Ch 8. Working with Finite State Machines

State Minimization / Reduction

Motivation

- Odd Parity Checker example
 - Two alternative state diagrams
 - Identical output behavior on all input strings
 - FSMs are equivalent, but require different implementations
- S0, S2 are equivalent states 0 Both output a 0 **S**0 Both transition to S1 on a 1 and self-loop on a 0 [0] 0 **S**0 [0] [1] 1 1 1 1 **´**S2 **S**1 [0] [1]

Goal

- Identify and combine equivalent states
 - Equivalent states:
 - same outputs (Mealy: for all input combinations)
 - for all input combinations, transition to same or equivalent states
- Design state diagram without concern for # of states, reduce later
- Implement FSM with fewest possible states
 - Reduce the number of gates and flip-flops needed for implementation

Example specification

- Name: four-bit sequence (0110 or 1010) detector
- Input: X = {0, 1}
- Output: $Z = \{0, 1\}$
- Behavior:
 - $Z = \begin{cases} 1 \text{ if each 4-bit input sequence (no overlap) is 0110 or 1010} \\ 0 \text{ otherwise} \end{cases}$
- Sample behavior
 - □ X = 0010 0110 1100 1010 0011 ...
 - □ Z = 0000 0001 0000 0001 0000 ...

Initial State Diagram (of a Mealy implementation)

- There are 16 unique paths through the state diagram, one for each possible 4-bit pattern.
- 15 states, and 30 transitions.

Upper bound of #states and #transitions for n-length bit pattern

□ #states =
$$\sum_{i=0}^{n-1} 2^i = 2^n - 1$$

- #transition = $2 \times \text{#states} = 2(2^{n}-1)$
- Example: n = 3: 7 states, 14 transitions
 n = 4: 15 states, 30 transitions

- Algorithm sketch for state reduction
 - I. group together states that have the same outputs
 - These states are potentially equivalent.
 - 2. examine the transitions to see if they go to the same next state for every input combination
 - If they do, the states are equivalent.
 - combine them into a renamed new state.
 - change all transitions to the states into the newly combined states.
 - □ 3. repeat (1)~(2) until no additional states can be combined
 - polynomial time procedure

Row-Matching method

Initial state transition table

		Next S	State	Out	put
Past Input Seq.	Present State	X= 0	X=1	X=0	X=1
Reset	S _o	S₁	S_2	0	0
0	S ₁	S_3	S_4	0	0
1	S ₂	S_5	S	0	0
00	S_3^-	S_7	S ₈	0	0
01	S ₄	S	S_{10}	0	0
10	S_5^{-}	S ₁₁	S_{12}^{10}	0	0
11	S ₆	S_{13}	S_{14}^{-}	0	0
000	S ₇	S_0	S ₀	0	0
001	S ₈		S ₀	0	0
010	S ₉		S_0°	0	0
011	S ₁₀	S_0°	S ₀	1	0,
100	S ₁₁		S	0	0
101	S ₁₂		S ₀	1	0 📕
110	S ₁₃	S	S ₀	0	0
111	S_{14}^{10}		S ₀	0	0

Row-Matching:

the same next-states and output values S_{10} and $S_{12} \rightarrow S_{10}$ '

Revised state transition table after S10 and S12 are combined

		Next	State	Out	put
Past Input Seq.	Present State	X=0	X=1	X=0	X=1
Reset	S ₀	S₁	S_2	0	0
0	S ₁	S_3	S_{A}^{-}	0	0
1	S_2^+	S_5°	S ₆	0	0
00	S ₃	S_7	S ₈	0	0
01	S_4°	S ₀	S'10	0	0
10	S ₅		S'10	0	0
11	S ₆	S_{13}^{11}	S_{14}^{10}	0	0
000	S ₇	S ₀	S ₀	0	0
001	S ₈		S	0	0
010	S _o		S	0	0
011 or 101	S' ₁₀		S	1	0
100		S ⁰	S _o	0	0
110	S ₁	\mathbf{S}_{1}^{0}	S.	0	0
111	S ₁₄	S_0^0	S_0^0	0	0

