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Ch 10. Case Studies in Sequential 
Logic Design



X - Sequential Logic Case Studies Contemporary Logic Design 2

Case Studies in Sequential Logic Design

A Finite String Pattern Recognizer
A Complex Counter
Tug of War Game
A Digital Combination Lock
A Serial Line Transmitter/Receiver
Chapter Review
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General FSM design procedure

(1) Determine inputs and outputs
(2) Determine possible states of machine

state minimization
(3) Encode states and outputs into a binary code

state assignment or state encoding
output encoding
possibly input encoding (if under our control)

(4) Realize logic to implement functions for states and outputs
combinational logic implementation and optimization
choices in steps 2 and 3 can have large effect on resulting logic
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Finite string pattern recognizer (step 1)

Specification of finite string pattern recognizer
one input (X) and one output (Z)
output is asserted whenever the input sequence …010… has 
been observed, as long as the sequence …100… has never been 
seen

Step 1: understanding the problem statement
sample input/output behavior:

X:   0 0 1 0 1 0 1 0 0 1 0 …
Z:   0 0 0 1 0 1 0 1 0 0 0 …

X:   1 1 0 1 1 0 1 0 0 1 0 …
Z:   0 0 0 0 0 0 0 1 0 0 0 …
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Finite string pattern recognizer (step 2)

Step 2: draw state diagram
for the strings that must be recognized, i.e., 010 and 100
a Moore implementation
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0

1

S3
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S4
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S5
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0
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Finite string pattern recognizer (step 2, cont’d)

Exit conditions from state S3: have recognized …010
if next input is 0 then have …0100 = ...100 (state S6)
if next input is 1 then have …0101 = …01 (state S2)

Exit conditions from S1: recognizes
strings of form …0 (no 1 seen)

loop back to S1 if input is 0
Exit conditions from S4: recognizes
strings of form …1 (no 0 seen)

loop back to S4 if input is 1
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Finite string pattern recognizer (step 2, cont’d)

S2 and S5 still have incomplete transitions
S2 = …01; If next input is 1,
then string could be prefix of (01)1(00)                   
S4 handles just this case
S5 = …10; If next input is 1,
then string could be prefix of (10)1(0)                   
S2 handles just this case

Reuse states as much as possible
look for same meaning
state minimization leads to
smaller number of bits to
represent states

Once all states have a complete
set of transitions we have a
final state diagram
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module string (clk, X, rst, Q0, Q1, Q2, Z);
input clk, X, rst;
output Q0, Q1, Q2, Z;

parameter S0 = [0,0,0]; //reset state
parameter S1 = [0,0,1]; //strings ending in   ...0
parameter S2 = [0,1,0]; //strings ending in  ...01
parameter S3 = [0,1,1]; //strings ending in ...010
parameter S4 = [1,0,0]; //strings ending in   ...1
parameter S5 = [1,0,1]; //strings ending in  ...10
parameter S6 = [1,1,0]; //strings ending in ...100

reg state[0:2];

assign Q0 = state[0];
assign Q1 = state[1];
assign Q2 = state[2];
assign Z = (state == S3);

always @(posedge clk) begin
if (rst) state = S0;
else

case (state)
S0: if (X) state = S4 else state = S1;
S1: if (X) state = S2 else state = S1;
S2: if (X) state = S4 else state = S3;
S3: if (X) state = S2 else state = S6;
S4: if (X) state = S4 else state = S5;
S5: if (X) state = S2 else state = S6;
S6: state = S6;
default: begin

$display (“invalid state reached”);
state = 3’bxxx;

end
endcase

end

endmodule

Finite string pattern recognizer (step 3)

Verilog description including state assignment (or state encoding)
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Finite string pattern recognizer

Review of process
understanding problem

write down sample inputs and outputs to understand specification
derive a state diagram 

write down sequences of states and transitions for sequences to be recognized
minimize number of states 

add missing transitions;  reuse states as much as possible
state assignment or encoding 

encode states with unique patterns
simulate realization 

verify I/O behavior of your state diagram to ensure it matches specification
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Implementation
Implementation with sequential state encoding

CS0 CS1 CS2 X NS0 NS1 NS2

0 0 0 0 0 0 1

0 0 0 1 1 0 0

0 0 1 0 0 0 1

0 0 1 1 0 1 0

0 1 0 0 0 1 1

0 1 0 1 1 0 0

0 1 1 0 1 1 0

0 1 1 1 0 1 0

1 0 0 0 1 0 1

1 0 0 1 1 0 0

1 0 1 0 1 1 0

1 0 1 1 0 1 0

1 1 0 0 1 1 0

1 1 0 1 1 1 0

1 1 1 0 X X X

1 1 1 1 X X X

NS0 = CS0Q2’ + CS2’X + CS1CS2X’ + CS0X’
NS1 = CS1X’ + CS0CS2 + CS0CS1 + CS2X
NS2 = CS0’CS2’X’ + CS1’CS2’X’ + CS0’CS1’X’
Z = CS0’CS1CS2
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Implementation

Implementation with a shift register
1st stage: must recognize 010 and 100

R

D      Q

R

D       Q

P010

P100
Reset

X

Clk
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Implementation

2nd stage: use the recognition result

S0
[0]

S2
[0]

S1
[1]

Reset

P010 P100

P100

P010(never)

P’010 P’100

CS0 CS1 P010 P100 NS0 NS1

0 0 0 0 0 0

0 0 0 1 1 0

0 0 1 0 0 1

0 0 1 1 X X

0 1 0 0 0 0

0 1 0 1 1 0

0 1 1 0 X X

0 1 1 1 X X

1 0 0 0 1 0

1 0 0 1 1 0

1 0 1 0 1 0

1 0 1 1 X X

1 1 0 0 X X

1 1 0 1 X X

1 1 1 0 X X

1 1 1 1 X X

Encoding: S0=00, S1=01, S2=10

NS0 = CS0 + P100
NS1 = CS0’P010
Z = CS1

P’010P’100
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Finite string pattern recognizer
Complete circuit
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P010

P100

Reset
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D      Q
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D      Q Z
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Mode Input M
0
0
1
1
1
0
0

Current State
000
001
010
110
111
101
110

Next State
001
010
110
111
101
110
111

Complex counter

A synchronous 3-bit counter has a mode control M
when M = 0, the counter counts up in the binary sequence
when M = 1, the counter advances through the Gray code sequence

binary:   000, 001, 010, 011, 100, 101, 110, 111
Gray:     000, 001, 011, 010, 110, 111, 101, 100

Valid I/O behavior (partial)
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Complex counter (state diagram)

Deriving state diagram
one state for each output combination 
add appropriate arcs for the mode control
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S2
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S3
[011]

S4
[100]

S5
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S6
[110]

S7
[111]

reset

0

0 0 0 0000
1

1

1
1

11

11
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Complex counter (state encoding)

Verilog description including state encoding

module string (clk, M, rst, Z0, Z1, Z2);
input clk, X, rst;
output Z0, Z1, Z2;

parameter S0 = [0,0,0]; 
parameter S1 = [0,0,1]; 
parameter S2 = [0,1,0]; 
parameter S3 = [0,1,1]; 
parameter S4 = [1,0,0]; 
parameter S5 = [1,0,1]; 
parameter S6 = [1,1,0]; 
parameter S7 = [1,1,1];

reg state[0:2];

assign Z0 = state[0];
assign Z1 = state[1];
assign Z2 = state[2];

always @(posedge clk) begin
if rst state = S0;
else

case (state)
S0: state = S1;
S1: if (M) state = S3 else state = S2;
S2: if (M) state = S6 else state = S3;
S3: if (M) state = S2 else state = S4;
S4: if (M) state = S0 else state = S5;
S5: if (M) state = S4 else state = S6;
S6: if (M) state = S7 else state = S7;
S7: if (M) state = S5 else state = S0;

endcase

end

endmodule
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Tug of war game

I/O
7 LEDs, 2 push buttons (L, R)

LED
(3)

LED
(2)

LED
(1)

LED
(0)

LED
(6)

LED
(5)

LED
(4)

RESET

RR

L

R

L

R

L

R

LL



X - Sequential Logic Case Studies Contemporary Logic Design 18

Tug of war game (Verilog)
module Tug_of_War_Game (LEDS, LPB, RPB, CLK, RESET);
input LPB ;
input RPB ;
input CLK ;
input RESET;
output [6:0] LEDS ;

reg [6:0] position;
reg left;
reg right;

always @(posedge CLK)
begin  

left <= LPB;
right <= RPB;
if (RESET) position <= 7'b0001000;
else if ((position == 7'b0000001) || (position == 7'b1000000)) ;
else if (L) position <= position << 1;
else if (R) position <= position >> 1; 

end

endmodule

wire L, R;
assign L = ~left && LPB;
assign R = ~right && RPB;
assign LEDS = position;

combinational logic

sequential logic
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TS/ST

S1

TS'

–/ST

S1a

S1b

S1c

traffic light 
controller

timer

TLTSST

Traffic light controller
as two communicating FSMs

Without separate timer
S0 would require 16 states
S1 would require 8 states
S2 would require 16 states
S3 would require 8 states
S0, S1 and S3 have simple transformation
S2 would require many more arcs

C could change in any of 16 states

By factoring out timer
greatly reduce number of states

4 instead of 48
counter only requires 16 states

20 total instead of 48
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module FSM(HR, HY, HG, FR, FY, FG, ST, TS, TL, C, reset, Clk);
output HR;
output HY;
output HG;
output FR;
output FY;
output FG;
output ST;
input TS;
input TL;
input C;
input reset;
input Clk;

reg [6:1] state;
reg ST;

parameter highwaygreen = 6'b001100;
parameter highwayyellow = 6'b010100;
parameter farmroadgreen = 6'b100001;
parameter farmroadyellow = 6'b100010;

assign HR = state[6];
assign HY = state[5];
assign HG = state[4];
assign FR = state[3];
assign FY = state[2];
assign FG = state[1];

specify state bits and codes 
for each state as well as 
connections to outputs

Traffic light controller FSM

Specification of inputs, outputs, and state elements



X - Sequential Logic Case Studies Contemporary Logic Design 21

initial begin state = highwaygreen; ST = 0; end

always @(posedge Clk)
begin
if (reset)
begin state = highwaygreen; ST = 1; end

else
begin
ST = 0;
case (state)

highwaygreen:
if (TL & C) begin state = highwayyellow; ST = 1; end

highwayyellow:
if (TS) begin state = farmroadgreen; ST = 1; end

farmroadgreen:
if (TL | !C) begin state = farmroadyellow; ST = 1; end

farmroadyellow:
if (TS) begin state = highwaygreen; ST = 1; end

endcase
end

end
endmodule

case statement
triggered by
clock edge

Traffic light controller FSM (cont’d)
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module Timer(TS, TL, ST, Clk);
output TS;
output TL;
input ST;
input Clk;
integer   value;

assign TS = (value >=  7); //  7 cycles after reset
assign TL = (value >= 15); // 15 cycles after reset

always @(ST) value = 0; // async reset

always @(posedge Clk) value = value + 1;

endmodule

Timer for traffic light controller

Another FSM
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module main(HR, HY, HG, FR, FY, FG, reset, C, Clk);
output HR, HY, HG, FR, FY, FG; 
input  reset, C, Clk;

Timer part1(TS, TL, ST, Clk);
FSM   part2(HR, HY, HG, FR, FY, FG, ST, TS, TL, C, reset, Clk);

endmodule

Complete traffic light controller

Tying it all together (FSM + timer)
structural Verilog (same as a schematic drawing)

traffic light 
controller

timer

TLTSST
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machines advance in lock step
initial inputs/outputs: X = 0, Y = 0

CLK

FSM1

X

FSM2

Y

A A B

C D D

FSM 1 FSM 2

X

Y

Y==1

A
[1]

Y==0

B
[0]

Y==0

X==1

C
[0]

X==0
X==0

D
[1]

X==1
X==0

Communicating finite state machines

One machine's output is another machine's input
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"puppet"

"puppeteer who pulls the strings"
control

data-path

status 
info and 
inputs

control 
signal 
outputs

state

Data-path and control

Digital hardware systems = data-path + control
datapath: registers, counters, combinational functional units (e.g., ALU),

communication (e.g., busses)
control: FSM generating sequences of control signals that instructs

datapath what to do next
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Digital combinational lock

Door combination lock:
punch in 3 values in sequence and the door opens; if there is an error the 
lock must be reset; once the door opens the lock must be reset

inputs: sequence of input values, reset
outputs: door open/close
memory: must remember combination or always have it available

open questions: how do you set the internal combination?
stored in registers (how loaded?)
hardwired via switches set by user
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Implementation in software

integer combination_lock ( ) {
integer v1, v2, v3;
integer error = 0;
static integer c[3] = 3, 4, 2;

while (!new_value( ));
v1 = read_value( );
if (v1 != c[1]) then error = 1;

while (!new_value( ));
v2 = read_value( );
if (v2 != c[2]) then error = 1;

while (!new_value( ));
v3 = read_value( );
if (v2 != c[3]) then error = 1;

if (error == 1) then return(0); else return (1);
}
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resetvalue

open/closed

new

clock

Determining details of the specification

How many bits per input value?
How many values in sequence?
How do we know a new input value is entered?
What are the states and state transitions of the system?
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Digital combination lock state diagram

States: 5 states
represent point in execution of machine
each state has outputs

Transitions: 6 from state to state, 5 self transitions, 1 global
changes of state occur when clock says its ok
based on value of inputs

Inputs: reset, new, results of comparisons
Output: open/closed

closed closedclosed
C1==value

& new
C2==value

& new
C3==value

& new

C1!=value
& new C2!=value

& new
C3!=value

& new

closed

reset

not newnot newnot new

S1 S2 S3 OPEN

ERR

open
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reset

open/closed

newC1 C2 C3

comparatorvalue
equal

multiplexer
controller

mux
control

clock
4

4 4 4

4

Data-path and control structure

Data-path
storage registers for combination values
multiplexer
comparator

Control
finite-state machine controller
control for data-path (which value to compare)
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State table for combination lock

Finite-state machine
refine state diagram to take internal structure into account
state table ready for encoding

reset new equal state state mux open/closed
1 – – – S1 C1 closed
0 0 – S1 S1 C1 closed
0 1 0 S1 ERR – closed
0 1 1 S1 S2 C2 closed
...
0 1 1 S3 OPEN – open
...

next
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reset new equal state state mux open/closed
1 – – – 0001 001 0
0 0 – 0001 0001 001 0
0 1 0 0001 0000 – 0
0 1 1 0001 0010 010 0
...
0 1 1 0100 1000 – 1
...

next

mux is identical to last 3 bits of state
open/closed is identical to first bit of state
therefore, we do not even need to implement 
FFs to hold state, just use outputs

reset

open/closed

new

equal

controller

mux
control

clock

Encodings for combination lock

Encode state table
state can be: S1, S2, S3, OPEN, or ERR

needs at least 3 bits to encode: 000, 001, 010, 011, 100
and as many as 5: 00001, 00010, 00100, 01000, 10000
choose 4 bits: 0001, 0010, 0100, 1000, 0000

output mux can be: C1, C2, or C3
needs 2 to 3 bits to encode
choose 3 bits: 001, 010, 100

output open/closed can be: open or closed
needs 1 or 2 bits to encode
choose 1 bit: 1, 0
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C1 C2 C3

comparator
equal

multiplexer

mux
control

4

4 4 4

4

value

C1i C2i C3i

mux
control

value

equal

Data-path implementation
for combination lock

Multiplexer
easy to implement as combinational logic when few inputs
logic can easily get too big for most PLDs
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C1 C2 C3

comparator equal

multiplexer

mux
control

4

4 4 4

4
value

C1i C2i C3i

mux
control

value

equal

+ oc

open-collector connection
(zero whenever one connection is zero, 

one otherwise – wired AND)

tri-state driver
(can disconnect

from output)

Data-path implementation (cont’d)

Tri-state logic
utilize a third output state: “no connection” or “float”
connect outputs together as long as only one is “enabled”
open-collector gates can
only output 0, not 1

can be used to implement
logical AND with only wires
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In OE Out
X 0 Z
0 1 0
1 1 1

non-inverting
tri-state
buffer

100

In

OE

Out

Tri-state gates

The third value
logic values: “0”, “1”
don't care: “X” (must be 0 or 1 in real circuit!)
third value or state: “Z” — high impedance, infinite R, no connection

Tri-state gates
additional input – output enable (OE)
output values are 0, 1, and Z
when OE is high, the gate functions normally
when OE is low, the gate is disconnected from wire at output
allows more than one gate to be connected to the same output wire

as long as only one has its output enabled at any one time (otherwise, sparks could fly)

In Out

OE
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when Select is high
Input1 is connected to F

when Select is low
Input0 is connected to F

this is essentially a 2:1 mux

OE

OE

FInput0

Input1

Select

Tri-state and multiplexing

When using tri-state logic
(1) make sure never more than one "driver" for a wire at any one time 
(pulling high and low at the same time can severely damage circuits)
(2) make sure to use value on wire only when it's being driven (using a 
floating value may cause failures)

Using tri-state gates to implement an economical multiplexer
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open-collector 
NAND gates

with ouputs wired together
using "wired-AND"
to form (AB)'(CD)'

Open-collector gates and wired-AND

Open collector: another way to connect gate outputs to the same wire
gate only has the ability to pull its output low
it cannot actively drive the wire high (default – pulled high through resistor)

Wired-AND can be implemented with open collector logic
if A and B are "1", output is actively pulled low
if C and D are "1", output is actively pulled low
if one gate output is low and the other high, then low wins
if both gate outputs are "1", the wire value "floats", pulled high by resistor

low to high transition usually slower than it would have been with a gate pulling high
hence, the two NAND functions are ANDed together
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C1 C2 C3

comparatorvalue
equal

multiplexer

mux
control

4

4 4 4

4

ld1 ld2 ld3

Decrease number of inputs
Remove 3 code digits as inputs

use code registers
make them loadable from value
need 3 load signal inputs (net gain in input (4*3)–3=9)

could be done with 2 signals and decoder
(ld1, ld2, ld3, load none)

Digital combination lock (new data-path)
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Transmitter/Receiver

RS-232 protocol for formatting the data on the wire

It is assumed that the wire is normally high (quiescent value)

Start bit

Stop bit

8 Data Bits
Stop BitStart Bit
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Transmitter/Receiver

Block diagram of serial 
line transmitter/receiver

Schematic diagram of a 
keyboard block with 
debouncing circuitry
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Transmitter/Receiver

Schematic diagram of a 
single keyboard key

Four-cycle handshake with 
data
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Transmitter/Receiver

Display

(data bit) DB

RS

E

Valid Data

Valid Mode

Setup 
Time

Hold 
Time

Timing of LCD screen interface

LCD screen operation

Operation RS DB7…DB0
Clear display 0 0000 0001
Function set 0 0011 0011

Display on 0 0000 1100

Entry mode set 0 0000 0110

Write character 1 DDDD DDDD
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Transmitter/Receiver
Detailed timing for the receiver part of our circuit
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Section summary

FSM design
understanding the problem
generating state diagram
communicating state machines

Four case studies
understand I/O behavior
draw diagrams
enumerate states for the "goal"
expand with error conditions
reuse states whenever possible
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