

46

Shortest Spanning Tree

– Kruskal’s algorithm

1

4
3

65

2

6 5

5
1

5
2

4

6

3 6

1

4
3

65

2
1

1

4
3

65

2
1

1

4
3

65

2 5
1

2
43

1

4
3

65

2
1

2
4

1

4
3

65

2
1

2

2

3 3

• KRUSKAL (G(V, E, W)) {
make n components such that each component contains one vertex;
ncomp = n;
repeat {

select an unmarked edge ei,j such that wi,j is minimal; --- |E|2,
|E|log|E|

icomp = find(i, components); --- |E|log|V|
jcomp = find(j, components); --- |E|log|V|
if icomp <> jcomp {

merge(icomp, jcomp, components);
ncomp = ncomp - 1;
mark ei,j

}
} until (ncomp = 1);

}

implementation of priority queue
• linear list: O(|E|2)
• heap: O(|E|log|E|)

Shortest Spanning Tree

1

4
3

65

2
1

2
43

Network Flow

Network Flow

source sink

5
3

66

15
3

6

a

b

c

d

e

z

capacity

5,3
3,3

6,36

15,3

3,3

6,3

a

b

c

d

e

z

5,5
3,3

6,46,2

1,15,4

3,3

6,5

a

b

c

d

e

z

2 36

12 3

a

b

c

d

e

z

slack in
unsaturated

edges

9

Network Flow

5
3

66

15
3

6

a

b

c

d

e

5
6

63

35
1

6

a

b

c

e

d

5,5
6,5

6,53

35,1
1,1

6,1

a

b

c

e

d

5,5
6,5

6,63,0

3,15,2
1,1

6,1

a

b

c

e

d

7 (?)

z

z

z

z

Network Flow

5,5
6,5

6,63,0

3,15,2
1,1

6,1

a

b

c

e

d
(a+,3) (b+,2)

(c+,2)(e-,2)

(d+,2)

z

5,5
6,3

6,63,2

3,35,4
1,1

6,3

a

b

c

e

d

z

labeled unlabeled

cut of saturated edges
=> min-cut (min. capacity)

Max flow Max flow -- min cut theorem:min cut theorem:
max flow = capacity of min cutmax flow = capacity of min cut

(a+,1)

Network Flow

• Augmenting Flow Algorithm
1. Breadth-first search
2. If sink is visited

a. back trace updating the flow
b. delete labels
c. go to 1

otherwise
done

– Why breadth-first search?
• Shortest path first

100,0 100,0

1,0

100,0 100,0

a

b

c

z

(a+,100)

(b+,1)

(c+,1)

100,1 100,0

1,1

100,0 100,1

a

b

c

z

(c-,1)

(a+,100)

(b+,1)

...

Network Flow

– Complexity of Augmenting Flow Algorithm
• O(|E|) for each iteration (breadth first search) and
• # of iterations = O(|V||E|)

Complexity = O(|V||E|2)

Why # of iterations = O(|V||E|)?
- At least one bottleneck per shortest path (or per iteration)
- During the whole process, each edge can be a bottleneck at

most |V| times (prove this as a homework problem).

– Can be improved to reduce complexity to O(|V|3)

Network Flow

6,0

7,0
4,0

5,0 4,0

7,0

9,0

12,0

a

b

c

e

d
(a+,7) (d+,7)

(b+,6)(a+,6)

(e+,4)

z

f

4,0

4,0
5,0 3,0

(a+,4)

6,4

7,4
4,4

5,0 4,0

7,0

9,0

12,0

a

b

c

e

d
(a+,7) (d+,7)

(b+,2)(a+,2)

z

f

4,0

4,0
5,0 3,0

(a+,4)
(f+,7)

6,4

7,4
4,4

5,0 4,0

7,7

9,7

12,7

a

b

c

e

d
(c+,4) (c+,3)

(b+,2)(a+,2)

z

f

4,0

4,0
5,0 3,0

(a+,4)
(f+,3)

6,4

7,4
4,4

5,0 4,0

7,7

9,7

12,10

a

b

c

e

d
(c+,1) (d+,1)

(b+,2)(a+,2)

z

f

4,0

4,3
5,0 3,3

(a+,1)
(f+,1)

(-,∞) (-,∞)

(-,∞) (-,∞)

Network Flow

6,4

7,4
4,4

5,0 4,0

7,7

9,8

12,11

a

b

c

e

d
(c+,2) (d+,1)

