
Partitioning
(4541.554 Introduction to Computer-Aided Design)

School of EECS
Seoul National University

Introduction

Introduction
• Layout System

– Goal
• Constraints

– Design constraints
• e.g. cell area, position, aspect ratio

– Technological constraints
• e.g. design rule, number of routing layers

– Performance constraints
• e.g. timing

• Minimize area (performance, power)
– Problem

• Large set of configurations
– e.g. linear-array cell placement

n-cells --> n! configurations
– Most layout optimization problems are NP-hard

• Use heuristic algorithms
– Partial search of the configuration space

--> local minimum

Introduction

• Heuristic Algorithm
– Define topology on the configuration space
– Model: graph G(V,E)
– Define cost function f(v)
– Global minimum:

v* s.t. f(v*)<=f(v), v∈V
Local minimum:

v* s.t. f(v*)<=f(v), v∈V and (v*,v)∈E
– Can be improved by look-ahead
– Example: Linear placement: A B C

--> 6 different placements
1 ABC
2 BAC
3 CAB
4 ACB
5 BCA
6 CBA
cost function: c(1)<c(3)<c(5)<c(2)<c(4)<c(6)
--> If we start from 3 or 5, we cannot reach the global minimum

1
2

3
4

6

5

Introduction

• Major Stages of Layout Process
– Partitioning
– Floor-planning
– Placement
– Routing

• Problem Definitions
– Cells (modules): objects with terminals (pins)
– Nets: set of terminals
– Partitioning: break a set of cells into subsets
– Floor-planning: determine relative positions of cells
– Placement: determine absolute positions of cells
– Routing: provide interconnection of terminals

Partitioning

Partitioning
• Goals

– Decrease problem size (provides hierarchy)
– Ease placement and routing

Partitioning

• Problem Formulation
– Given a set of n modules:

M = {m1,...,mi,...,mn}
and a set of nets:

N = {n1,...,nj,...,nk}
nj = {mj1,...,mjl}

– Find a partition of M:
Π={π1,...,πt},
πi⊂M, ∪πi=M, πi∩πj=0, i≠j

subject to capacity constraints:
|πi|≤Ki, ΣKi≥n

which minimizes cost function (number of nets between
partitions):

C(Π)= Σ cij,
mi∈πh,mj∈πk,k≠h

cij=number of nets that connect mi to mj

Partitioning

– Generalization
• Use sizes of modules and weights of nets

– NP-hard
• Use heuristics: constructive or iterative improvement

Constructive Method

Constructive Method
• Assumption: bi-partition
• Definition

• Algorithm (Greedy Algorithm)
– Select a seed (1st module to be assigned to π1)

• e.g. select a module with most net connections
– Repeat selecting the next module with minimal cost until size

limit is reached
– Fast but the result may not be good
– The result can be a starting point of iterative improvement.

π1 π2

mi
mj

mi

E I

)I(m-)E(m)D(m Gain

)E(m-)I(m)C(m function Cost

c)E(m cost External

 c)I(m cost Internal

jjj

jjj

πm
ijj

πm
ijj

1i

2i

=

=

=

=

∑

∑

∈

∈

Iterative Improvement

Iterative Improvement
• Algorithm

– Start from an initial solution
– Modify incrementally by swapping and monitoring the

objective function

– Random interchange
• Choose swap at random
• Accept the swap only if it decreases the cost

X XYY

B AA * B*

Kernighan-Lin Algorithm

Kernighan-Lin Algorithm
• Definition

– Gain obtained by moving mi from π1 to π2:
D(mi)=E(mi)-I(mi)

– Gain obtained by moving mj from π2 to π1:
D(mj)=E(mj)-I(mj)

– Gain obtained by interchanging mi∈π1 and mj∈π2:
gain=gk (k-th iteration)

