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Binary Number Systems and 
Arithmetic Circuits
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Number systems

Representation of positive numbers is the same in most systems 
Major differences are in how negative numbers are represented 
Representation of negative numbers come in three major schemes

sign and magnitude
1s complement
2s complement
excess code

Assumptions
we'll assume a 4 bit machine word 
16 different values can be represented 
roughly half are positive, half are negative
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0 100 = + 4

1 100 = – 4

Sign and magnitude

One bit dedicated to sign (positive or negative)
sign: 0 = positive (or zero), 1 = negative

Rest represent the absolute value or magnitude
three low order bits: 0 (000) thru 7 (111)

Range for n bits
+/– (2n-1–1)  (two representations for 0)

Cumbersome addition/subtraction 
must compare magnitudes
to determine sign of result
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1s complement

If N is a positive number, then the negative of N (its 1s complement 
or N' ) is N' = (2n – 1) – N

example: 1s complement of 7

shortcut: simply compute bit-wise complement ( 0111 -> 1000 )

2 =  10000

-1 =- 00001

2   –1 =    1111

-7 =- 0111

1000   =  –7 in 1s complement form

4

4
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Subtraction implemented by 1s complement and then addition
Two representations of 0

causes some complexities in addition
High-order bit can act as sign bit

1s complement (cont'd)
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2s complement

1s complement with negative numbers shifted one position 
clockwise

only one representation for 0 
one more negative number
than positive numbers
high-order bit can act as sign bit
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2 = 10000

7 = 0111

1001  = repr. of –7

4

2 = 10000

–7 = 1001

0111  = repr. of 7

4

subtract

subtract

2s complement (cont’d)

If N is a positive number, then the negative of N (its 2s complement 
or N* ) is N* = 2n – N

example: 2s complement of 7

example: 2s complement of –7

shortcut: 2s complement = bit-wise complement + 1
0111 -> 1000 + 1 -> 1001  (representation of -7)
1001 -> 0110 + 1 -> 0111  (representation of 7)



Addition and subtraction

Sign and Magnitude
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when operands have
the same sign, the
result has the same
sign as the operands
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when signs differ,
operation is subtract.
sign of result depends
on the sign of the number
with larger magnitude
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End around carry

End around carry
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Addition and subtraction (cont'd)

Ones’ Complement 



Addition and subtraction (cont'd)

Why does end-around carry work?
It's equivalent to subtracting 2n  and adding 1

M - N  =  M + N'  =  M + (2n - 1 - N)  =  (M - N) + 2n - 1 (M > N)

-M + (-N)  =  M' + N'  =  (2n - M - 1) + (2n - N - 1)

= 2n + [2n - 1 - (M + N)] - 1
(M + N < 2n-1)

after end around carry:

=  2n - 1 - (M + N)

this is the correct form for representing -(M + N) in 1s’ comp!

after end around carry:
= M - N
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Addition and subtraction (cont'd)

2s complement
simple scheme makes 2s complement the virtually unanimous 
choice for integer number systems in computers
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Why can the carry-out be ignored?

Can't ignore it completely
needed to check for overflow (see next two slides)

When there is no overflow, carry-out may be true but can be ignored

– M + N when N > M:

M*  +  N  =  (2  – M)  +  N  =  2 +  (N – M)

ignoring carry-out is just like subtracting 2n

– M + – N where N + M ≤ 2n–1

(– M) + (– N) = M* +  N* = (2 – M) + (2 – N)   = 2  – (M + N)  +  2

ignoring the carry, it is just the 2s complement representation for – (M + N)

n n

n n n n
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Overflow in 2s complement 
addition/subtraction

Overflow conditions
add two positive numbers to get a negative number
add two negative numbers to get a positive number
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5
3

– 8

0  1  1  1

0 1 0 1
0 0 1 1
1 0 0 0

– 7
– 2

7

1  0  0  0

1 0 0 1
1 1 1 0

1 0 1 1 1

5
2
7

0  0  0  0

0 1 0 1
0 0 1 0
0 1 1 1

– 3
– 5
– 8

1  1  1  1

1 1 0 1
1 0 1 1

1 1 0 0 0

overflow overflow

no overflow no overflow

Overflow when carry into sign bit position is not equal to carry-out

Overflow conditions

ovf = cn-1 ⊕ cn



Excess code

0000
0001

0010

0011

1000
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Used for floating point representation

