
VIII - Working with Sequential 
Logic Contemporary Logic Design 1

Ch 8. Working with Finite State 
Machines



VIII - Working with Sequential 
Logic Contemporary Logic Design 2

State Minimization / Reduction

Motivation
Odd Parity Checker example

Two alternative state diagrams
Identical output behavior on all input strings
FSMs are equivalent, but require different implementations
S0, S2 are equivalent states

Both output a 0
Both transition to S1 on a 1 and self-loop on a 0

0

S0 
[0]

S2 
[0]

1

S1 
[1]

0
1

1

0

S1 
[1]

S0 
[0]

0

0

1 1



VIII - Working with Sequential 
Logic Contemporary Logic Design 3

State Minimization / Reduction (cont’d)

Goal
Identify and combine equivalent states

Equivalent states: 
same outputs (Mealy: for all input combinations)
for all input combinations, transition to same or equivalent states

Design state diagram without concern for # of states,  reduce later
Implement FSM with fewest possible states

Reduce the number of gates and flip-flops needed for implementation



VIII - Working with Sequential 
Logic Contemporary Logic Design 4

State Minimization / Reduction (cont’d)

Example specification
Name: four-bit sequence (0110 or 1010) detector
Input: X = {0, 1}
Output: Z = {0, 1}
Behavior:

Z =   1 if each 4-bit input sequence (no overlap) is 0110 or 1010
0 otherwise

Sample behavior
X = 0010 0110 1100 1010 0011 …
Z = 0000 0001 0000 0001 0000 …



VIII - Working with Sequential 
Logic Contemporary Logic Design 5

State Minimization / Reduction (cont’d)

Initial State Diagram (of a Mealy implementation)
There are 16 unique paths through the state diagram, one for each 
possible 4-bit pattern.
15 states, and 30 transitions.

Reset

0/0 1/0

0/0 1/0 0/0 1/0

0/0 1/0 0/0 1/0 0/0 1/0 0/0 1/0

0/0 1/0 0/0 0/0
1/0 1/0

0/0
1/0

1/0
0/1

0/0
1/0

1/0 0/0 1/00/1



VIII - Working with Sequential 
Logic Contemporary Logic Design 6

State Minimization / Reduction (cont’d)

Upper bound of #states and #transitions for n-length bit pattern
#states = 

#transition = 2 x #states = 2(2n-1)
Example: n = 3:  7 states, 14 transitions

n = 4:  15 states, 30 transitions

122
1

0
−=∑

−

=

n
n

i

i



VIII - Working with Sequential 
Logic Contemporary Logic Design 7

State Minimization / Reduction (cont’d)

Algorithm sketch for state reduction
1. group together states that have the same outputs

These states are potentially equivalent.
2. examine the transitions to see if they go to the same next state 
for every input combination

If they do, the states are equivalent.
combine them into a renamed new state.
change all transitions to the states into the newly combined states.

3. repeat (1)~(2) until no additional states can be combined
polynomial time procedure



VIII - Working with Sequential 
Logic Contemporary Logic Design 8

Row-Matching method

Initial state transition table

Row-Matching:
the same next-states
and output values
S10 and S12 -> S10’

Present State 
S 0 
S 1 
S 2 
S 3 
S 4 
S 5 
S 6 
S 7 
S 8 
S 9 
S 10 
S 1 1 
S 12 
S 13 
S 14 

Past Input Seq.
Reset 

0 
1 

00 
01 
10 
1 1 

000 
001 
010 
01 1 
100 
101 
1 10 
1 1 1 

X =1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

X =0 
S 1 
S 3 
S 5 
S 7 
S 9 
S 1 1 
S 13 
S 0 
S 0 
S 0 
S 0 
S 0 
S 0 
S 0 
S 0 

X =1 
S 2 
S 4 
S 6 
S 8 
S 10 
S 12 
S 14 
S 0 
S 0 
S 0 
S 0 
S 0 
S 0 
S 0 
S 0 

X =0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
1 
0 
0 

Next State Output 



VIII - Working with Sequential 
Logic Contemporary Logic Design 9

Row-Matching method (cont’d)

Revised state transition table after S10 and S12 are combined

Present State 
S 0 
S 1 
S 2 
S 3 
S 4 
S 5 
S 6 
S 7 
S 8 
S 9 
S ' 10 
S 1 1 
S 13 
S 14 

Past Input Seq. 
Reset 

0 
1 

00 
01 
10 
1 1 

000 
001 
010 

01 1 or 101 
100 
1 10 
1 1 1 

Next State 
X =0 X =1 

S 1 
S 3 
S 5 
S 7 
S 9 
S 1 1 
S 13 
S 0 
S 0 
S 0 
S 0 
S 0 
S 0 
S 0 

S 2 
S 4 
S 6 
S 8 
S ' 10 
S ' 10 
S 14 
S 0 
S 0 
S 0 
S 0 
S 0 
S 0 
S 0 

X =0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 

X =1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Output 



VIII - Working with Sequential 
Logic Contemporary Logic Design 10

Row-Matching method (cont’d)

Row-matching iteration

Present State 
S 0  
S 1  
S 2  
S 3  
S 4  
S 5  
S 6  
S 7  
S 8  
S 9 
S ' 10  
S 1 1  
S 13  
S 14 

