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Ch 6. Sequential Logic
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Sequential logic overview

Sequential circuits
simple circuits with feedback
latches
edge-triggered flip-flops

Timing methodologies
cascading flip-flops for proper operation
clock skew

Asynchronous inputs
metastability and synchronization

Basic registers
shift registers
simple counters

Hardware description languages and sequential logic
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Sequential logic

System has “states”
New component in sequential logic networks: 

storage elements to remember the current state
Outputs depend on inputs and the states
New state is a function of the inputs and the old state

i.e., the state is fed back as inputs!
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Sequential circuits

Circuits with feedback
outputs = f(inputs, past inputs, past outputs)
basis for building "memory" into logic circuits
door combination lock is an example of a sequential circuit

state is memory
state is an "output" and an "input" to combinational logic
combination storage elements are also memory

C1 C2 C3

Multiplexer

Comparator

value

equal

MUX
control

Comb. logic

state clock

New equal Reset
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"remember"

"load"
"data" "stored value"

"0"

"1"

"stored value"

Two inverters form a static memory cell
will hold value as long as it has power applied

How to get a new value into the memory cell?
selectively break feedback path
load new value into cell

Simplest circuits with feedback
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R

S

Q

Q'

R
S

Q

R'
S'

Q
Q

Q'

S'

R'

Cross-coupled NOR gates
similar to inverter pair, with capability to force output to 0 
(reset=1) or 1 (set=1)

Cross-coupled NAND gates
similar to inverter pair, with capability to force output to 0 
(reset=0) or 1 (set=0)

Memory with cross-coupled gates
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Reset Hold Set SetReset Race

R

S

Q

Q’

100

Timing behavior

R

S

Q

Q'
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S R Q
0 0 hold
0 1 0
1 0 1
1 1 unstable

State behavior or R-S latch

Truth table of R-S latch behavior

Q Q'
0  1

Q Q'
1  0

Q Q'
0  0

Q Q'
1  1

R

S

Q

Q'



VI - Sequential Logic Contemporary Logic Design 9

Theoretical R-S latch behavior

State diagram
states: possible values
transitions: changes
based on inputs

Q Q'
0  1

Q Q'
1  0

Q Q'
0  0

Q Q'
1  1

SR=00
SR=11SR=00

SR=10

SR=01
SR=00
SR=10

SR=00
SR=01

SR=11 SR=11

SR=10SR=01 

SR=01 SR=10

SR=11

possible oscillation
between states 00 and 11

R

S

Q

Q'
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Observed R-S latch behavior

Very difficult to observe R-S latch in the 1-1 state
one of R or S usually changes first

Ambiguously returns to state 0-1 or 1-0
a so-called "race condition"
or non-deterministic transition

R

S

Q

Q'

Q Q Q Q

Q Q

0 1 1 0

0 0

SR = 1 0

SR = 0 1
SR = 0 1

SR = 1 1
SR = 1 0

SR = 1 1

SR = 00, 01 SR = 00, 10

SR = 0 0

SR = 11

SR = 0 0
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Q(t+Δ)

R
S

Q(t)

S R Q(t) Q(t+Δ)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 X
1 1 1 X

hold

reset

set

not allowed characteristic equation
Q(t+Δ) = S + R’ Q(t)

Break feedback path

R-S latch analysis

R

S

Q

Q'

0 0

1 0

X 1

X 1Q(t)

R

S
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Activity: R-S latch using NAND gates

R’

S’ Q

Q'

characteristic equation
Q(t+Δ) = S + R’ Q(t)

R’

S’

Q(t)

0 0

1 0

X 1

X 1Q(t)

R

S

S R S’ R’ Q(t) Q(t+Δ)
0 0 1 1 0 0
0 0 1 1 1 1
0 1 1 0 0 0
0 1 1 0 1 0
1 0 0 1 0 1
1 0 0 1 1 1
1 1 0 0 0 X
1 1 0 0 1 X

hold

reset

set

not allowed
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X1
X2
•
•
•

Xn

switching
network

Z1
Z2
•
•
•

Zn

Circuits with feedback

How to control feedback?
what stops values from cycling around endlessly

R’

S’ Q

Q'
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Gated or Level-Sensitive Latch

\S 

\R 

\ Q 

Q \Enable

Schematic:

Timing Diagram:
\S

\R

Q

\Q

Set Reset

\Enable

Latch is allowed 
to change state 
when the enable 
signal is 
asserted.