Row-matching iteration

		Next	State	Out	put
Input Sequence	Present State	X=0	X=1	X=0	X=1
Reset	S ₀	S ₁	S ₂	0	0
0	S ₁	S ₃	S_4^-	0	0
1	S ₂	S_5	S ₆	0	0
00	S ₃	S ₇	S ₈	0	0
01	S ₄	S ₉	S'10	0	0
10	S ₅	S ₁₁	S'10	0	0
11	S ₆	S ₁₃	S ₁₄	0	0
000	S ₇	S ₀	S ₀	0	0
001	S ₈		S ₀	0	0
010	S ₉	S	S_0	0	0
011 or 101	S' ₁₀	S ₀	S ₀	1	0
100	S ₁₁	S ₀	S ₀	0	0
110	S ₁₃	S	S ₀	0	0
111	S ₁₄	S ₀	S ₀	0	0

Row-matching iteration (cont'd)

		Next	State	Outp	out
Input Sequence	Present State	X = 0	X=1	X=0	X=1
Reset	S ₀	S ₁	S ₂	0	0
0	S ₁	S ₃	S ₄	0	0
1	S ₂	S_5	S	0	0
00	S ₃	S ₇	S' ₇	0	0
01	S ₄	S ₇	S' ₁₀	0	0
10	S ₅	S ₇	S' ₁₀	0	0
11	S ₆	S ₇	S' ₇	0	0
not (011 or 101)	S' ₇	S ₀	S ₀	0	0
011 or 101	S' ₁₀	S ₀	S ₀	1	0

F	inal reduced state			Next State Out			put	
		Input Sequence	Present State	X=0	X=1	X=0	X=1	
tr	transition table	Reset	S0	S1	S2	0	0	
		0	S1	S3'	S4'	0	0	
		1	S2	S4'	S3'	0	0	
		00 or 11	S3'	S7'	S7'	0	0	
		01 or 10	S4'	S7'	S10'	0	0	
		not (011 or 101)	S7'	S0	S 0	0	0	
		011 or 101	S10'	S0	S0	1	0	
					S0	- Rese	t	

Corresponding State Diagram

VIII - Working with Sequential Logic

Contemporary Logic Design

Row-matching methods

- Straightforward to understand and easy to implement
- Problem: does not yield the most reduced state table
 - Example: 3 State Odd Parity Checker

No way to combine states S0 and S2 based on Next State Criterion!

Implication Chart method

Example specification

- Name: three-bit sequence (010 or 110) detector
- Input: X = {0, 1}
- Output: $Z = \{0, 1\}$
- Behavior:
 - $Z = \begin{cases} 1 \text{ if each 3-bit input sequence (no overlap) is 010 or 110} \\ 0 \text{ otherwise} \end{cases}$

Initial state	Past Input Seq.	Present State	Next X=0	State X=1	Outp X=0	out X=1
	Reset	So	S₁	S ₂	0	0
	0	S ₁	S ₃	S_{4}^{2}	0	0
	1	S ₂	S_5	S ₆	0	0
	00	S_3^-	S_0	S_0	0	0
	01	S ₄		S ₀	1	0
	10	S ₅	S_0	S ₀	0	0
	11	$ $ S_6°	$ S_0 $	S_0°	1	0

Implication Chart

Enumerate all possible combinations of states taken two at a time

Filling in the Implication Chart

- Entry Xij: Row is Si, Column is Sj
- Si is equivalent to Sj if outputs are the same and next states are equivalent
- Xij contains the next states of Si, Sj which must be equivalent if Si and Sj are equivalent
- □ If Si, Sj have different output behavior, then Xij is crossed out

Example:

- S0 transitions to S1 on 0, S2 on 1;
- □ S1 transitions to S3 on 0, S4 on 1;
- So square X<0,1> contains
 So square X<0,1> contains
 S1 (transition on zero), S2-S4 (transition on one)

Starting Implication Chart

- Results of First Marking Pass
- Second Pass Adds
 No New Information
 - S3 and S5 are equivalent
 - S4 and S6 are equivalent
 - This implies that S1 and S2 are too!