Input Sequence 
Reset  

0 
1 

00 
01 
10 
1 1 

000 
001 
010 

01 1 or 101 
100 
1 10 
1 1 1 

Next State 
X =0 X =1 

S 1  
S 3  
S 5  
S 7  
S 9  
S 1 1  
S 13  
S 0  
S 0  
S 0  
S 0  
S 0  
S 0  
S 0  

S 2  
S 4  
S 6  
S 8 
S ' 10  
S ' 10  
S 14 
S 0  
S 0  
S 0  
S 0  
S 0  
S 0  
S 0 

X =0 
0  
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 

X =1 
0  
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Output 



VIII - Working with Sequential 
Logic Contemporary Logic Design 11

Row-Matching method (cont’d)

Row-matching iteration (cont’d)

Present State 
S 0  
S 1  
S 2  
S 3  
S 4  
S 5  
S 6   
S 7 '   

S ' 10   

Input Sequence 
Reset  

0 
1 

00 
01 
10 
1 1 

not (01 1 or 101) 
01 1 or 101 

X =0 
S 1  
S 3  
S 5  
  
 

   
 

S 0  
S 0 

X =1 
S 2  
S 4  
S 6  
   
 
  
 

S 0  
S 0 

X =0 
0 
0 
0 
0 
0 
0 
0 
0 
1 

X =1 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Next State Output 
 
  
 
  

S 7 '  
S 7 ' 
S 7 ' 
S 7 ' 

 
  
 
  

S 7 ' 
S ' 10  
S ' 10  
S 7 ' 



VIII - Working with Sequential 
Logic Contemporary Logic Design 12

Row-Matching method (cont’d)

Final reduced state
transition table

Corresponding State Diagram

Input Sequence 
Reset 

0 
1 

00 or 11 
01 or 10 

not (011 or 101) 
011 or 101

Present State 
S0 
S1 
S2 
S3' 
S4' 
S7' 
S10' 

X=0 
S1 
S3' 
S4' 
S7' 
S7' 
S0 
S0

X=1 
S2 
S4' 
S3' 
S7' 

S10' 
S0 
S0 

Next State Output
X=0 

0 
0 
0 
0 
0 
0 
1

X=1 
0 
0 
0 
0 
0 
0 
0 

Reset

S1

S3'

S7'

S2

S4'

S10'

0,1/0

0,1/0

0/0

0/0

1/0 1/0

1/0

1/0

1/00/1

S0

0/0

0/0



VIII - Working with Sequential 
Logic Contemporary Logic Design 13

Row-Matching method (cont’d)

Row-matching methods
Straightforward to understand and easy to implement
Problem: does not yield the most reduced state table

Example: 3 State Odd Parity Checker

Present State 
S 0  
S 1  
S 2 

Next State 
X =0 
S 0  
S 1  
S 2 

X =1 
S 1  
S 2  
S 1 

Output 
0  
1 
0 

No way to combine states S0 and S2
based on Next State Criterion!

No way to combine states S0 and S2
based on Next State Criterion!

0

S0 
[0]

S2 
[0]

1

S1 
[1]

0
1

1

0



VIII - Working with Sequential 
Logic Contemporary Logic Design 14

Implication Chart method

Example specification
Name: three-bit sequence (010 or 110) detector
Input: X = {0, 1}
Output: Z = {0, 1}
Behavior:

Z =   1 if each 3-bit input sequence (no overlap) is 010 or 110
0 otherwise

Initial state
transition table Present State 

S 0 
S 1 
S 2 
S 3 
S 4 
S 5 
S 6 

Past Input Seq.
Reset 

0 
1 

00 
01 
10 
1 1 

X =1 
0 
0 
0 
0 
0 
0 
0 

Next State Output 
X =0 
S 1 
S 3 
S 5 
S 0 
S 0 
S 0 
S 0 

X =1 
S 2 
S 4 
S 6 
S 0 
S 0 
S 0 
S 0 

X =0 
0 
0 
0 
0 
1 
0 
1 



VIII - Working with Sequential 
Logic Contemporary Logic Design 15

Implication Chart method (cont’d)

Implication Chart
Enumerate all possible combinations of states taken two at a time

Naive Data Structure:
Xij will be the same as Xji
Also, can eliminate the diagonal

Implication Chart

Next States
Under all
Input
Combinations

S0

S1

S2

S3

S4

S5

S6

S0 S1 S2 S3 S4 S5 S6

S1

S2

S3

S4

S5

S6

S0 S1 S2 S3 S4 S5



VIII - Working with Sequential 
Logic Contemporary Logic Design 16

Implication Chart method (cont’d)

Filling in the Implication Chart
Entry Xij: Row is Si, Column is Sj
Si is equivalent to Sj if outputs are the same and next states are 
equivalent
Xij contains the next states of Si, Sj which must be equivalent if Si 
and Sj are equivalent
If Si, Sj have different output behavior, then Xij is crossed out

Example:
S0 transitions to S1 on 0, S2 on 1;
S1 transitions to S3 on 0, S4 on 1;
So square X<0,1> contains
entries S1-S3 (transition on zero), S2-S4 (transition on one)