Propagation 
delay from 
enable signal to 
output changes 
is shown in the 
diagram.
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period

duty cycle (in this case, 50%)

Clocks

Clocks are regular periodic signals
period (time between ticks)
duty-cycle (time clock is high between ticks - expressed as % of 
period)

Used to keep time
wait long enough for inputs (R' and S') to settle
then allow to have effect on value stored
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clock’

R’ and  S’

changing stable changing stablestable

Clocks (cont’d)

Controlling an R-S latch with a clock
can't let R and S change while clock is active (allowing R and S to 
pass)
only have half of clock period for signals to change
signals must be stable for the other half of clock period

clock’

S’
Q’

QR’
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clock

R

S Q

Q’ R

S Q

Q’R

S

Combining latches

Connect output of one latch to input of another
How to stop changes from racing through chain?

need to be able to control flow of data from one latch to the next
move one latch per clock period
have to worry about logic between latches (arrows) that is too fast
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Master-slave structure

Break flow by alternating clocks (like an air-lock)
use positive clock to latch inputs into one R-S latch
use negative clock to change outputs with another R-S latch

View pair as one basic unit
master-slave flip-flop
twice as much logic
output changes a few gate delays after the falling edge of clock
but does not affect any cascaded flip-flops

master stage slave stage

P

P’

CLK

R

S Q

Q’ R

S Q

Q’R

S
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The 1s catching problem

In first R-S stage of master-slave FF
0-1-0 glitch on R or S while clock is high is "caught" by master stage
leads to constraints on logic to be hazard-free

Set
1s 

catch

S
R

CLK
P
P’
Q
Q’

Reset

Master
Outputs

Slave
Outputs

master stage slave stage

P

P’

CLK

R

S Q

Q’ R

S Q

Q’R

S
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10 gates

D flip-flop

Make S and R complements of each other
eliminates 1s catching problem
can't just hold previous value
(must have new value ready every clock period)
value of D just before clock goes low is what is stored in flip-flop
can make R-S flip-flop by adding logic to make D = S + R’ Q

D Q

Q’

master stage slave stage

P

P’

CLK

R

S Q

Q’ R

S Q

Q’
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Q

D

Clk=1

R

S

0

D’

0

D’ D

Q’

negative edge-triggered D 
flip-flop (D-FF)

4-5 gate delays

must respect setup and hold time 
constraints to successfully

capture input

characteristic equation
Q(t+1) = D

holds D’ when
clock goes low

holds D when
clock goes low

Edge-triggered flip-flops

More efficient solution: only 6 gates
sensitive to inputs only near edge of clock signal (not while high)
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when clock goes high-to-low
data is latched

when clock is low
data is held

new D ≠ old D

Edge-triggered flip-flops (cont’d)

Step-by-step analysis

Q

Q

D

Clk=0 R

S

D

D D

D

D

D

Q

Q

D -> D’

Clk=0 R

S

D

D

D

D

0

0

1

2

3

4

5

6
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positive edge-triggered FF

negative edge-triggered FF

D
CLK

Qpos
Qpos’
Qneg
Qneg’

100

Edge-triggered flip-flops (cont’d)

Positive edge-triggered
inputs sampled on rising edge; outputs change after rising edge

Negative edge-triggered flip-flops
inputs sampled on falling edge; outputs change after falling edge



VI - Sequential Logic Contemporary Logic Design 24

Positive edge-triggered D flip-flop (74LS74)

\Q

Q

CLK

D

\PRE

\CLR
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Positive edge-triggered D flip-flop (74LS74)

\Q

Q

CLK

D

\PRE

\CLR 0->1

1

1

1 0

0

1,0 0,1
1



VI - Sequential Logic Contemporary Logic Design 26

Positive edge-triggered D flip-flop (74LS74)