F=(-1)s 1.M 2E

Excess 8 code

sign
S

exponent
E

significand
M

1 8 23
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Arithmetic circuits

Excellent examples of combinational logic design
Time vs. space trade-offs

doing things fast may require more logic and thus more space
example: carry lookahead logic

Arithmetic and logic units
general-purpose building blocks
critical components of processor datapaths
used within most computer instructions
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Ai Bi Sum Cout
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Ai Bi Cin Sum Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Circuits for binary addition

Half adder (add 2 1-bit numbers)
Sum = Ai' Bi + Ai Bi' = Ai xor Bi
Cout = Ai Bi

Full adder (carry-in to cascade for multi-bit adders)
Sum = Ci xor A xor B
Cout = B Ci +  A Ci +  A B = Ci (A + B) + A B= Ci (A xor B) + A B



V - Combinational Logic Case 
Studies Contemporary Logic Design 18

A
B

Cin
S

A

A

B

B

Cin
Cout

Full adder implementations

Standard approach
6 gates
2 XORs, 2 ANDs, 2 ORs
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A
B

Cin
S

A

A

B

B

Cin
Cout

A

B

A xor B

Cin

A xor B xor Cin
Half

Adder

Sum

Cout Cin (A xor B)A B

Sum

Cout

Half
Adder

Sum

Cout

Full adder implementations
Alternative implementation

Cout = A B + B Cin + A Cin = A B + Cin (A xor B) 
5 gates
2 XORs, 2 ANDs, 1 OR
two half adders and one OR gate
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A B

Cout

Sum

Cin

0 1

Add'
Subtract

A0 B0B0'

Sel

Overflow

A B

Cout

Sum

Cin

A1 B1B1'

Sel

A B

Cout

Sum

Cin

A2 B2B2'

Sel 0 1 0 10 1

A B

Cout

Sum

Cin

A3 B3B3'

Sel

S3 S2 S1 S0

Adder/subtractor

Use an adder to do subtraction thanks to 2s complement representation
A – B  =   A + (– B)   =   A + B' + 1
control signal selects B or 2s complement of B
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A

A

B

B
Cin Cout

@0
@0

@0
@0

@N

@1

@1

@N+1

@N+2

late
arriving
signal

two gate delays
to compute Cout

4 stage adder
1111+0000
-->1111+0001

What if C0=1?
A0
B0

C0=0

S0 @2

A1
B1

C1 @2

S1 @3

A2
B2

C2 @4

S2 @5

A3
B3

C3 @6

S3 @7
Cout @8

Ripple-carry adders

Critical delay
the propagation of carry from 
low to high order stages
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T0 T2 T4 T6 T8

S0, C1 Valid S1, C2 Valid S2, C3 Valid S3, C4 Valid

Ripple-carry adders (cont’d)

Critical delay
the propagation of carry from low to high order stages
1111 + 0001 is the worst case addition
carry must propagate through all bits
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Carry-lookahead logic

Carry generate:  Gi = Ai Bi
must generate carry when A = B = 1

Carry propagate:  Pi = Ai xor Bi
carry-in will equal carry-out here

Sum and Cout can be re-expressed in terms of generate/propagate:
Si = Ai xor Bi xor Ci

= Pi xor Ci
Ci+1 = Ai Bi + Ai Ci + Bi Ci

= Ai Bi + Ci (Ai + Bi)
= Ai Bi + Ci (Ai xor Bi)
= Gi + Ci Pi

Ai

Ai

Bi

Bi
Ci Ci+1

Pi

Gi
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Carry-lookahead logic (cont’d)

Re-express the carry logic as follows:
C1 = G0 + P0 C0
C2 = G1 + P1 C1 = G1 + P1 G0 + P1 P0 C0
C3 = G2 + P2 C2 = G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 C0
C4 = G3 + P3 C3 = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0

+ P3 P2 P1 P0 C0

Each of the carry equations can be implemented with two-level logic
all inputs are now directly derived from data inputs and not from 
intermediate carries
this allows computation of all sum outputs to proceed in parallel
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G3