S1-S3
S2-S4S0

S1



VIII - Working with Sequential 
Logic Contemporary Logic Design 17

Starting Implication Chart

S2 and S4 
have different
I/O behavior

This implies that
S1 and S0 cannot

be combined

S1 
 

S2 
 

S3 
 

S4 
 

S5 
 

S6
S0    S1    S2    S3    S4   S5

S1-S3 
S2-S4

S1-S5 
S2-S6

S3-S5 
S4-S6 

S1-S0 
S2-S0

S3-S0 
S4-S0

S5-S0 
S6-S0

S1-S0 
S2-S0

S3-S0 
S4-S0

S5-S0 
S6-S0

S0-S0 
S0-S0

S0-S0 
S0-S0

Implication Chart method (cont’d)



VIII - Working with Sequential 
Logic Contemporary Logic Design 18

Implication Chart method (cont’d)

Results of First Marking Pass
Second Pass Adds
No New Information

S3 and S5 are equivalent
S4 and S6 are equivalent
This implies that S1 and S2 are too!

Reduced State Transition Table

S0-S0 
S0-S0

S3-S5 
S4-S6

S0-S0 
S0-S0

S1

S2

S3

S4

S5

S6

S0 S1 S2 S3 S4 S5

Input Sequence 
Reset 
0 or 1 

00 or 10 
01 or 1 1 

Present State 
S 0 
S 1 ' 
S 3 ' 
S 4 ' 

X =0 
S 1 ' 
S 3 ' 
S 0 
S 0 

X =1 
S 1 ' 
S 4 ' 
S 0 
S 0 

X =0 
0 
0 
0 
1 

X =1 
0 
0 
0 
0 

Next State Output 



VIII - Working with Sequential 
Logic Contemporary Logic Design 19

Implication Chart method (cont’d)

Multiple Input State Diagram Example

State Diagram

Symbolic State Diagram

Present 
State 

S 0  
S 1  
S 2  
S 3  
S 4  
S 5 

Next State 
00 
S 0  
S 0  
S 1  
S 1  
S 0  
S 1 

01 
S 1  
S 3  
S 3  
S 0  
S 1  
S 4 

10 
S 2  
S 1  
S 2  
S 4  
S 2  
S 0 

1 1 
S 3  
S 5  
S 4  
S 5  
S 5  
S 5 

Output 
 
1 
0 
1 
0 
1 
0 

S0 
[1]

S2 
[1]

S4 
[1]

S1 
[0]

S3 
[0]

S5 
[0]

10

01
11

00

00
01

11
10

10 01

1100

10

00

01

11

00

11
10

01

10

1101

00



VIII - Working with Sequential 
Logic Contemporary Logic Design 20

Implication Chart method (cont’d)

Multiple Input Example

Implication Chart

Minimized State Table

Present 
State 

S 0 ' 
S 1  
S 2  
S 3 ' 

Next State 
00 
S 0 ' 
S 0 ' 
S 1 
S 1 

01 
S 1 
S 3 ' 
S 3 ' 
S 0 ' 

10 
S 2 
S 1 
S 2 
S 0 ' 

1 1 
S 3 ' 
S 3 ' 
S 0 ' 
S 3 ' 

Output 
 
1 
0 
1 
0 

S1 
 
 
 

S2 
 
 
 

S3 
 
 
 

S4 
 
 
 

S5

 
 
 
 

S0-S1 
S1-S3 
S2-S2 
S3-S4 

 
 
 
 

S0-S0 
S1-S1 
S2-S2 
S3-S5 

 
 
 
 
 

S0

 
 
 
 

S0-S1 
S3-S0 
S1-S4 
S5-S5 

 
 
 
 

S0-S1 
S3-S4 
S1-S0 
S5-S5 

 
S1

 
 
 
 

S1-S0 
S3-S1 
S2-S2
S4-S5 

 
 
 
 
 

S2

 
 
 
 

S1-S1 
S0-S4 
S4-S0
S5-S5 

 
S3 S4



VIII - Working with Sequential 
Logic Contemporary Logic Design 21

Implication Chart method (cont’d)

The detailed algorithm:
1. Construct implication chart, one square for each combination of 

states taken two at a time.
2. For each square labeled Si, Sj, 

if outputs differ, then cross out the square.
otherwise, write down next state pairs for all input combinations.

3. Advancing through the chart top-to-bottom and left-to-right,
if square Si, Sj contains next state pair Sm-Sn and square Sm, Sn is 
already crossed out, then cross out  squre Si, Sj.

4. Continue executing Step 3 until no new squares are crossed out.
5. For each remaining square Si, Sj, we conclude that Si and Sj are 

equivalent.



VIII - Working with Sequential 
Logic Contemporary Logic Design 22

Does the method solve the problem with the odd parity 
checker?

Implication Chart method (cont’d)

S0 is equivalent to S2
since nothing contradicts this assertion!