\Q

Q

CLK

D

\PRE

\CLR

0->1

1

1

1

1,0

0,1

1
0
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there is a timing "window" 
around the clocking event 
during which the input must 
remain stable and unchanged 
in order to be recognized

clock

data
changingstable

input

clock

Tsu Th

clock

data
D Q D Q

Timing definitions

clock: periodic event, causes state of memory element to change
can be rising edge or falling edge or high level or low level

setup time: minimum time before the clocking event by which the
input must be stable (Tsu)

hold time: minimum time after the clocking event until which the
input must remain stable (Th)
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all measurements are made from the clocking event (the rising edge of the clock)

Positive edge-triggered D flip-flop
setup and hold times
minimum clock width
propagation delays (low to high, high to low, max and typical)

Typical timing specifications

D 

Clk

Q 

T su 
1.8
ns 

T h 
0.5
ns 

T w 
3.3 
ns 

T pd
3.6 ns 
1.1 ns 

T su 
1.8
ns 

T h 
0.5 
ns 

T pd
3.6 ns 
1.1 ns 

T w 
3.3 
ns 
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behavior is the same unless input changes
while the clock is high

D Q

CLK

positive
edge-triggered

flip-flop

D Q
G

CLK

transparent
(level-sensitive)

latch

D

CLK

Qedge

Qlatch

Comparison of latches and flip-flops
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Type When inputs are sampled When output is valid

unclocked always propagation delay from input change
latch

level-sensitive clock high propagation delay from input change
latch (Tsu/Th around falling or clock edge 

edge of clock)

master-slave clock hi-to-lo transition propagation delay from falling edge
flip-flop (Tsu/Th around falling of clock

edge of clock)

negative clock hi-to-lo transition propagation delay from falling edge
edge-triggered (Tsu/Th around falling of clock
flip-flop edge of clock)

Comparison of latches and flip-flops (cont’d)
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Timing methodologies

Rules for interconnecting components and clocks
guarantee proper operation of system when strictly followed

Proper operation:
(1) correct inputs, with respect to time, are provided to memory
elements
(2) no memory element changes state more than once per 
clocking event

Approach depends on building blocks used for memory 
elements

we'll focus on systems with edge-triggered flip-flops
found in programmable logic devices

many custom integrated circuits focus on level-sensitive latches
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IN

Q0

Q1

CLK

100

Shift register
new value goes into first stage
while previous value of first stage goes into second stage
consider setup/hold/propagation delays (prop must be > hold)

Cascading edge-triggered flip-flops

CLK

IN
Q0 Q1

D Q D Q OUT
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timing constraints
guarantee proper

operation of
cascaded components

assumes infinitely fast 
distribution of the clock

Cascading edge-triggered flip-flops (cont’d)

Why this works
propagation delays exceed hold times
clock width constraint exceeds setup time
this guarantees following stage will latch current value before it 
changes to new value

Tsu
1.8ns

Tp
1.1-3.6ns

Th
0.5ns

In

Q0

Q1

CLK

Tsu
1.8ns

Tp
1.1-3.6ns

Th
0.5ns
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original state: IN = 0, Q0 = 1, Q1 = 1
due to skew, next state becomes: Q0 = 0, Q1 = 0, and not Q0 = 0, Q1 = 1

CLK1 is a delayed
version of CLK0

In
Q0
Q1

CLK0
CLK1

100

Clock skew

The problem
correct behavior assumes next state of all storage elements
determined by all storage elements at the same time
this is difficult in high-performance systems because time for clock
to arrive at flip-flop is comparable to delays through logic
effect of skew on cascaded flip-flops:
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Asynchronous inputs

Clocked synchronous circuits
inputs, state, and outputs sampled or changed in relation to a
common reference signal (called the clock)
e.g., master/slave, edge-triggered

Asynchronous circuits
inputs, state, and outputs sampled or changed independently of a
common reference signal (glitches/hazards a major concern)
e.g., R-S latch

Asynchronous inputs to synchronous circuits
inputs can change at any time, will not meet setup/hold times
dangerous, synchronous inputs are greatly preferred
cannot be avoided (e.g., reset signal, memory wait, user input)
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D Q

D Q

Q0

Clock

Clock

Q1

Async
Input

D Q

D Q

Q0

Clock

Clock

Q1

Async
Input D Q

Clocked  
Synchronous 

System

Synchronizer

Handling asynchronous inputs

Never allow asynchronous inputs to fan-out to more than one flip-
flop

synchronize as soon as possible and then treat as synchronous signal
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In is asynchronous and 
fans out to D0 and D1

one FF catches the 
signal, one does not

inconsistent state may 
be reached!