(b+,2)(a+,2)

z

f

4,0

4,4
5,1 3,3

(e+,2)
(f+,1)

6,5

7,5
4,4

5,0 4,1

7,7

9,9

12,12

a

b

c

e

d
(c+,1)

(b+,1)(a+,1)

z

f

4,0

4,4
5,2 3,3

(e+,1)

min-cut

(-,∞)

(-,∞)

6,4

7,4
4,4

5,0 4,0

7,7

9,7

12,10

a

b

c

e

d
(c+,1) (d+,1)

(b+,2)(a+,2)

z

f

4,0

4,3
5,0 3,3

(a+,1)
(f+,1)

(-,∞)

Matching

Matching
• A matching M of a graph G(V, E) is a subset of E,

where no two edges share the same node.
• Cardinality Matching: maximize |M|
• Bipartite Cardinality Matching

– Find a cardinality matching of a bipartite graph B(V,U,E)
– O(min(|V|,|U|)|E|)

v1 u1

v2 u2

v3 u3

v4 u4

v5 u5

v6 u6

v2

u2

u6

v3 v4

v5

u3

u4

u5

v1

v6

u1

v2

u6 v5

u4 v1 u1

v1 u1

v2 u2

v3 u3

v4 u4

v5 u5

v6 u6

initial matching augmented
matchingalternating path

Matching

• Nonbipartite Matching
– Find a cardinality matching of a general graph G(V,E)
– O(|V|3)

• Weighted Matching: maximize total weight of M
• Bipartite Weighted Matching

– Find a weighted matching of a bipartite graph
B(V,U,E,W)

– O(|V|3) for a complete bipartite graph with 2|V| vertices
• Nonbipartite Weighted Matching

– Find a weighted matching of a general graph G(V,E,W)
– O(|V|3)

Functional Cell Design

Functional Cell Design
• Layout

– Layers: diffusion, metal, poly
– Linear array of transistors
– Avoid diffusion gaps to minimize area

a b c d e f

c

a

d

b

h

g
e f

x

y

x

y

g h

diffusion gap

Functional Cell Design

• To minimize the number of diffusion gaps
– Find Euler trail

a c d b e f g h
y

x

y

x

c

a

d

b

h

g
e f

x

y

x
a

c
d

b
e

g

h

f

Functional Cell Design

• Problem
– Given a graph G(V,E)

• V: set of vertices (interconnects)
• E: set of edges (transistors)

– Find an Euler trail
– If an Euler trail is found

<=> All transistors abut
<=> Minimum length solution

– Otherwise
• Solution 1: Break diffusion area by gaps (find a set of trails

covering the graph)
--> Minimize number of gaps (minimize number of trails)

• Solution 2: Add transistors (edges) in parallel to make a
trail
--> Minimize number of duplications

Functional Cell Design

– Example
a

b

c

d

e
f

a b c d e f

a b c d e f

a
b

c

d

e
f

a c c' d e f

a
b

c

d

e
f

c'

b

solution 1
diffusion

gap

solution 2
transistor

duplication

Functional Cell Design

• How to minimize the number of duplications?
– Chinese postman's problem

• Find a walk traversing each edge at least once with
minimum total weight

• Algorithm
– step 1: Mark vertices with odd degree. If none, go to step 5

step 2: Compute shortest path between all pairs of marked
vertices (Floyd's algorithm:O(|V|3))
step 3: Match marked vertices into pairs so that the sum of
the lengths of the shortest paths between pairs is minimum
(Maximum weighted matching:O(|V|3))
step 4: Duplicate edges along these paths
step 5: construct an Euler path:O(|V|+|E|)

– complexity: O(|V|3)

2

1
1

1

2

2

	Graph Optimization�(4541.554 Introduction to Computer-Aided Design)
	Shortest (Longest) Path Problems
	Shortest (Longest) Path Problems
	Shortest (Longest) Path Problems
	Shortest (Longest) Path Problems
	Shortest (Longest) Path Problems
	Shortest (Longest) Path Problems
	Compaction
	Compaction
	Compaction
	Shortest (Longest) Path Problems
	Shortest Spanning Tree
	Shortest Spanning Tree
	Shortest Spanning Tree
	Shortest Spanning Tree
	Network Flow
	Network Flow
	Network Flow
	Network Flow
	Network Flow
	Network Flow
	Network Flow
	Matching
	Matching
	Functional Cell Design
	Functional Cell Design
	Functional Cell Design
	Functional Cell Design
	Functional Cell Design