Autout

Reduced State Transition Table

		NEAL O	laic	Ouip	u
Input Sequence	Present State	I X =0	X =1	X =0	X =1
Reset	S ₀	S ¦	S '1	0	0
0 or 1	S ₁	S ₃	S '	0	0
00 or 10	S ¹ 3	S ₀	S	0	0
01 or 11	S ₄	I S ₀	S ₀	1	0

Novt State

VIII - Working with Sequential

Logic

Contemporary Logic Design

Multiple Input State Diagram Example

Present State	00	Next 01	State 10	e 11	Output
$S_0 \\ S_1 \\ S_2 \\ S_3 \\ S_4 \\ S_5$	$S_0 S_0 S_1 S_1 S_0 S_1 S_0 S_1 S_1 S_0 S_1$	$S_{1} \\ S_{3} \\ S_{3} \\ S_{0} \\ S_{1} \\ S_{4}$	$S_{2} \\ S_{1} \\ S_{2} \\ S_{4} \\ S_{2} \\ S_{0}$	$S_{3} S_{5} S_{4} S_{5} S_{5} S_{5} S_{5} S_{5}$	1 0 1 0 1 0

Symbolic State Diagram

VIII - Working with Sequential Logic

Present	Next State	Output	
State	00 01 10	11	
S'0	$S_0' S_1 S_2$	S_3'	1
S ₁	$S_0' S_3' S_1$	S ₃ '	0
S ₂	$S_1 S_3' S_2$	S ₀ '	1
S ₃	$S_1 S_0 S_0$	S'3	0

Minimized State Table

VIII - Working with Sequential Logic

The detailed algorithm:

- 1. Construct implication chart, one square for each combination of states taken two at a time.
- 2. For each square labeled Si, Sj,
 - if outputs differ, then cross out the square.
 - otherwise, write down next state pairs for all input combinations.
- 3. Advancing through the chart top-to-bottom and left-to-right,
 - if square Si, Sj contains next state pair Sm-Sn and square Sm, Sn is already crossed out, then cross out squre Si, Sj.
- 4. Continue executing Step 3 until no new squares are crossed out.
- 5. For each remaining square Si, Sj, we conclude that Si and Sj are equivalent.

Does the method solve the problem with the odd parity checker?

S0 is equivalent to S2 since nothing contradicts this assertion!

Equivalent states in the presence of don't cares

- Equivalence of states is transitive when machine is fully specified
- But its not transitive when don't cares are present
 - Example
 - e.g., state output S0 - 0 S1 is compatible with both S0 and S2 S1 1 - but S0 and S2 are incompatible S2 - 1
- No polynomial time algorithm exists for determining best grouping of states into equivalent sets that will yield the smallest number of final states

When state minimization doesn't help

Example: edge detector

- outputs 1 when last two input changes from 0 to 1
- Implementation using minimized states

Х	0 ₁	Q ₀	Q ₁ +	Q_{0}^{+}
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
-	1	1	-	-
Q ₁ -	⊦ = X	(Q ₁ +	- Q ₀)	
Q_0^{-1}	+ = X	Q ₁ ′ C	2 ₀ ′	

When state minimization doesn't help (cont'd)

- Another implementation of edge detector
 - "Ad hoc" solution not minimal but cheap and fast

OUT

State assignment

- State assignment (encoding): choose bit vectors to assign to each "symbolic" state
 - with n state bits for m states (n $\leq m \leq 2^{n}$),
 - there are $2^{n}! / (2^{n} m)!$ possible state assignments
 - huge number even for small values of n and m
 - intractable for state machines of any practical size
 - heuristics are necessary for practical solutions
 - state encoding with fewer bits has fewer equations to implement
 - however, each may be more complex
 - state encoding with more bits (e.g., one-hot) has simpler equations
 - complexity directly related to complexity of state diagram

State assignment (cont'd)