S 1  
 
S 2 

S 0  S 1 

S 0 - S 2  
S 1 - S 1 

Present State 
S 0  
S 1  
S 2 

Next State 
X =0 
S 0  
S 1  
S 2 

X =1 
S 1  
S 2  
S 1 

Output 
0  
1 
0 



VIII - Working with Sequential 
Logic Contemporary Logic Design 23

Equivalent states in the presence of don't cares

Equivalence of states is transitive when machine is fully 
specified
But its not transitive when don't cares are present

Example
e.g., state output

S0 – 0 S1 is compatible with both S0 and S2
S1 1 – but S0 and S2 are incompatible
S2 – 1

No polynomial time algorithm exists for determining best 
grouping of states into equivalent sets that will yield the 
smallest number of final states



VIII - Working with Sequential 
Logic Contemporary Logic Design 24

X Q1 Q0 Q1
+ Q0

+

0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
– 1 1 - -

Q1
+ = X  (Q1 + Q0)

Q0
+ = X  Q1’ Q0’

When state minimization doesn't help

Example: edge detector
outputs 1 when last two input changes from 0 to 1

Implementation using minimized states

00
[0]

10
[0]

01
[1]X’

X’

X’

X

X

X



VIII - Working with Sequential 
Logic Contemporary Logic Design 25

When state minimization doesn't help (cont’d)

Another implementation of edge detector
"Ad hoc" solution - not minimal but cheap and fast

00
[0]

10
[0]

01
[1]

X’ X

X’

X

X

X11
[0]

X’

X’



VIII - Working with Sequential 
Logic Contemporary Logic Design 26

State assignment

State assignment (encoding): choose bit vectors to assign to 
each “symbolic” state

with n state bits for m states (n <=  m <=  2n), 
there are 2n! / (2n – m)! possible state assignments
huge number even for small values of n and m

intractable for state machines of any practical size
heuristics are necessary for practical solutions

state encoding with fewer bits has fewer equations to implement
however, each may be more complex

state encoding with more bits (e.g., one-hot) has simpler 
equations

complexity directly related to complexity of state diagram



VIII - Working with Sequential 
Logic Contemporary Logic Design 27

State assignment (cont’d)

Optimize some metric for the combinational logic
size (the amount of logic and number of FFs)
speed (depth of logic and fanout)
dependencies (decomposition)

Possible strategies
sequential – just number states as they appear in the state table
random – pick random codes
one-hot – use as many state bits as there are states (bit=1 –> 
state)
output-oriented – use outputs to help encode states
heuristic – rules of thumb that seem to work in most cases

No guarantee of optimality – another intractable problem



VIII - Working with Sequential 
Logic Contemporary Logic Design 28

State assignment (cont’d)

Example: traffic light controller
4 states: 4 choices for first state, 3 for second, 2 for third, 1 for last

-> 24 different encodings (4!)
Alternative state encodings of the traffic light controller

HG 
00  
00 
00 
00 
00 
00 
01 
01 
01 
01 
01 
01 

HY 
01  
01 
10 
10 
1 1 
1 1 
00 
00 
10 
10 
1 1 
1 1 

FG 
10  
1 1 
01 
1 1 
01 
10 
10 
1 1 
00 
1 1 
00 
10 

FY 
1 1  
10 
1 1 
01 
10 
01 
1 1 
10 
1 1 
00 
10 
00 

HG 
10  
10 
10 
10 
10 
10 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 

HY 
00  
00 
01 
01 
1 1 
1 1 
00 
00 
01 
01 
10 
10 

FG 
01  
1 1 
00 
1 1 
00 
01 
01 
10 
00 
10 
00 
01 

FY 
1 1  
01 
1 1 
00 
01 
00 
10 
01 
10 
00 
01 
00 

highway

farm road

car sensors



VIII - Working with Sequential 
Logic Contemporary Logic Design 29

State assignment (cont’d)

Example: traffic light controller (cont’d)
State diagram and Symbolic state transition table

C  
0  
X 
1 
X 
X 
1 
0 
X 
X 
X 

TL  
X  
0 
1 
X 
X 
0 
X 
1 
X 
X 

TS  
X  
X 
X 
0 
1 
X 
X 
X 
0 
1 

Inputs Present State 
Q 1  Q 0  

HG  
HG 
HG 
HY 
HY 
FG 
FG 
FG 
FY 
FY 

Next State 
P 1  P 0  
HG  
HG 
HY 
HY 
FG 
FG 
FY 
FY 
FY 
HG 

Outputs 
ST  
0  
0 
1 
0 
1 
0 
1 
1 
0 
1 

H 1  H 0  
00  
00 
00 
01 
01 
10 
10 
10 
10 
10 

F 1  F 0  
10  
10 
10 
10 
10 
00 
00 
00 
01 
01 

Reset
(TL•C)’

HG
TL•C/ST

TS’
HY FY

FG

TS/ST

TS/ST
TL + C’/ST

TS’

(TL+C’)’



VIII - Working with Sequential 
Logic Contemporary Logic Design 30

Sequential encoding

Sequential encoding
Simply replace the symbolic state names with a regular encoding 
sequence

Examples:
Sequential encoding: HG=00, HY=01, FG=10, FY=11
Encoding with Gray-code: HG=00, HY=01, FG=11, FY=10

