Partitioning (4541.554 Introduction to Computer-Aided Design)

School of EECS Seoul National University

Introduction

- Layout System
 - Goal
 - Constraints
 - Design constraints
 - e.g. cell area, position, aspect ratio
 - Technological constraints
 - e.g. design rule, number of routing layers
 - Performance constraints
 - e.g. timing
 - Minimize area (performance, power)
 - Problem
 - Large set of configurations
 - e.g. linear-array cell placement
 - n-cells --> n! configurations
 - Most layout optimization problems are NP-hard
 - Use heuristic algorithms
 - Partial search of the configuration space
 - --> local minimum

- Heuristic Algorithm
 - Define topology on the configuration space
 - Model: graph G(V,E)
 - Define cost function f(v)
 - Global minimum:

v* s.t. f(v*)<=f(v), v∈V

Local minimum:

- Can be improved by look-ahead
- Example: Linear placement: A B C
 - --> 6 different placements
 - 1 ABC
 - 2 BAC
 - 3 CAB
 - 4 ACB
 - 5 BCA
 - 6 CBA

cost function: c(1)<c(3)<c(5)<c(2)<c(4)<c(6)

--> If we start from 3 or 5, we cannot reach the global minimum

- Major Stages of Layout Process
 - Partitioning
 - Floor-planning
 - Placement
 - Routing
- Problem Definitions
 - Cells (modules): objects with terminals (pins)
 - Nets: set of terminals
 - Partitioning: break a set of cells into subsets
 - Floor-planning: determine relative positions of cells
 - Placement: determine absolute positions of cells
 - Routing: provide interconnection of terminals

Partitioning

- Goals
 - Decrease problem size (provides hierarchy)
 - Ease placement and routing

Problem Formulation

– Given a set of n modules: $M = \{m_1, ..., m_i, ..., m_n\}$ and a set of nets: $N = \{n_1, ..., n_i, ..., n_k\}$ $n_i = \{m_{i1}, ..., m_{il}\}$ - Find a partition of M: $\Pi = \{\pi_1, ..., \pi_t\},\$ $\pi_i \subseteq M, \ \cup \pi_i = M, \ \pi_i \cap \pi_i = 0, \ i \neq j$ subject to capacity constraints: $|\pi_i| \leq \mathbf{K}_i, \Sigma \mathbf{K}_i \geq \mathbf{n}$ which minimizes cost function (number of nets between partitions): $C(\Pi) = \Sigma C_{ii}$

m_i∈π_h,m_j∈π_k,k≠h

c_{ii}=number of nets that connect m_i to m_i

- Generalization
 - Use sizes of modules and weights of nets
- NP-hard
 - Use heuristics: constructive or iterative improvement

Constructive Method

- Assumption: bi-partition
- Definition

- Algorithm (Greedy Algorithm)
 - Select a seed (1st module to be assigned to π_1)
 - e.g. select a module with most net connections
 - Repeat selecting the next module with minimal cost until size limit is reached
 - Fast but the result may not be good
 - The result can be a starting point of iterative improvement.

Iterative Improvement

- Algorithm
 - Start from an initial solution
 - Modify incrementally by swapping and monitoring the objective function

- Random interchange
 - Choose swap at random
 - Accept the swap only if it decreases the cost

Kernighan-Lin Algorithm

- Definition
 - Gain obtained by moving m_i from π_1 to π_2 : D(m_i)=E(m_i)-I(m_i)
 - Gain obtained by moving m_j from π₂ to π₁:
 D(m_j)=E(m_j)-I(m_j)
 - Gain obtained by interchanging $m_i \in \pi_1$ and $m_j \in \pi_2$: gain=g_k (k-th iteration)

 $=D(m_i)+D(m_j)-2c_{ij}$

 $=E(m_i)-I(m_i)+E(m_j)-I(m_j)-2c_{ij}$

gain=4-2+3-1-2=2

• Algorithm

Repeat

Compute D values for all modules

Repeat

Choose $m_i{\in}\pi_1$ and $m_j{\in}\pi_2$ such that the gain is maximum Fix $m_i{\in}\pi_2$ and $m_j{\in}\pi_1$