In

Q0

Q1

CLK

Handling asynchronous inputs (cont’d)

What can go wrong?
input changes too close to clock edge (violating setup time 
constraint)
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small, but non-zero probability 
that the FF output will get stuck 

in an in-between state

oscilloscope traces demonstrating
synchronizer failure and eventual

decay to steady state

logic 0 logic 1
logic 0

logic 1

Occurs when FF input changes close to clock edge
the FF may enter a metastable state – neither a logic 0 nor 1 –
it may stay in this state an indefinite amount of time
this is not likely in practice but has some probability

Metastability and synchronization failure
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D DQ Q
asynchronous

input
synchronized

input

synchronous system

Clk

Probability of failure can never be reduced to 0, but it can be 
reduced

(1)  slow down the system clock 
this gives the synchronizer more time to decay into a steady state; 
synchronizer failure becomes a big problem for very high speed systems
(2) cascade two synchronizers 
this effectively synchronizes twice (both would have to fail)
(3)  use fastest possible logic technology in the synchronizer
this makes for a very sharp "peak" upon which to balance

Dealing with synchronization failure
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Self-timed and speed independent circuits

Limits of Synchronous system
Fully synchronous not possible for very large systems because of
problems of clock skew
Partition system into components that are locally clocked
These communicate using "speed independent" protocols

Request/Acknowledgement Signaling

S1 
requester

client 
master

S2 
provider 
server 
slave 

Request 

Acknowledgement 

Data Flow 

Communications Signals Clocked 
Subsystem

Clocked 
Subsystem
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Self-timed and speed independent circuits 
(cont’d)

Synchronous Signaling
Master issues read request; Slave produces data and acks back

Alternative Synchronous Scheme:

Slave issues WAIT signal if it cannot satisfy request in one
clock cycle

Req
Data 
Ack
Clk

Req
Data 
W ait
Clk
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Self-timed and speed independent circuits 
(cont’d)

Asynchronous/Speed Independent Signaling

(1) master raises request
slave performs request

(2) slave "done" by raising
acknowledge

(3) master latches data
acks by lowering request

(4) slave resets self by lowing
acknowledge signal

4 Cycle Signaling/Return to Zero Signaling

Communicate information by signal levels rather than edges!
No clock signal

Req

Data 
Ack
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Self-timed and speed independent circuits 
(cont’d)

Alternative: 2 cycle signaling
Non-Return-to-Zero

(1) master raises request,  slave services request

(2) slave indicates that it is done by raising acknowledge

Next request indicated by low level of request

Requires additional state in master and slave
to remember previous setting or request/acknowledge

4 Cycle Signaling is more foolproof

Ack 

Data 
Req 
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R S R S R S
D Q D Q D Q D Q

OUT1 OUT2 OUT3 OUT4

CLK

IN1 IN2 IN3 IN4

R S

"0"

Registers

Collections of flip-flops with similar controls and logic
stored values somehow related (for example, form binary value)
share clock, reset, and set lines
similar logic at each stage

Examples
shift registers
counters
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D Q D Q D Q D QIN

OUT1 OUT2 OUT3 OUT4

CLK
Q 1 
1 

0 

0 

0 

Q 2 
0 

1 

0 

0 

Q 3 
0 

0 

1 

0 

Q 4 
0 

0 

0 

1 

Shift 

Shift 

Shift 

Shift register

Holds samples of input
store last 4 input values in sequence
4-bit shift register:
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clear sets the register contents
and output to 0

s1 and s0 determine the shift function

s0 s1 function
0 0 hold state
0 1 shift right
1 0 shift left
1 1 load new input

left_in
left_out

right_out

clear
right_in

output

input

s0
s1

clock

Universal shift register

Holds 4 values
serial or parallel inputs
serial or parallel outputs
permits shift left or right
shift in new values from left or right