Optimize some metric for the combinational logic

- size (the amount of logic and number of FFs)
- speed (depth of logic and fanout)
- dependencies (decomposition)
- Possible strategies
 - sequential just number states as they appear in the state table
 - random pick random codes
 - one-hot use as many state bits as there are states (bit=1 –> state)
 - output-oriented use outputs to help encode states
 - heuristic rules of thumb that seem to work in most cases
- No guarantee of optimality another intractable problem

State assignment (cont'd)

Example: traffic light controller

- 4 states: 4 choices for first state, 3 for second, 2 for third, 1 for last
 -> 24 different encodings (4!)
- Alternative state encodings of the traffic light controller

HG	ΗY	FG	FY	_	HG	ΗY	FG	FY
00	01	10	11	-	10	00	01	11
00	01	11	10		10	00	11	01
00	10	01	11		10	01	00	11
00	10	11	01		10	01	11	00
00	11	01	10		10	11	00	01
00	11	10	01		10	11	01	00
01	00	10	11		11	00	01	10
01	00	11	10		11	00	10	01
01	10	00	11		11	01	00	10
01	10	11	00		11	01	10	00
01	11	00	10		11	10	00	01
01	11	10	00		11	10	01	00

State assignment (cont'd)

Example: traffic light controller (cont'd)

State diagram and Symbolic state transition table

Sequential encoding

Sequential encoding

- Simply replace the symbolic state names with a regular encoding sequence
- Examples:
 - Sequential encoding: HG=00, HY=01, FG=10, FY=11
 - Encoding with Gray-code: HG=00, HY=01, FG=11, FY=10

I	nput	s	Present State	Next State		Outputs	
С	ΤL	TS	$Q_1 Q_0$	$P_1 P_0$	ST	$H_1 H_0$	$F_1 F_0$
0	Х	Х	00	00	0	00	10
Х	0	Х	00	00	0	00	10
1	1	Х	00	01	1	00	10
Х	Х	0	01	01	0	01	10
Х	Х	1	01	11	1	01	10
1	0	Х	11	11	0	10	00
0	Х	Х	11	10	1	10	00
Х	1	Х	11	10	1	10	00
Х	Х	0	10	10	0	10	01
Х	Х	1	10	00	1	10	01

VIII - Working with Sequential Logic

Contemporary Logic Design

Sequential encoding (cont'd)

Example (cont'd)

Two level equation

$$\begin{split} P_1 &= TS \cdot Q_1^{'} \cdot Q_0 + C \cdot TL^{'} \cdot Q_1 \cdot Q_0 + C^{'} \cdot Q_1 \cdot Q_0 + TL \cdot Q_1 \cdot Q_0 + TS^{'} \cdot Q_1 \cdot Q_0^{'} \\ P_0 &= C \cdot TL \cdot Q_1^{'} \cdot Q_0^{'} + TS^{'} \cdot Q_1^{'} \cdot Q_0 + TS \cdot Q_1^{'} \cdot Q_0 + C \cdot TL \cdot Q_1 \cdot Q_0 \\ ST &= C \cdot TL \cdot Q_1^{'} \cdot Q_0^{'} + TS \cdot Q_1^{'} \cdot Q_0 + C^{'} \cdot Q_1 \cdot Q_0 + TL \cdot Q_1 \cdot Q_0 + TS \cdot Q_1 \cdot Q_0^{'} \\ H_1 &= C \cdot TL^{'} \cdot Q_1 \cdot Q_0 + C^{'} \cdot Q_1 \cdot Q_0 + TL \cdot Q_1 \cdot Q_0 + TS^{'} \cdot Q_1 \cdot Q_0^{'} + TS \cdot Q_1 \cdot Q_0^{'} \\ H_0 &= TS^{'} \cdot Q_1^{'} \cdot Q_0 + TS \cdot Q_1^{'} \cdot Q_0^{'} + C \cdot TL \cdot Q_1^{'} \cdot Q_0^{'} + TS^{'} \cdot Q_1^{'} \cdot Q_0 + TS \cdot Q_1^{'} \cdot Q_0^{'} \\ F_0 &= TS^{'} \cdot Q_1^{'} \cdot Q_0^{'} + TL^{'} \cdot Q_1^{'} \cdot Q_0^{'} + C \cdot TL \cdot Q_1^{'} \cdot Q_0^{'} + TS^{'} \cdot Q_1^{'} \cdot Q_0 + TS \cdot Q_1^{'} \cdot Q_0^{'} \end{split}$$