Update D values for modules of π_1 -m_i and π_2 -m_j

Compute

$$G_k = \sum_{i=1}^k g_i$$

Until all modules are fixed Choose k* that maximize G_k If G_{k*} >0, Swap first k* pairs Until G_{k*} =0

Updating D values
 D'(m_x)=D(m_x)+2c_{xi}-2c_{xj}, m_x∈π₁-m_i
 D'(m_y)=D(m_y)+2c_{yj}-2c_{yi}, m_y∈π₂-m_j

- $G_n=0$ (n=number of modules in a partition)

- Complexity
 - Sorting: O(n log n)
 - Maximum gain is found rapidly
 - $D(m_{x1}) \ge D(m_{x2}) \ge D(m_{x3}) \dots$ $D(m_{y1}) \ge D(m_{y2}) \ge D(m_{y3}) \dots$ Examine module m_{xi} only when $D(m_{y1}) + D(m_{xi}) \ge D(m_{x1}) + D(m_{y1}) - 2c_{x1y1}$
 - $O(n \log n) + O((n-1) \log (n-1)) + ... = O(n^2 \log n)$

Fiduccia-Mattheyses Algorithm

- Modified Version of Kernighan-Lin Algorithm
 - Generate balanced partitions
 - Non-uniform cell sizes are considered
 - Single cell is moved in a single move
 - More accurate cost computation
 - Consider multi-pin nets
 - --> Extension to hypergraph (cut of nets rather than edges)

- Fast algorithm
 - Use bucket sorting
 - --> Speed up the sorting process

Notations

- C: number of cells
- N: number of nets
- n(i): number of cells connected by net i
- s(j): size of cell j
- p(j): number of pins of cell j
- P: total number of pins, $P = \sum_{j=1}^{c} p(j)$
- C=O(P), N=O(P)
- cutstate of a net: {cut, uncut}
- cutset: set of all nets that are cut
- |X|: size of partition X, $|X| = \sum_{j \in X} s(j)$
- g(j):gain of cell j, number of nets by which the cutset would decrease if cell j is moved to the other partition
 - $\textbf{-p(j)} \leq \textbf{g(j)} \leq +\textbf{p(j)}$
 - -pmax \leq g(j) \leq +pmax, \forall j
 - where $pmax = max_{j}p(j)$

- nc(i,X): number of cells that are in partition X and connected by net i
- critical net: a net connecting a cell whose move changes the net's cutstate
 - a net i is critical iff nc(i,A) or nc(i,B) is either 0 or 1
 - cutstate of a non-critical net is not affected by a move
 - if a net is not critical before and after a move, the gains of its cells due to the net are not affected by the move

- Computing Initial Cell Gains
 - F(j): 'From' partition with respect to cell j
 - T(j): 'To' partition with respect to cell j
 - FS(j): # of nets having cell j as their only F cell
 - TE(j): # of nets having cell j but no T cell
 - g(j)=FS(j)-TE(j)
 - Algorithm

FOR each cell j DO

g(j)=0;

FOR each net i connecting cell j DO

IF nc(i,F(j))=1 THEN increment g(j);

IF nc(i,T(j))=0 THEN decrement g(j);

END FOR;

END FOR;

– Complexity: O(P) (1)

- Data Structure
 - Sorting: O(C)-->complexity of initialization=O(pmax)+O(C)=O(P) (2)

- Establishing Balance
 - Given a ratio r, 0<r<1, a partition (A,B) is said to be balanced if

```
rW - smax \le |A| \le rW + smax
```

```
where W = |A| + |B| and smax = max<sub>i</sub>s(j)
```

- Tolerance of ±k*smax may be used, where k>1 is some slowly growing function of C
- Selecting a Cell
 - Consider the cell of highest gain from each bucket array
 - Reject candidate cells that would cause imbalance
 - If neither block has a qualifying cell, stop the current pass
 - Among the candidates, choose a cell of highest gain
 - Break tie considering balance