=D(mi)+D(mj)-2cij

=E(mi)-I(mi)+E(mj)-I(mj)-2cij

π1 π2

mi

mj

gain=4-2+3-1-2=2

Kernighan-Lin Algorithm

• Algorithm
Repeat
Compute D values for all modules
Repeat

Choose mi∈π1 and mj∈π2 such that the gain is maximum
Fix mi∈π2 and mj∈π1
Update D values for modules of π1-mi and π2-mj

Compute

Until all modules are fixed
Choose k* that maximize Gk
If Gk*>0, Swap first k* pairs

Until Gk*=0

– Updating D values
D'(mx)=D(mx)+2cxi-2cxj, mx∈π1-mi
D'(my)=D(my)+2cyj-2cyi, my∈π2-mj

– Gn=0 (n=number of modules in a partition)

∑
=

=
k

1i
ik gG

n1

gain

π1 π2

mi

mjmx

my

Kernighan-Lin Algorithm

• Complexity
– Sorting: O(n log n)
– Maximum gain is found rapidly

• D(mx1) >= D(mx2) >= D(mx3) ...
D(my1) >= D(my2) >= D(my3) ...
Examine module mxi only when

D(my1)+D(mxi)>D(mx1)+D(my1)-2cx1y1

– O(n log n) + O((n-1) log (n-1)) + ... = O(n2 log n)

π2π1

Fiduccia-Mattheyses Algorithm

Fiduccia-Mattheyses Algorithm
• Modified Version of Kernighan-Lin Algorithm

– Generate balanced partitions
• Non-uniform cell sizes are considered
• Single cell is moved in a single move

– More accurate cost computation
• Consider multi-pin nets

--> Extension to hypergraph (cut of nets rather than edges)

– Fast algorithm
• Use bucket sorting

--> Speed up the sorting process

π1 π2

mi

mjmk

mi

mjmi

Fiduccia-Mattheyses Algorithm

• Notations
– C: number of cells
– N: number of nets
– n(i): number of cells connected by net i
– s(j): size of cell j
– p(j): number of pins of cell j
– P: total number of pins,
– C=O(P), N=O(P)
– cutstate of a net: {cut, uncut}
– cutset: set of all nets that are cut
– |X|: size of partition X,
– g(j):gain of cell j, number of nets by which the cutset

would decrease if cell j is moved to the other partition

∑ =
=

C

1j
p(j)P

∑∈
=

Xj
s(j)|X|

p(j)maxpmax where
j pmax,g(j)pmax-

p(j)g(j)p(j)-

 j=
∀+≤≤

+≤≤

Fiduccia-Mattheyses Algorithm

– nc(i,X): number of cells that are in partition X and
connected by net i

– critical net: a net connecting a cell whose move changes
the net's cutstate

• a net i is critical iff nc(i,A) or nc(i,B) is either 0 or 1
• cutstate of a non-critical net is not affected by a move
• if a net is not critical before and after a move, the gains of

its cells due to the net are not affected by the move

... ...

... ...

A B

nc(i,A)=1

nc(i,B)=0nc(i,B)=1

nc(i,A)=0

A B A B

A B

...

A B

...

T

Fiduccia-Mattheyses Algorithm

• Computing Initial Cell Gains
– F(j): 'From' partition with respect to cell j
– T(j): 'To' partition with respect to cell j
– FS(j): # of nets having cell j as their only F cell
– TE(j): # of nets having cell j but no T cell
– g(j)=FS(j)-TE(j)
– Algorithm

FOR each cell j DO
g(j)=0;
FOR each net i connecting cell j DO

IF nc(i,F(j))=1 THEN increment g(j);
IF nc(i,T(j))=0 THEN decrement g(j);

END FOR;
END FOR;

– Complexity: O(P) (1)
F j

FS(j)=2
TE(j)=3

Fiduccia-Mattheyses Algorithm

• Data Structure
– Sorting: O(C)-->complexity of

initialization=O(pmax)+O(C)=O(P) (2)

CELL
1 ... C

cell # cell # ...

+pmax

-pmax

MAXGAIN

cell # cell # ...