C 
0 
X 
1 
X 
X 
1 
0 
X 
X 
X 

TL 
X 
0 
1 
X 
X 
0 
X 
1 
X 
X 

TS 
X 
X 
X 
0 
1 
X 
X 
X 
0 
1 

Inputs Present State 
Q 1 Q 0 

00 
00 
00 
01 
01 
11 
11 
11 
10 
10 

Next State 
P 1 P 0 

00 
00 
01
01
11 
11 
10 
10 
10 
00 

Outputs 
ST 
0 
0 
1 
0 
1 
0 
1 
1 
0 
1 

H 1 H 0 
00 
00 
00 
01 
01 
10 
10 
10 
10 
10 

F 1 F 0 
10 
10 
10 
10 
10 
00 
00 
00 
01 
01 



VIII - Working with Sequential 
Logic Contemporary Logic Design 31

Sequential encoding (cont’d)

Example (cont’d)
Two level equation

'
01

'
01

'
0

0
'
10

'
1

''
0

'
1

'
0

'
1

''
0

'
1

'
1

0
'
10

'
1

'
0

'
01

'
01

'
0101

'
01

'
1

'
010101

'
0

'
1

'
0

'
1

01
'

0
'
10

'
1

''
0

'
10

'
01

'
0101

'
01

'
0

'
11

 

QC

QQTSQQTSF

QQTSQQTSQQTLCQQTLQQCF

QQTSQQTSH

QQTSQQTSQQTLQQCQQTLCH

QQTSQQTLQQCQQTSQQTLCST

QQTLCQQTSQQTSQQTLCP

QQTSQTLQQCQQTLQQTSP

⋅⋅+⋅⋅=

⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅+⋅⋅=

⋅⋅+⋅⋅=

⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅⋅=

⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅⋅=

⋅⋅⋅+⋅⋅+⋅⋅+⋅⋅⋅=

⋅⋅+⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅=



VIII - Working with Sequential 
Logic Contemporary Logic Design 32

Sequential encoding (cont’d)

Examples (cont’d):
Three-level implementation

More than two input gates:
P1, P0, ST
Two input gates: the others

'

'

'

'
01

01

0
'
1

'
0

'
1

0

1

0

1

0

1

TLCY
TLCX

QQFY

QQFG
QQHY

QQHG

FYF
HYHGF

HYH
FYFGH

FYTSFGYHYTSHGXST
FGYHYHGXP
FYTSFGHYTSP

⋅=
⋅=
⋅=

⋅=
⋅=

⋅=

=
+=

=
+=

⋅+⋅+⋅+⋅=
⋅++⋅=
⋅++⋅=



VIII - Working with Sequential 
Logic Contemporary Logic Design 33

Random encoding

Random encoding
replace the symbolic state names with a random encoding 
sequence

Example: HG=00, HY=10, FG=01, FY=11
Two level implementation

No gates of more than three inputs

010

'
01

'
010

01

10
'
1

'
1

010
'
1

'
010

0
'
11

'
11

'

'

''

QQF
QF

QQH

QH
QTSQQCQTLCST

QQTSQQQQTSP

QQCQTSQTLCP

⋅=
=

⋅=

=
⋅+⋅⋅+⋅⋅=

⋅⋅+⋅+⋅⋅=

⋅⋅+⋅+⋅⋅=

C 
0 
X 
1 
X 
X 
1 
0 
X 
X 
X 

TL 
X 
0 
1 
X 
X 
0 
X 
1 
X 
X 

TS 
X 
X 
X 
0 
1 
X 
X 
X 
0 
1 

Inputs Present State 
Q 1 Q 0 

00 
00 
00 
10 
10 
01 
01 
01 
11 
11

Next State 
P 1 P 0 

00 
00 
10 
10 
01 
01 
11 
11 
11 
00 

Outputs 
ST 
0 
0 
1 
0 
1 
0 
1 
1 
0 
1 

H 1 H 0 
00 
00 
00 
01 
01 
10 
10 
10 
10 
10 

F 1 F 0 
10 
10 
10 
10 
10 
00 
00 
00 
01 
01 



VIII - Working with Sequential 
Logic Contemporary Logic Design 34

One-Hot encoding

One-Hot encoding
n states is encoded using n flip-flops
Only 1 bit is asserted in each of the states.

ex) 0001, 0010, 0100, 1000
Properties

Simple: easy to encode, easy to debug
Small logic functions

each state function requires only predecessor state bits as input
a lot of don’t-care opportunities

Good for programmable devices
lots of flip-flops readily available
simple functions with small support (signals it's dependent upon)

Impractical for large machines
too many states require too many flip-flops
decompose FSMs into smaller pieces that can be one-hot encoded

Many slight variations to one-hot
one-hot + all-0



VIII - Working with Sequential 
Logic Contemporary Logic Design 35

One-Hot encoding (cont’d)

Example:
HG=0001, HY=0010, FG=0100, FY=1000

C 
0 
X 
1 
X 
X 
1 
0 
X 
X 
X 

TL 
X 
0 
1 
X 
X 
0 
X 
1 
X 
X 

TS 
X 
X 
X 
0 
1 
X 
X 
X 
0 
1 

Inputs Present State 
Q 0 

0001 
0001 
0001 
0010 
0010 
0100 
0100 
0100 
1000 
1000 

Next State 

0001 
0001 
0010 
0010 
0100 
0100 
1000 
1000 
1000 
0001 

Outputs 
ST 
0 
0 
1 
0 
1 
0 
1 
1 
0 
1 

H 1 H 0 
00 
00 
00 
01 
01 
10 
10 
10 
10 
10 

F 1 F 0 
10 
10 
10 
10 
10 
00 
00 
00 
01 
01 

Q 1 Q 2 Q 3 P 0 P 1 P 2 P 3 



VIII - Working with Sequential 
Logic Contemporary Logic Design 36

One-Hot encoding (cont’d)