- Updating Cell Gains
 - When moving cell j, cell gains of other cells connected to net i change, if nc(i,T(j))=0 or 1 before the move or nc(i,F(j))=0 or 1 after the move (i.e., if i is critical before or after the move) T | F
 - Algorithm

- Complexity of Updating Cell Gains
 - No more than three update operations per net
 - Proof

nlc(i,X): number of locked cells that are in partition X and connected by net i $T \mid F$

- Consider moving cells from A partition to B partition.
- Initial move will make a locked cell in B, so no pre_update in that direction from now on.
- If we move a cell from B to A, then another locked cell in A and no further update for the net.
- But if we continue moving cells from A to B, there can be two more updates when one cell is left and then no cell is left in A.
- Then if we move a cell from B to A, then A will have a locked cell.

Fiduccia-Mattheyses Algorithm

- Complexity of the Algorithm
 - Updating Cell Gains
 - Total number of gain adjustments per pass

 $= O(3 \cdot \sum_{i=1}^{N} n(i)) = O(P)$ (3)

• During one update, MAXGAIN can be reset to at most MAXGAIN+2

--> total amount of MAXGAIN increase

- Total complexity of one pass
 - (1)+(2)+(3)+(O(pmax)+(4))=O(P)

Simulated Annealing

- Introduction
 - General method
 - Applied first to CAD problem (placement and routing) by S.Kirkpatric, C.D.Gelatt, Jr., and M.P.Vecchi, " Optimization by simulated annealing," Science, vol. 220, no. 4598, pp. 671-680, 13 May 1983
 - Random interchange (hill climbing) --> local minimum
 - Escape from the local minimum
 - Probabilistic algorithm
- Annealing
 - Method to obtain crystals
 - Warm up to melting point
 - Cool down slowly to allow crystallization
 - Rate of decrease of temperature is very slow around the melting point

- Simulation of Equilibrium States
 - N.Metropolis, A.Rosenbluth, M.Rosenbluth, A.Teller, and E.Teller, "Equation of State Calculations by Fast Computing Machines," Journal of Chemical Physics, June 1953
 - Equilibrium at a given temperature
 - Algorithm
 - **Generate random interchanges**
 - Compute the difference in energy, dE
 - Accept the move with probability

min(1, exp(-dE/kT))

- Downhill moves (dE < 0) are always accepted
- After a large set of moves, the simulated system is in equilibrium at T
- Boltzmann distribution

- Simulated Annealing
 - Run Metropolis algorithm at decreasing temperatures
 - state --> configuration

energy --> cost

ground state --> optimum solution

- Problems
 - How to decrease temperature
 - --> Cooling schedule
 - How to accept moves
 - --> min(1, exp(-dE/kT))
 - How many moves and how wide
 - --> Limit number of moves and ranges
 - When to stop
 - --> No further improvement

• Algorithm

```
Simulated_Annealing(j_0, T_0) {
  /* Given an initial state s_0 and an initial
      temperature T_0 * /
  T=T_{o};
  s=s_{0};
  while(stopping criterion is not satisfied) {
    while(inner loop criterion is not satisfied) {
       s<sub>new</sub>=generate(s)
       if(accept(c(s<sub>new</sub>), c(s), T))
         S=S<sub>new</sub>;
     }
     T=update(T);
  }
```

```
accept(c(j), c(i), T) {
  /* returns 1 if the cost variation passes a test
  */
  dE=c(j)-c(i);
  y=f(dE, T); /* exp(-dE/kT)*/
  r=random(0, 1);
  /* random is a function which returns a pseudo
  random number uniformly distributed on the
  interval [0, 1] */
  if(r<y)</pre>
     return(1);
  else
     return(0);
                     pdf(r)
}
                               V
```

- Mathematical model:
 - Markov chain (memoryless)
- Mathematical analysis results:
 - Sufficient conditions for reaching global minimum with probability one:
 - (1) At each temperature the process reaches equilibrium
 - --> Infinite number of moves at each temperature
 - (2) The cooling schedule is

 $T_k=c/ln(k+a), a>=1$

--> Temperature drops infinitely slow

k->∞

- Theoretical results only
 - --> Basis for good heuristic