Sequential encoding (cont'd)

Examples (cont'd):

Three-level implementation

- More than two input gates: P1, P0, ST
- Two input gates: the others

 $P_1 = TS \cdot HY + FG + TS' \cdot FY$ $P_0 = X \cdot HG + HY + Y \cdot FG$ $ST = X \cdot HG + TS \cdot HY + Y' \cdot FG + TS \cdot FY$ $H_1 = FG + FY$ $H_0 = HY$ $F_1 = HG + HY$ $F_0 = FY$ $HG = Q_1 \cdot Q_0$ $HY = Q_1 \cdot Q_0$ $FG = Q_1 \cdot Q_0$ $FY = Q_1 \cdot Q_0$ $X = C \cdot TL$ $Y = C \cdot TL'$

Random encoding

Random encoding

- replace the symbolic state names with a random encoding sequence
- Example: HG=00, HY=10, FG=01, FY=11
 - Two level implementation
 - No gates of more than three inputs

I	nput	s	Present State	Next State		Outputs	6
С	TL	TS	$Q_1 Q_0$	$P_1 P_0$	ST	$H_1 H_0$	$F_1 F_0$
0	Х	Х	00	00	0	00	10
Х	0	Х	00	00	0	00	10
1	1	Х	00	10	1	00	10
Х	Х	0	10	10	0	01	10
Х	Х	1	10	01	1	01	10
1	0	Х	01	01	0	10	00
0	Х	Х	01	11	1	10	00
Х	1	Х	01	11	1	10	00
Х	Х	0	11	11	0	10	01
Х	Х	1	11	00	1	10	01

 $P_{1} = C \cdot TL \cdot Q_{1}' + TS' \cdot Q_{1} + C' \cdot Q_{1}' \cdot Q_{0}$ $P_{0} = TS \cdot Q_{1} \cdot Q_{0}' + Q_{1}' \cdot Q_{0} + TS' \cdot Q_{1} \cdot Q_{0}$ $ST = C \cdot TL \cdot Q_{1}' + C' \cdot Q_{1}' \cdot Q_{0} + TS \cdot Q_{1}$ $H_{1} = Q_{0}$ $H_{0} = Q_{1} \cdot Q_{0}'$ $F_{1} = Q_{0}'$ $F_{0} = Q_{1} \cdot Q_{0}$

VIII - Working with Sequential Logic

Contemporary Logic Design

One-Hot encoding

One-Hot encoding

- □ *n* states is encoded using *n* flip-flops
- Only 1 bit is asserted in each of the states.
 - ex) 0001, 0010, 0100, 1000
- Properties
 - Simple: easy to encode, easy to debug
 - Small logic functions
 - each state function requires only predecessor state bits as input
 - a lot of don't-care opportunities
 - Good for programmable devices
 - lots of flip-flops readily available
 - simple functions with small support (signals it's dependent upon)
 - Impractical for large machines
 - too many states require too many flip-flops
 - decompose FSMs into smaller pieces that can be one-hot encoded
- Many slight variations to one-hot
 - one-hot + all-0

One-Hot encoding (cont'd)

• Example:

□ HG=0001, HY=0010, FG=0100, FY=1000

	nput	S	Present State	Next State		Outputs	
С	TL	ΤS	$Q_3 Q_2 Q_1 Q_0$	$P_3P_2P_1P_0$	ST	$H_1 H_0$	$F_1 F_0$
0	Х	Х	0001	0001	0	00	10
Х	0	Х	0001	0001	0	00	10
1	1	Х	0001	0010	1	00	10
Х	Х	0	0010	0010	0	01	10
Х	Х	1	0010	0100	1	01	10
1	0	Х	0100	0100	0	10	00
0	Х	Х	0100	1000	1	10	00
Х	1	Х	0100	1000	1	10	00
Х	Х	0	1000	1000	0	10	01
Х	Х	1	1000	0001	1	10	01