Example (cont’d)
Implementation:

30

011

10

231

32

10

300

101

212

323

)()'(      
)()(
)()''(

)'()(
)'()(
)'()'(

QF
QQF

QH
QQH

QTSQTLC
QTSQTLCST
QTSQTLCP

QTSQTLCP
QTLCQTSP
QTSQTLCP

=
+=

=
+=

⋅+⋅++
⋅+⋅⋅=
⋅+⋅+=
⋅+⋅⋅=
⋅⋅+⋅=
⋅+⋅+=

Reset
(TL•C)’

Q0
TL•C/ST

TS’
Q1 Q3

Q2

TS/ST

TS/ST
TL + C’/ST

TS’

(TL+C’)’



VIII - Working with Sequential 
Logic Contemporary Logic Design 37

Output-Oriented encoding

Output-oriented encoding:
Reuse outputs as state bits - use outputs to help distinguish states

why create new functions for state bits when output can serve as well
Synchronous Mealy outputs, since they are implemented directly as 
the output of a flip-flop, can also be used this way

Example: the traffic-light controller

Output signals
are unique

for the transitions
to each state

C 
0 
X 
1 
X 
X 
1 
0 
X 
X 
X 

TL 
X 
0 
1 
X 
X 
0 
X 
1 
X 
X 

TS 
X 
X 
X 
0 
1 
X 
X 
X 
0 
1 

Inputs Present State 
Q 1 Q 0 

HG 
HG 
HG 
HY 
HY 
FG 
FG 
FG 
FY 
FY 

Next State 
P 1 P 0 
HG 
HG 
HY 
HY 
FG 
FG 
FY 
FY 
FY 
HG 

Outputs 
ST 
0 
0 
1 
0 
1 
0 
1 
1 
0 
1 

H 1 H 0 
00 
00 
00 
01 
01 
10 
10 
10 
10 
10 

F 1 F 0 
10 
10 
10 
10 
10 
00 
00 
00 
01 
01 



VIII - Working with Sequential 
Logic Contemporary Logic Design 38

Output-Oriented encoding (cont’d)

Example (cont’d)
Next state is represented by “present outputs” instead

State equations Output equations

0
'

1
'
01

'
0

''
1

'
0

'
1

'
01

'
010

'
1

'
010

'
1

'
01

'
0

'
1

'
01

'
0

'
10

'
1

'
01

'

'

'

'

10
FFHHSTFFHHSTFY

FFHHSTFFHHSTFG

FFHHSTFFHHSTHY

FFHHSTFFHHSTHG

⋅+⋅=

⋅+⋅=

⋅+⋅=

⋅+⋅=

C 
0 
X 
1 
X 
X 
1 
0 
X 
X 
X 

TL 
X 
0 
1 
X 
X 
0 
X 
1 
X 
X 

TS 
X 
X 
X 
0 
1 
X 
X 
X 
0 
1 

Inputs Present State 

HG: 00010 + 11001
HG: 00010 + 11001 
HG: 00010 + 11001 
HY: 10010 + 00110 
HY: 10010 + 00110 
FG: 10110 + 01000
FG: 10110 + 01000 
FG: 10110 + 01000 
FY: 11000 + 01001 
FY: 11000 + 01001 

Outputs 
ST 
0 
0 
1 
0 
1 
0 
1 
1 
0 
1 

H 1 H 0 
00 
00 
00 
01 
01 
10 
10 
10 
10 
10 

F 1 F 0 
10 
10 
10 
10 
10 
00 
00 
00 
01 
01 

ST H 1 H 0 F 1 F 0 

FYFHYHGF
HYHFYFGH

FYTSFGTLFGC
HYTSHGTLCST

=+=
=+=

⋅+⋅+⋅+
⋅+⋅⋅=

01

01

  ,
   ,

)()()'(      
)()(

Next State 

HG: 00010 +11001 
HG: 00010 +11001
HY: 10010 + 00110
HY: 10010 + 00110
FG: 10110 + 01000
FG: 10110 + 01000
FY: 11000 + 01001
FY: 11000 + 01001
FY: 11000 + 01001
HG: 00010 +11001

ST H 1 H 0 F 1 F 0 



VIII - Working with Sequential 
Logic Contemporary Logic Design 39

Heuristic methods for state assignment

Heuristic methods
To make the state encoding problem more tractable
Try to reduce the distance in Boolean n-space between related 
states
All current methods are variants of this

1) determine which states “attract” each other (weighted pairs)
2) generate constraints on states (which should be in same cube)
3) place states on Boolean cube so as to maximize constraints 
satisfied (weighted sum)

Can't consider all possible embeddings of state clusters in 
Boolean cube

heuristics for ordering embedding
to prune search for best embedding
expand cube (more state bits) to satisfy more constraints



VIII - Working with Sequential 
Logic Contemporary Logic Design 40

State maps:
similar in concept to K-maps
If state X transitions to state Y, then assign "close" assignments to 
X and Y
provide a means of observing adjacencies in state assignments