C0

C0

C0

C0

P0

P0

P0

P0
G0

G0

G0

G0
C1 @ 3

P1

P1

P1

P1

P1

P1

G1

G1

G1

C2  @ 3

P2

P2

P2

P2

P2

P2

G2

G2

C3 @ 3

P3

P3

P3

P3

C4 @ 3

Pi @ 1 gate delay

Ci Si @ 2 gate delays

Bi
Ai

Gi @ 1 gate delay

increasingly complex
logic for carries

Carry-lookahead implementation

Adder with propagate and generate outputs

1 gate delay
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A0
B0

0

S0 @2

A1
B1

C1 @2

S1 @3

A2
B2

C2 @4

S2 @5

A3
B3

C3 @6

S3 @7
Cout @8

A0
B0

0

S0 @2

A1
B1

C1 @3

S1 @4

A2
B2

C2 @3

S2 @4

A3
B3

C3 @3

S3 @4

C4 @3 C4 @3

Carry-lookahead logic generates individual carries
sums computed much more quickly in parallel
however, cost of carry logic increases with more stages

Carry-lookahead implementation (cont’d)
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Lookahead Carry Unit
C0

P0 G0P1 G1P2 G2P3 G3 C3 C2 C1

C0

P3-0 G3-0

C4

@3@2
@4

@3@2
@5

@3@2
@5

@3@2

@5

@5@3

@0
C16

A[15-12]B[15-12]
C12

S[15-12]

A[11-8] B[11-8]
C8

S[11-8]

A[7-4] B[7-4]
C4

S[7-4]
@7@8@8

A[3-0] B[3-0]
C0

S[3-0]

@0

@4

4 4

4
P G

4-bit Adder

4 4

4
P G

4-bit Adder

4 4

4
P G

4-bit Adder

4 4

4
P G

4-bit Adder

Carry-lookahead adder
with cascaded carry-lookahead logic

Carry-lookahead adder
4 four-bit adders with internal carry lookahead
second level carry lookahead unit extends lookahead to 16 bits

G = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0

P = P3 P2 P1 P0

C1 = G3-0 + P3-0 C0C2 = G7-4 + P7-4 G3-0 + P7-4 P3-0 C0

P3-0 G3-0P7-4 G7-4P11-8G11-8P15-12 G15-12
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4-Bit Adder
[3:0]

C0C4

4-bit adder
[7:4]

1C8

0C8

five
2:1 mux

01010101

adder 
low

adder
high

01

4-bit adder
[7:4]

C8 S7 S6 S5 S4 S3 S2 S1 S0

Carry-select adder

Redundant hardware to make carry calculation go faster
compute two high-order sums in parallel while waiting for carry-in
one assuming carry-in is 0 and another assuming carry-in is 1
select correct result once carry-in is finally computed
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logical and arithmetic operations
not all operations appear useful, but "fall out" of internal logic

S1
0
0
1
1

S0
0
1
0
1

Function
Fi = Ai

Fi = not Ai
Fi = Ai xor Bi

Fi = Ai xnor Bi

Comment
input Ai transferred to output
complement of Ai transferred to output
compute XOR of Ai, Bi
compute XNOR of Ai, Bi

M = 0, logical bitwise operations

M = 1, C0 = 0, arithmetic operations
0
0
1
1

0
1
0
1

F = A
F = not A

F = A plus B
F = (not A) plus B

input A passed to output
complement of A passed to output
sum of A and B
sum of B and complement of A

M = 1, C0 = 1, arithmetic operations
0
0
1
1

0
1
0
1

F = A plus 1
F = (not A) plus 1
F = A plus B plus 1

F = (not A) plus B plus 1

increment A
twos complement of A
increment sum of A and B
B minus A

Arithmetic logic unit design specification
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M
0

1

1

S1
0

0

1

1

0

0

1

1

0

0

1

1

S0
0

1

0

1

0

1

0

1

0

1

0

1

Ci
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1

Ai
0
1
0
1
0
0
1
1
0
0
1
1
0
1
0
1
0
0
1
1
0
0
1
1
0 
1
0
1
0
0
1
1
0
0
1
1

Bi
X
X
X
X
0
1
0
1
0
1
0
1
X
X
X
X
0
1
0
1
0
1
0
1
X
X
X
X
0
1
0
1
0
1
0
1

Fi
0
1
1
0
0
1
1
0
1
0
0
1
0
1
1
0
0
1
1
0
1
0
0
1
1
0
0
1
1
0
0
1
0
1
1
0

Ci+1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
1
0
1
0
0
0
1
1
0
0
1
1
1
1
1
0
1