One-Hot encoding (cont'd)

Example (cont'd)

Implementation:

$$P_{3} = (C'+TL) \cdot Q_{2} + (TS') \cdot Q_{3}$$

$$P_{2} = (TS) \cdot Q_{1} + (C \cdot TL') \cdot Q_{2}$$

$$P_{1} = (C \cdot TL) \cdot Q_{0} + (TS') \cdot Q_{1}$$

$$P_{0} = (C'+TL') \cdot Q_{0} + (TS) \cdot Q_{3}$$

$$ST = (C \cdot TL) \cdot Q_{0} + (TS) \cdot Q_{1}$$

$$+ (C'+TL) \cdot Q_{2} + (TS) \cdot Q_{3}$$

$$H_{1} = Q_{3} + Q_{2}$$

$$H_{0} = Q_{1}$$

$$F_{1} = Q_{1} + Q_{0}$$

$$F_{0} = Q_{3}$$

VIII - Working with Sequential Logic

Output-Oriented encoding

Output-oriented encoding:

- Reuse outputs as state bits use outputs to help distinguish states
 - why create new functions for state bits when output can serve as well
 - Synchronous Mealy outputs, since they are implemented directly as the output of a flip-flop, can also be used this way

Example: the traffic-light controller

Inputs	Present State	Next State		Outputs	5
C TL TS	$Q_1 Q_0$	$P_1 P_0$	ST	$H_1 H_0$	$F_1 F_0$
0 X X	HG	HG	0	00	10
X 0 X	HG	HG	0	00	10
1 1 X	HG	HY	1	00	10
X X 0	HY	ΗY	0	01	10
X X 1	HY	FG	1	01	10
1 0 X	FG	FG	0	10	00
0 X X	FG	FY	1	10	00
X 1 X	FG	FY	1	10	00
X X 0	FY	FY	0	10	01
X X 1	FY	HG	1	10	01

Output signals are unique for the transitions to each state

VIII - Working with Sequential

Logic

Output-Oriented encoding (cont'd)

Example (cont'd)

Next state is represented by "present outputs" instead State equations $HG = ST \cdot H_1H_0F_1F_0 + ST' \cdot H_1H_0F_1F_0$ $HY = ST \cdot H_1H_0F_1F_0 + ST' \cdot H_1H_0F_1F_0$ $FG = ST \cdot H_1H_0F_1F_0 + ST' \cdot H_1H_0F_1F_0$ $FY = ST \cdot H_1H_0F_1F_0 + ST' \cdot H_1H_0F_1F_0$ $FY = ST \cdot H_1H_0F_1F_0 + ST' \cdot H_1H_0F_1F_0$ $F_1 = HG + HY, F_0 = FY$

Inpu	ts	Present State		Outputs	S	Next State
<u> </u>	ΤS	ST H ₁ H ₀ F ₁ F ₀	ST	$H_1 H_0$	$F_1 F_0$	$ST H_1 H_0 F_1 F_0$
0 X	Х	HG: 00010 + 11001	0	00	10	HG: 00010 +11001
X 0	Х	HG: 00010 + 11001	0	00	10	HG: 00010 +11001
1 1	Х	HG: 00010 + 11001	1	00	10	HY: 10010 + 00110
ХХ	0	HY: 10010 + 00110	0	01	10	HY: 10010 + 00110
ХХ	1	HY: 10010 + 00110	1	01	10	FG: 10110 + 01000
1 0	Х	FG: 10110 + 01000	0	10	00	FG: 10110 + 01000
0 X	Х	FG: 10110 + 01000	1	10	00	FY: 11000 + 01001
X 1	Х	FG: 10110 + 01000	1	10	00	FY: 11000 + 01001
ХХ	0	FY: 11000 + 01001	0	10	01	FY: 11000 + 01001
X X	1	FY: 11000 + 01001	1	10	01	HG: 00010 +11001