Example

Heuristic methods for state assignment (cont’d)

S0

S1 S2

S3

S4

0 1
Present 
State 

Next State 
0 1 

S0

S1

S2

S3

S4

S1

S3

S3

S4

S0

S2

S3

S3

S4

S0



VIII - Working with Sequential 
Logic Contemporary Logic Design 41

Heuristic methods for state assignment (cont’d)

Example (cont’d)
First state assignment and its state map

Second state assignment and its state map

Q 1 Q 0 00 01 1 1 10 
0 

Q 2 

1 

S 0 S 4 S 3 

S 1 S 2 

State Name 
S 0 
S 1 
S 2 
S 3 
S 4 

Assignment 
Q 2 
0 
1 
1 
0 
0 

Q 1 
0 
0 
1 
1 
1 

Q 0 
0 
1 
1 
0 
1 

Q 1 Q 0 
00 01 1 1 10 Q 2 

0 

1 

S 0 S 1 S 3 S 2 

S 4 

State Name 
S 0 
S 1 
S 2 
S 3 
S 4 

Q 2 
0 
0 
0 
0 
1 

Q 1 
0 
0 
1 
1 
1 

Q 0 
0 
1 
0 
1 
1 

Assignment 

S0

S1 S2

S3

S4

0 1



VIII - Working with Sequential 
Logic Contemporary Logic Design 42

Heuristic methods for state assignment (cont’d)

Minimum Bit-Change Heuristic
Assigns states so that #(bit changes) for all transitions is 
minimized

Example

cf. Traffic light controller: HG = 00, HY = 01, FG = 11, FY = 10
yields minimum distance encoding but not best assignment!

Transition First assignment bit changes Second assignment bit changes
S0 to S1 2 1
S0 to S2 3 1
S1 to S3 3 1
S1 to S3 2 1
S3 to S4 1 1
S4 to S1 2 2

13 7
+) +)



VIII - Working with Sequential 
Logic Contemporary Logic Design 43

Guidelines based on Next state and I/O
Adjacent codes to states that share a common next state

group 1's in next state map

Adjacent codes to states that share a common ancestor state 
group 1's in next state map

Adjacent codes to states that have a common output behavior
group 1's in output map

I Q Q+ O
i a c j
i b c k

I Q Q+ O
i a b j
k a c l

I Q Q+ O
i a b j
i c d j

c = i * a + i * b

b = i  * a
c = k * a

j = i  * a +  i  * c
b = i * a
d = i * c

i / j i / k

a b

c

a

b c

i / j k / l

b d

i / j
a c

i / j

Heuristic methods for state assignment (cont’d)

Highest
Priority

Lowest
Priority



VIII - Working with Sequential 
Logic Contemporary Logic Design 44

Example: 3-bit Sequence Detector

Heuristic methods for state assignment (cont’d)

Highest Priority: (S3', S4')

Medium Priority: (S3', S4')

Lowest Priority: 
0/0: (S0, S1', S3')
1/0: (S0, S1', S3', S4')

Reset

S0

0,1/0

0,1/0
1/0

S1'
0/0

0/1, 
1/0

S3' S4'

Present
State X=0 X=1

S1’ S1’
S3’ S4’
S0 S0
S0 S0

Next State Output 
X=0 X=1

0 0
0 0
0 0
1 0 

S0
S1’
S3’
S4’



VIII - Working with Sequential 
Logic Contemporary Logic Design 45

Example (cont’d)

S0 S3’

S1’ S4’

S0 S1’

S3’ S4’

Heuristic methods for state assignment (cont’d)

Reset State = 00

Highest Priority Adjacency (S3’, S4’)

Not much difference in these two 
assignments

Not much difference in these two 
assignments



VIII - Working with Sequential 
Logic Contemporary Logic Design 46

Another Example: 4 bit String Recognizer

Heuristic methods for state assignment (cont’d)

Highest Priority: (S3', S4'), (S7', S10')

Medium Priority:
(S1, S2), 2x(S3', S4'), (S7', S10')

Lowest Priority:
0/0: (S0, S1, S2, S3', S4', S7')
1/0: (S0, S1, S2, S3', S4', S7')

Reset

S1

S3'

S7'

S2

S4'

S10'

0,1/0

0,1/0

0/0

0/0

1/0 1/0

1/0

1/0

1/00/1

S0

0/0

0/0

Present State 
S0 
S1 
S2 
S3' 
S4' 
S7' 
S10' 

X=0 
S1 
S3' 
S4' 
S7' 
S7' 
S0 
S0

X=1 
S2 
S4' 
S3' 
S7' 

S10' 
S0 
S0 

Next State Output
X=0 

0 
0 
0 
0 
0 
0 
1

X=1 
0 
0 
0 
0 
0 
0 
0 



VIII - Working with Sequential 
Logic Contemporary Logic Design 47

Heuristic methods for state assignment (cont’d)

00 = Reset = S0

(S1, S2), (S3', S4'), (S7', S10')
placed adjacently

State Map
Q1 Q0

Q2

0

1

00 01 11 10

S0

Q1 Q0
Q2

0

1

00 01 11 10

S0 S3'

S4'

Q1 Q0
Q2

0

1

00 01 11 10

S0 S3'