Arithmetic logic unit design (cont’d)

Sample ALU – truth table
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12 gates

\S1
\Bi

[35]

[35] M

M

M
S1
Bi

[33][33]

[33]

[33]

S0
Ai

[30]

[30]

[30]

[30]

[30]

Ci

Ci

Ci

Ci

Co

\Co

\Co

\Co

\[30]
\[35]

Fi

Arithmetic logic unit design (cont’d)

Sample ALU – multi-level discrete gate logic implementation
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BiS1 AiS0 CiM

FiCi+1

X1

X2

X3

A1 A2

A3 A4

O1

first-level gates
use S0 to complement Ai

S0 = 0 causes gate X1 to pass Ai
S0 = 1 causes gate X1 to pass Ai'

use S1 to block Bi
S1 = 0 causes gate A1 to make Bi go forward as 0

(don't want Bi for operations with Ai)
S1 = 1 causes gate A1 to pass Bi

use M to block Ci
M = 0 causes gate A2 to make Ci go forward as 0

(don't want Ci for logical operations)
M = 1 causes gate A2 to pass Ci

other gates
for M=0 (logical operations, Ci is ignored)

Fi = S1 Bi xor (S0 xor Ai)
= S1'S0' ( Ai ) + S1'S0 ( Ai' ) +

S1 S0' ( Ai Bi' + Ai' Bi ) + S1 S0 ( Ai' Bi' + Ai Bi )
for M=1 (arithmetic operations)

Fi = S1 Bi xor ( ( S0 xor Ai ) xor Ci ) = 
Ci+1 = Ci (S0 xor Ai) + S1 Bi ( (S0 xor Ai) xor Ci ) =

just a full adder with inputs S0 xor Ai, S1 Bi, and Ci

Arithmetic logic unit design (cont’d)
Sample ALU – clever multi-level implementation



Combinational multiplier

Basic concept

multiplicand

multiplier

1101   (13)

1011   (11)

1101

1101

0000

1101

*

10001111 (143)

Partial products

product of 2 4-bit numbers
is an 8-bit number



Combinational multiplier (cont’d)

Partial product accumulation

A0

B0

A0 B0

A1

B1

A1 B0

A0 B1

A2

B2

A2 B0

A1 B1

A0 B2

A3

B3

A2 B0

A2 B1

A1 B2

A0 B3

A3 B1

A2 B2

A1 B3

A3 B2

A2 B3A3 B3

S6 S5 S4 S3 S2 S1 S0S7



Combinational multiplier (cont’d)

Note use of parallel carry-outs to form higher order sums

12 Adders, if full adders, this is 6 gates each = 72 gates

16 gates form the partial products

total = 88 gates!

A 0 B 0 A 1 B 0 A 0 B 1 A 0 B 2 A 1 B 1 A 2 B 0 A 0 B 3 A 1 B 2 A 2 B 1 A 3 B 0 A 1 B 3 A 2 B 2 A 3 B 1 A 2 B 3 A 3 B 2 A 3 B 3 

HA 

S 0 S 1 

HA 

F A 

F A 

S 3 

F A 

F A 

S 4 

HA 

F A 

S 2 

F A 

F A 

S 5 

F A 

S 6 

HA 

S 7 



Combinational multiplier (cont’d)
Another representation of the circuit

A3 B0

S

A2 B0

S

A1 B0

S

A0 B0

S

A3 B1

S

A2 B1

S
C

A1 B1

S
C

A0 B1

S
C

A3 B2

S

A2 B2

S
C

A1 B2

S
C

A0 B2

S
C

A3 B3

S

A2 B3

S

A1 B3

S

A0 B3

S

B0

B1

B2

B3

P7 P6 P5 P4 P3 P2 P1 P0

A3 A2 A1 A0

Building block: full adder + and

4 x 4 array of building blocks

F A 

X 

Y 

A B 

S 
CI CO 

Cin Sum In 

Sum Out Cout 

C C C
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