+pmax

-pmax

MAXGAIN

partition A

partition B

Fiduccia-Mattheyses Algorithm

• Establishing Balance
– Given a ratio r, 0<r<1, a partition (A,B) is said to be

balanced if

– Tolerance of ±k*smax may be used, where k>1 is some
slowly growing function of C

• Selecting a Cell
– Consider the cell of highest gain from each bucket array
– Reject candidate cells that would cause imbalance
– If neither block has a qualifying cell, stop the current

pass
– Among the candidates, choose a cell of highest gain
– Break tie considering balance

s(j)maxsmax and |B||A| Wwhere
smaxrW |A| smaxrW

j=+=
+≤≤−

Fiduccia-Mattheyses Algorithm

• Updating Cell Gains
– When moving cell j, cell gains of other cells connected

to net i change, if nc(i,T(j))=0 or 1 before the move or
nc(i,F(j))=0 or 1 after the move
(i.e., if i is critical before or after the move)

– Algorithm

j ...

T F

j ...

T F

-1 --> 0

+1 --> 0

j...

j...

T F

T F

0 --> +1

0 --> -1

FOR each net i connecting the cell j DO
/* check before the move */
IF nc(i,T(j))=0 THEN

increment gains of all free cells connected by net i
ELSE IF nc(i,T(j))=1 THEN

decrement gain of the only T cell, if it is free
/* move */
decrement nc(i,F(j))
increment nc(i,T(j))
/* check after the move */
IF nc(i,F(j))=0 THEN

decrement gains of all free cells connected by net i
ELSE IF nc(i,F(j))=1 THEN

increment gain of the only F cell, if it is free
END FOR

Fiduccia-Mattheyses Algorithm

• Complexity of Updating Cell Gains
– No more than three update operations per net
– Proof

nlc(i,X): number of locked cells that are in partition X
and connected by net i

j ...

T F

locked

j...

T F

locked

/* check before the move */
IF nlc(i,T(j))=0 THEN

IF nc(i,T(j))=0 THEN
increment gains of all free cells connected by net i

ELSE IF nc(i,T(j))=1 THEN
decrement gain of the only T cell(, if it is free)

/* move */
decrement nc(i,F(j))
increment nc(i,T(j))
/* check after the move */
IF nlc(i,F(j))=0 THEN

IF nc(i,F(j))=0 THEN
decrement gains of all free cells connected by net i

ELSE IF nc(i,F(j))=1 THEN
increment gain of the only F cell(, if it is free)

j...

T F

lockedlocked

total 4 times

Fiduccia-Mattheyses Algorithm

– Consider moving cells from A partition to B partition.
– Initial move will make a locked cell in B, so no

pre_update in that direction from now on.
– If we move a cell from B to A, then another locked cell in

A and no further update for the net.
– But if we continue moving cells from A to B, there can

be two more updates when one cell is left and then no
cell is left in A.

– Then if we move a cell from B to A, then A will have a
locked cell.

– So total 4 updates
/* check before the move */
IF nlc(i,T(j))=0 THEN

pre_update
/* move */
decrement nc(i,F(j))
increment nc(i,T(j))
/* check after the move */
IF nlc(i,F(j))=0 THEN

post_update

...

...

...

...

...

...

...

...

...

B A

Fiduccia-Mattheyses Algorithm

– In reality, total three updates

ub...

T F

...

T F

locked

ua

T F

...

T F

...

...

...

T F

...

T F

ua

T F

...

ua

T F

...

ub

F T

...

T F

...

T F

ua

T F

...

ua

T F

...

...

F T

...

...

...

F T

...

T F

...

...