S4'

S7'

S10'

Q1 Q0
Q2

0

1

00 01 11 10

S0 S1 S3'

S2 S4'

S7'

S10'

Q1 Q0
Q2

0

1

00 01 11 10

S0

Q1 Q0
Q2

0

1

00 01 11 10

S0

S7' S10'

Q1 Q0
Q2

0

1

00 01 11 10
S0 S3'

S4'S7' S10'

Q1 Q0
Q2

0

1

00 01 11 10

S0 S1 S3'

S2 S4'S7' S10'

(a) First encoding (b) Second encoding



VIII - Working with Sequential 
Logic Contemporary Logic Design 48

Heuristic methods for state assignment (cont’d)

Effect of Adjacencies on Next State Map

First encoding exhibits a better clustering of 1's in the next state map

Q 2 Q 1 
Q 0 X 

P 0 

Q 2 Q 1 
Q 0 X 

P 0 

Q 2 Q 1 
Q 0 X 

P 1 P 2 

P 1 

Q 2 Q 1 
Q 0 X 

Q 2 Q 1 
Q 0 X 

( S 0 ) 
( S 1 ) 
( S 2 ) 
( S 3 ' ) 
( S 4 ' ) 
( S 7 ' ) 
( S ' 10 ) 

0 

0 

00 

01 

00 01 1 1 10 

1 1 

10 

0 

0 

0 

0 

0 

0 1 

1 0 

0 

X 

X 

P 2 

00 

01 

00 01 1 1 10 

1 1 

10 

0 

1 

1 

1 

1 

1 

1 

X 

X 

00 

01 

00 01 1 1 10 

1 1 

10 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

X 

X 

1 

1 

( S 0 ) 
( S 1 ) 
( S 2 ) 
( S 3 ' ) 
( S 4 ' ) 
( S 7 ' ) 
( S ' 10 ) 

000 
001 
101 
01 1 
1 1 1 
010 
1 10 

X = 0 
001 
01 1 
1 1 1 
010 
010 
000 
000 

X = 1 
101 
1 1 1 
01 1 
010 
1 10 
000 
000 

Current 
State 

Next State 

000 
001 
010 
01 1 
100 
101 
1 10 

X = 0 
001 
01 1 
100 
101 
101 
000 
000 

X = 1 
010 
100 
01 1 
101 
1 10 
000 
000 

Current 
State 

Next State 

1 

1 

0 

0 

1 

1 

0 

0 0 

0 

1 

Q 2 Q 1 
Q 0 X 

00 

01 

00 01 1 1 10 

1 1 

10 

0 

0 

0 

0 

1 

0 0 

1 1 

1 

1 

1 

00 

01 

00 01 1 1 10 

1 1 

10 

0 

0 

1 

X 

X 

0 

0 

0 

1 

00 

01 

00 01 1 1 10 

1 1 

10 

1 

0 

0 

1 

0 

1 

1 

1 

0 

0 

X 

X 

1 

0 

0 

0 

X 

0 

0 

X 

0 

0 

0 

0 1 



VIII - Working with Sequential 
Logic Contemporary Logic Design 49

Summary

State minimization / reduction
introduction to the row-matching and implication chart methods

Identify and eliminate redundant states
Reduce the number of flip-flops needed to implement a particular FSM

straightforward in fully-specified machines
computationally intractable, in general (with don’t cares)

State assignment (encoding)
Various approaches to state assignment


	Ch 8. Working with Finite State Machines
	State Minimization / Reduction
	State Minimization / Reduction (cont’d)
	State Minimization / Reduction (cont’d)
	State Minimization / Reduction (cont’d)
	State Minimization / Reduction (cont’d)
	State Minimization / Reduction (cont’d)
	Row-Matching method
	Row-Matching method (cont’d)
	Row-Matching method (cont’d)
	Row-Matching method (cont’d)
	Row-Matching method (cont’d)
	Row-Matching method (cont’d)
	Implication Chart method
	Implication Chart method (cont’d)
	Implication Chart method (cont’d)
	Implication Chart method (cont’d)
	Implication Chart method (cont’d)
	Implication Chart method (cont’d)
	Implication Chart method (cont’d)
	Implication Chart method (cont’d)
	Implication Chart method (cont’d)
	Equivalent states in the presence of don't cares
	When state minimization doesn't help
	When state minimization doesn't help (cont’d)
	State assignment
	State assignment (cont’d)
	State assignment (cont’d)
	State assignment (cont’d)
	Sequential encoding
	Sequential encoding (cont’d)
	Sequential encoding (cont’d)
	Random encoding
	One-Hot encoding
	One-Hot encoding (cont’d)
	One-Hot encoding (cont’d)
	Output-Oriented encoding
	Output-Oriented encoding (cont’d)
	Heuristic methods for state assignment
	Heuristic methods for state assignment (cont’d)
	Heuristic methods for state assignment (cont’d)
	Heuristic methods for state assignment (cont’d)
	Heuristic methods for state assignment (cont’d)
	Heuristic methods for state assignment (cont’d)
	Heuristic methods for state assignment (cont’d)
	Heuristic methods for state assignment (cont’d)
	Heuristic methods for state assignment (cont’d)
	Heuristic methods for state assignment (cont’d)
	Summary