VI - Sequential Logic Contemporary Logic Design 47

Nth cell

D
Q

CLK

Q[N-1]
(left)

Q[N+1]
(right)

Input[N]

to N-1th 
cell

to N+1th 
cell

clear s0 s1 new value
1 – – 0
0 0 0 output
0 0 1 output value of FF to left (shift right)
0 1 0 output value of FF to right (shift left)
0 1 1 input

Consider one of the four flip-flops
new value at next clock cycle:

Design of universal shift register

s0 and s1
control mux0 1 2 3

CLEAR
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parallel inputs

parallel outputs

serial transmission

Shift register application

Parallel-to-serial conversion for serial transmission
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Shift register application (cont’d)

QA
QB
QC
QD

S1
S0
LSI
D
C
B
A
RSI
CLK
CLR

QA
QB
QC
QD

S1
S0
LSI
D
C
B
A
RSI
CLK
CLR

D7
D6
D5
D4

Sender

D3
D2
D1
D0

QA
QB
QC
QD

S1
S0
LSI
D
C
B
A
RSI
CLK
CLR

QA
QB
QC
QD

S1
S0
LSI
D
C
B
A
RSI
CLK
CLR

Receiver

D7
D6
D5
D4

D3
D2
D1
D0

Clock

194 194

194194

Parallel
Inputs

Serial transmission

Parallel
Outputs
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Hardware Description Languages and Sequential 
Logic

Flip-flops
representation of clocks - timing of state changes
asynchronous vs. synchronous

Shift registers
Simple counters
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module dff (clk, d, q);

input  clk, d;
output q;
reg q;

always @(posedge clk)
q = d;

endmodule

Flip-flop in Verilog

Use always block's sensitivity list to wait for clock edge
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module dff (clk, d, q);

input  clk, d;
output q;
reg    q;

always @(clk)
q = d;

endmodule

Incorrect Flip-flop in Verilog

Use always block's sensitivity list to wait for clock to change

Not correct!  Q will
change whenever the
clock changes, not
just on an edge.
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module dff (clk, s, r, d, q);
input  clk, s, r, d;
output q;
reg q;

always @(posedge clk)
if (r)      q = 1'b0;
else if (s) q = 1'b1;
else        q = d;

endmodule

module dff (clk, s, r, d, q);
input  clk, s, r, d;
output q;
reg q;

always @(posedge clk or posedge r
or posedge s)

if (r) q = 1'b0;
else if (s) q = 1'b1;
else q = d;

endmodule

More Flip-flops

Synchronous/asynchronous reset/set
single thread that waits for the clock
three parallel threads – only one of which waits for the clock

Synchronous Asynchronous
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always @(posedge CLK)
begin

temp = B;
B = A;
A = temp;

end

always @(posedge CLK)
begin

A <= B;
B <= A;

end

Blocking and Non-Blocking Assignments

Blocking assignments (X=A)
completes the assignment before continuing on to next statement

Non-blocking assignments (X<=A)
completes in zero time and doesn’t change the value of the target 
until a blocking point (delay/wait) is encountered

Example: swap
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Register-transfer-level (RTL) Assignment

Non-blocking assignment is also known as an RTL assignment
if used in an always block triggered by a clock edge
all flip-flops change together

// B,C,D all get the value of A
always @(posedge clk)

begin
B = A;
C = B;
D = C;

end
// implements a shift register too
always @(posedge clk)

begin
B <= A;
C <= B;
D <= C;

end
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Sequential logic summary

Fundamental building block of circuits with state
latch and flip-flop
R-S latch, R-S master/slave, D master/slave, edge-triggered D flip-flop

Timing methodologies
use of clocks
cascaded FFs work because propagation delays exceed hold times
beware of clock skew

Asynchronous inputs and their dangers
synchronizer failure: what it is and how to minimize its impact

Basic registers
shift registers
counters

Hardware description languages and sequential logic
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