VIII - Working with Sequential

Logic

Heuristic methods for state assignment

Heuristic methods

- To make the state encoding problem more tractable
- Try to reduce the distance in Boolean n-space between related states
- All current methods are variants of this
 - 1) determine which states "attract" each other (weighted pairs)
 - 2) generate constraints on states (which should be in same cube)
 - 3) place states on Boolean cube so as to maximize constraints satisfied (weighted sum)
- Can't consider all possible embeddings of state clusters in Boolean cube
 - heuristics for ordering embedding
 - to prune search for best embedding
 - expand cube (more state bits) to satisfy more constraints

State maps:

- similar in concept to K-maps
- If state X transitions to state Y, then assign "close" assignments to X and Y

 S_0

 S_3

 S_4

S₁

S₂

provide a means of observing adjacencies in state assignments

Example

Present State	Next State 0 1	
S ₀	$S_1 S_2$	(
S ₁	$S_3 S_3$	
S ₂	$S_3 S_3$	
S ₃	$S_4 S_4$	
S ₄	S ₀ S ₀	

Example (cont'd)

First state assignment and its state map

Second state assignment and its state map

VIII - Working with Sequential Logic

 S_2

 S_0

 S_3

S₄

S₁

Minimum Bit-Change Heuristic

- Assigns states so that #(bit changes) for all transitions is minimized
- Example

Transition	First assignment bit changes	Second assignment bit changes
S0 to S1	2	1
S0 to S2	3	1
S1 to S3	3	1
S1 to S3	2	1
S3 to S4	1	1
S4 to S1	+) 2	+) 2
	13	7

- cf. Traffic light controller: HG = 00, HY = 01, FG = 11, FY = 10
 - yields minimum distance encoding but not best assignment!

- Guidelines based on Next state and I/O
- Adjacent codes to states that share a common next state

Adjacent codes to states that share a common ancestor state

group 1's in next state map

$$\begin{array}{c|ccc} Q & Q^+ & O \\ \hline a & b & j \\ a & C & I \end{array} \qquad b = i & * a \\ c = k & * a \end{array}$$

Lowest Priority

VIII - Working with Sequential Logic

Contemporary Logic Design

b = i * a

d = i * c

j = i * a + i * c

i / i

Example: 3-bit Sequence Detector

Present	Next \$	State	Out	tput
State	X=0	X=1	X=0	X=1
S0	S1'	S1'	0	0
S1'	S3'	S4'	0	0
S3'	SO	S 0	0	0
S4'	S 0	S 0	1	0

Highest Priority: (S3', S4')

Medium Priority: (S3', S4')

Lowest Priority: 0/0: (S0, S1', S3') 1/0: (S0, S1', S3', S4')

Example (cont'd)

Another Example: 4 bit String Recognizer

U				
	Next	Next State		put
Present State	e X=0	X=1	X=0	X=1
SO	S1	S2	0	0
S1	S3'	S4'	0	0
S2	S4'	S3'	0	0
S3'	S7'	S7'	0	0
S4'	S7'	S10'	0	0
S7'	S0	S0	0	0
S10'	S0	S0	1	0
				• • •
Highest Priority:	(S3', S	54'), (S	57', S1	0')
Medium Priority: (S1, S2), 2x(S	3', S4')), (S7'	, S10'))
Louroot Driarity				

Lowest Priority: 0/0: (S0, S1, S2, S3', S4', S7') 1/0: (S0, S1, S2, S3', S4', S7')

(a) First encoding

00 = Reset = S0

(S1, S2), (S3', S4'), (S7', S10') placed adjacently

Q1 Q2	Q0 00	01	11	10
0	S0			
1	S7'			S10'

Q1	Q0			
Q2	00	01	11	10
0	S0		S 3	
1	S7'		\$	S10'

(b) Second encoding

Effect of Adjacencies on Next State Map

First encoding exhibits a better clustering of 1's in the next state map

Contemporary Logic Design

Summary

State minimization / reduction

- introduction to the row-matching and implication chart methods
 - Identify and eliminate redundant states
 - Reduce the number of flip-flops needed to implement a particular FSM
- straightforward in fully-specified machines
- computationally intractable, in general (with don't cares)
- State assignment (encoding)
 - Various approaches to state assignment