... ub

Fiduccia-Mattheyses Algorithm

• Complexity of the Algorithm
– Updating Cell Gains

• Total number of gain adjustments per pass
(3)

• During one update, MAXGAIN can be reset to at most
MAXGAIN+2
--> total amount of MAXGAIN increase

=O(3*N*2)=O(N)=O(P) (4)

– Total complexity of one pass
• (1)+(2)+(3)+(O(pmax)+(4))=O(P)

ubj

T F

uaj

T F

 O(P))n(i)O(3 N

1i
=⋅= ∑=

-1 --> 0

0 --> +1

Simulated Annealing

Simulated Annealing
• Introduction

– General method
– Applied first to CAD problem (placement and routing) by

S.Kirkpatric, C.D.Gelatt, Jr., and M.P.Vecchi, "
Optimization by simulated annealing," Science, vol. 220,
no. 4598, pp. 671-680, 13 May 1983

– Random interchange (hill climbing) --> local minimum
– Escape from the local minimum
– Probabilistic algorithm

• Annealing
– Method to obtain crystals
– Warm up to melting point
– Cool down slowly to allow crystallization
– Rate of decrease of temperature is very

slow around the melting point

configuration

cost

Simulated Annealing

• Simulation of Equilibrium States
– N.Metropolis, A.Rosenbluth, M.Rosenbluth, A.Teller,

and E.Teller, "Equation of State Calculations by Fast
Computing Machines," Journal of Chemical Physics,
June 1953

– Equilibrium at a given temperature
– Algorithm

Generate random interchanges
Compute the difference in energy, dE
Accept the move with probability

min(1, exp(-dE/kT))
– Downhill moves (dE < 0) are always accepted
– After a large set of moves, the simulated system is in

equilibrium at T
– Boltzmann distribution

Simulated Annealing

• Simulated Annealing
– Run Metropolis algorithm at decreasing temperatures

• state --> configuration
energy --> cost
ground state --> optimum solution

– Problems
• How to decrease temperature

--> Cooling schedule
• How to accept moves

--> min(1, exp(-dE/kT))
• How many moves and how wide

--> Limit number of moves and ranges
• When to stop

--> No further improvement

Simulated Annealing

• Algorithm
Simulated_Annealing(j0, T0) {
/* Given an initial state s0 and an initial

temperature T0 */
T=T0;
s=s0;
while(stopping criterion is not satisfied) {
while(inner loop criterion is not satisfied) {
snew=generate(s)
if(accept(c(snew), c(s), T))
s=snew;

}
T=update(T);

}
}

Simulated Annealing

accept(c(j), c(i), T) {
/* returns 1 if the cost variation passes a test
*/
dE=c(j)-c(i);
y=f(dE, T); /* exp(-dE/kT)*/
r=random(0, 1);
/* random is a function which returns a pseudo
random number uniformly distributed on the
interval [0, 1] */
if(r<y)

return(1);
else

return(0);
}

ry 1

pdf(r)

Simulated Annealing

– Mathematical model:
• Markov chain (memoryless)

– Mathematical analysis results:
• Sufficient conditions for reaching global minimum with

probability one:
(1) At each temperature the process reaches equilibrium

--> Infinite number of moves at each temperature
(2) The cooling schedule is

Tk=c/ln(k+a), a>=1
--> Temperature drops infinitely slow

(dTk/dk)(1/Tk)
= -1/((k+a)ln(k+a)) ----> 0

k->∞

• Theoretical results only
--> Basis for good heuristic

	Partitioning�(4541.554 Introduction to Computer-Aided Design)
	Introduction
	Introduction
	Introduction
	Partitioning
	Partitioning
	Partitioning
	Constructive Method
	Iterative Improvement
	Kernighan-Lin Algorithm
	Kernighan-Lin Algorithm
	Kernighan-Lin Algorithm
	Fiduccia-Mattheyses Algorithm
	Fiduccia-Mattheyses Algorithm
	Fiduccia-Mattheyses Algorithm
	Fiduccia-Mattheyses Algorithm
	Fiduccia-Mattheyses Algorithm
	Fiduccia-Mattheyses Algorithm
	Fiduccia-Mattheyses Algorithm
	Fiduccia-Mattheyses Algorithm
	Fiduccia-Mattheyses Algorithm
	Fiduccia-Mattheyses Algorithm
	Fiduccia-Mattheyses Algorithm
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing

