Binary Number Systems and Arithmetic Circuits

Number systems

- Representation of positive numbers is the same in most systems
- Major differences are in how negative numbers are represented
- Representation of negative numbers come in three major schemes
 - sign and magnitude
 - Is complement
 - 2s complement
 - excess code
- Assumptions
 - we'll assume a 4 bit machine word
 - 16 different values can be represented
 - roughly half are positive, half are negative

Sign and magnitude

One bit dedicated to sign (positive or negative) 0 100 = + 4
sign: 0 = positive (or zero), 1 = negative 1 100 = - 4

- Rest represent the absolute value or magnitude
 - three low order bits: 0 (000) thru 7 (111)
- Range for n bits
 - +/- $(2^{n-1}-1)$ (two representations for 0)
- Cumbersome addition/subtraction
 - must compare magnitudes to determine sign of result

1s complement

- If N is a positive number, then the negative of N (its 1s complement or N') is N' = (2ⁿ - 1) - N
 - example: 1s complement of 7

$$2^{4} = 10000$$

-1 = -00001
2^{4}-1 = 1111
-7 = -0111
1000 = -7 in 1s complement form

shortcut: simply compute bit-wise complement (0111 -> 1000)

1s complement (cont'd)

- Subtraction implemented by 1s complement and then addition
- Two representations of 0
 - causes some complexities in addition
- High-order bit can act as sign bit

-0

+0

2s complement

- 1s complement with negative numbers shifted one position clockwise
 - only one representation for 0
 - one more negative number than positive numbers
 - high-order bit can act as sign bit

2s complement (cont'd)

 If N is a positive number, then the negative of N (its 2s complement or N*) is N* = 2ⁿ - N

example: 2s complement of 7

example: 2s complement of -7 example: 2s complement of -7 4 = 10000 1001 = repr. of -7 2 = 10000subtract -7 = 1001

0111 = repr. of 7

- shortcut: 2s complement = bit-wise complement + 1
 - 0111 -> 1000 + 1 -> 1001 (representation of -7)
 - 1001 -> 0110 + 1 -> 0111 (representation of 7)

Addition and subtraction

Sign and Magnitude

when operands have	4	0100	-4	1100
the same sign, the result has the same	+ 3	0011	+ <u>(-3)</u>	1011
sign as the operands	7	0111	-7	1111

when signs differ, operation is subtract.	4	0100	-4	1100
sign of result depends	- 3	1011	+ 3	0011
with larger magnitude	1	0001	-1	1001

Addition and subtraction (cont'd)

Ones' Complement

Addition and subtraction (cont'd)

Why does end-around carry work?

It's equivalent to subtracting 2n and adding 1

$$M - N = M + N' = M + (2^{n} - 1 - N) = (M - N) + 2^{n} - 1$$
 (M > N)
after end around carry:

= M - N

$$-M + (-N) = M' + N' = (2^{n} - M - 1) + (2^{n} - N - 1)$$

= 2ⁿ + [2ⁿ - 1 - (M + N)] - 1
(M + N < 2ⁿ⁻¹)

after end around carry:

$$= 2^{n} - 1 - (M + N)$$

this is the correct form for representing -(M + N) in 1s' comp!

Addition and subtraction (cont'd)

- 2s complement
 - simple scheme makes 2s complement the virtually unanimous choice for integer number systems in computers

Why can the carry-out be ignored?

- Can't ignore it completely
 - needed to check for overflow (see next two slides)
- When there is no overflow, carry-out may be true but can be ignored

-M + N when N > M:

$$M^* + N = (2^n - M) + N = 2^n + (N - M)$$

ignoring carry-out is just like subtracting 2ⁿ

-M + -N where $N + M \le 2^{n-1}$

$$(-M) + (-N) = M^* + N^* = (2^n - M) + (2^n - N) = 2^n - (M + N) + 2^n$$

ignoring the carry, it is just the 2s complement representation for -(M + N)

V - Combinational Logic Case Studies

Contemporary Logic Design

Overflow in 2s complement addition/subtraction

Overflow conditions

add two negative numbers to get a positive number

V - Combinational Logic Case Studies

Contemporary Logic Design

Overflow conditions

Overflow when carry into sign bit position is not equal to carry-out

$ovf = c_{n-1} \oplus c_n$			
	0111		1000
Б	0101	_	1001
2	<u>0011</u>	- /	1110
<u> </u>	1000	$\frac{-2}{7}$	10111
overflow		overflow	
	0000		1 1 1 1
_	0101		1101
5	0010	- 3	1011
	0111	<u>– 5</u>	11000
7		- 8	11000
no overflow	1	no overflow	

Used for floating point representation

3 23	
nent significand	
	nent significand M

F=(-1)^s 1.M 2^E

Arithmetic circuits

- Excellent examples of combinational logic design
- Time vs. space trade-offs
 - doing things fast may require more logic and thus more space
 - example: carry lookahead logic
- Arithmetic and logic units
 - general-purpose building blocks
 - critical components of processor datapaths
 - used within most computer instructions

Circuits for binary addition

Half adder (add 2 1-bit numbers)

- Sum = Ai' Bi + Ai Bi' = Ai xor Bi
- Cout = Ai Bi
- Full adder (carry-in to cascade for multi-bit adders)
 - Sum = Ci xor A xor B
 - Cout = B Ci + A Ci + A B = Ci (A + B) + A B = Ci (A xor B) + A B

					Ai	Bi	Cin	Sum	Cout
		I			0	0	0	0	0
Ai	Bi	Sum	Cout	_	0	0	1	1	0
0	0	0	0		0	1	0	1	0
0	1	1	0		0	1	1	0	1
1	0	1	0		1	0	0	1	0
1	1	0	1		1	0	1	0	1
					1	1	0	0	1
					1	1	1	1	1

Full adder implementations

- Standard approach
 - 6 gates
 - □ 2 XORs, 2 ANDs, 2 ORs

Full adder implementations

- Alternative implementation
 - Cout = A B + B Cin + A Cin = A B + Cin (A xor B)
 - 5 gates
 - 2 XORs, 2 ANDs, 1 OR
 - two half adders and one OR gate

А

В

Cin

Adder/subtractor

Use an adder to do subtraction thanks to 2s complement representation

$$\Box \quad A - B = A + (-B) = A + B' + 1$$

control signal selects B or 2s complement of B

Ripple-carry adders

Ripple-carry adders (cont'd)

Critical delay

- the propagation of carry from low to high order stages
- 1111 + 0001 is the worst case addition
- carry must propagate through all bits

Carry-lookahead logic

- Carry generate: Gi = Ai Bi
 - must generate carry when A = B = 1
- Carry propagate: Pi = Ai xor Bi
 - carry-in will equal carry-out here
- Sum and Cout can be re-expressed in terms of generate/propagate:

Carry-lookahead logic (cont'd)

Re-express the carry logic as follows:

- □ C1 = G0 + P0 C0
- \Box C2 = G1 + P1 C1 = G1 + P1 G0 + P1 P0 C0
- □ C3 = G2 + P2 C2 = G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 C0
- C4 = G3 + P3 C3 = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0 + P3 P2 P1 P0 C0

Each of the carry equations can be implemented with two-level logic

- all inputs are now directly derived from data inputs and not from intermediate carries
- this allows computation of all sum outputs to proceed in parallel

Carry-lookahead implementation

Adder with propagate and generate outputs

Carry-lookahead implementation (cont'd)

Carry-lookahead logic generates individual carries

- sums computed much more quickly in parallel
- however, cost of carry logic increases with more stages

Carry-lookahead adder

with cascaded carry-lookahead logic

Carry-select adder

- Redundant hardware to make carry calculation go faster
 - compute two high-order sums in parallel while waiting for carry-in
 - one assuming carry-in is 0 and another assuming carry-in is 1
 - select correct result once carry-in is finally computed

V - Combinational Logic Case Studies

Contemporary Logic Design

Arithmetic logic unit design specification

M = 0, logical bitwise operations

S1	SO	Function	Comment
0	0	Fi = Ai	input Ai transferred to output
0	1	Fi = not Ai	complement of Ai transferred to output
1	0	Fi = Ai xor Bi	compute XOR of Ai, Bi
1	1	Fi = Ai xnor Bi	compute XNOR of Ai, Bi
1, CO	= 0,	arithmetic operations	
0	0	$\mathbf{F} = \mathbf{A}$	input A passed to output
0	1	F = not A	complement of A passed to output
1	0	F = A plus B	sum of A and B
1	1	F = (not A) plus B	sum of B and complement of A
1, CO	= 1,	arithmetic operations	
0	0	F = A plus 1	increment A
0	1	F = (not A) plus 1	twos complement of A
1	0	F = A plus B plus 1	increment sum of A and B
1	1	F = (not A) plus B plus 1	B minus A

logical and arithmetic operations not all operations appear useful, but "fall out" of internal logic

M =

M =

Arithmetic logic unit design (cont'd)

Sample ALU – truth table

M	S1	SO	Ci	Ai	Bi	Fi	<u>Ci+1</u>
0	0	0	X	0	X	0	X
	0	1	Ŷ		Ŷ		Ŷ
	1	0	X X X	0 0 1	^ 0 1 0	0 0 1 1	× × ×
	1	1	X X X X X	1 0 1 1	1 0 1 0 1	0 1 0 0 1	X X X X X
1	0	0	0	0	X	0	X
	0	1	0		X	1	X
	1	0	0		^ 0 1	0 1	0 0
	1	1	0 0 0 0 0	1 1 0 1 1	0 1 0 1 0	1 0 1 0 1	0 1 0 1 0 0
1	0	0	1	0	X	1	0
	0	1	1		X	0	1
	1	0	1		0	1	0
	1	1	1 1 1 1 1	0 1 0 0 1	- 0 1 0 1 0	0 1 0 1 0	1 1 1 1 0 1

V - Combinational Logic Case Studies

Arithmetic logic unit design (cont'd)

Sample ALU – multi-level discrete gate logic implementation

12 gates

Arithmetic logic unit design (cont'd)

Sample ALU – clever multi-level implementation

first-level gates use S0 to complement Ai S0 = 0causes gate X1 to pass Ai S0 = 1causes gate X1 to pass Ai' use S1 to block Bi S1 = 0causes gate A1 to make Bi go forward as 0 (don't want Bi for operations with Ai) causes gate A1 to pass Bi S1 = 1use M to block Ci causes gate A2 to make Ci go forward as 0 M = 0(don't want Ci for logical operations) causes gate A2 to pass Ci M = 1other gates for M=0 (logical operations, Ci is ignored) Fi = S1 Bi xor (S0 xor Ai)= S1'S0' (Ai) + S1'S0 (Ai') + S1 S0' (Ai Bi' + Ai' Bi) + S1 S0 (Ai' Bi' + Ai Bi) for M=1 (arithmetic operations) Fi = S1 Bi xor ((S0 xor Ai) xor Ci) =Ci+1 = Ci (S0 xor Ai) + S1 Bi ((S0 xor Ai) xor Ci) =

just a full adder with inputs S0 xor Ai, S1 Bi, and Ci

V - Combinational Logic Case Studies

Combinational multiplier

Basic concept

Combinational multiplier (cont'd)

Partial product accumulation

				A3	A2	A1	A0
			_	B3	B2	B1	B0
				A2 B0	A2 B0	A1 B0	A0 B0
			A3 B1	A2 B1	A1 B1	A0 B1	
		A3 B2	A2 B2	A1 B2	A0 B2		
	A3 B3	A2 B3	A1 B3	A0 B3			
S7	S 6	S5	S 4	S 3	S2	S1	S0

Combinational multiplier (cont'd)

Note use of parallel carry-outs to form higher order sums

12 Adders, if full adders, this is 6 gates each = 72 gates16 gates form the partial productstotal = 88 gates!

Combinational multiplier (cont'd)

Another representation of the circuit

Building block: full adder + and

4 x 4 array of building blocks