21 Analyticity

21.1 Limit, Continuity.

limit.

$$
\begin{gathered}
\lim _{z \rightarrow z_{0}} f(z)=l . \\
\left(\begin{array}{l}
|f(z)-l|<\varepsilon . \\
\left|z-z_{0}\right|<\delta
\end{array}\right.
\end{gathered}
$$

continuity : $\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)$
a function $f(z)$ is said to be continuous at $z=z_{0}$
Derivative.

$$
\begin{gathered}
f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z} \\
\Delta z=z-z_{0}, z=z_{0}+\Delta z \\
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
\end{gathered}
$$

Example 1. Differentiability, Derivative.

$$
\begin{gathered}
f(z)=z^{2} \\
f^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{(z+\Delta z)^{2}-z^{2}}{\Delta z}=\lim _{\Delta z \rightarrow 0} \frac{z^{2}+2 z \Delta z+(\Delta z)^{2}-z^{2}}{\Delta z}=\lim _{\Delta z \rightarrow 0}(2 z+\Delta z)=2 z
\end{gathered}
$$

Differentiation rules.

$$
\begin{gathered}
(c f)^{\prime}=c f^{\prime}, \quad(f+g)^{\prime}=f^{\prime}+g^{\prime}, \quad(f g)^{\prime}=f^{\prime} g+f g^{\prime} \\
\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}} \\
\left(z^{n}\right)^{\prime}=n z^{n-1}(\mathrm{n} \text { : integer })
\end{gathered}
$$

Example 2. \bar{z} not differentiable.

$$
\begin{gathered}
f(z)=\bar{z}=x-i y . \\
\frac{f(z+\Delta z)-f(z)}{\Delta z}=\frac{(z+\Delta z)-\Delta z}{\Delta z}=\frac{\Delta \bar{z}}{\Delta z}=\frac{\Delta x-i \Delta y}{\Delta x+i \Delta y} \quad \begin{array}{l}
\Delta x \rightarrow 0:-1 . \\
\Delta y \rightarrow 0:+1 .
\end{array}
\end{gathered}
$$

Analytic Functions.

Definition (Analyticity).

A function $f(z)$ is said to be analytic in a domain D if $f(z)$ is defined and differentiable at all points of D . The function $f(z)$ is said to be analytic at a point $z=z_{0}$ in D if $f(z)$ is analytic in a neighborhood of z_{0}. Also, by an analytic we mean a function that is analytic in some domain.

Example 3. Polynomials, rational functions.
polynomials $\quad 1, z, z^{2}, \cdots$
quotient of two polynomials $g(z), h(z)$

$$
f(z)=\frac{g(z)}{h(z)} \text { : rational function }
$$

21.2 Cauchy-Riemann Equations. Laplace's Equation.

$$
w=f(z)=u(x, y)+i v(x, y)
$$

Cauchy-Riemann equations.
(1)

$$
u_{x}=v_{y}, u_{y}=-v_{y}
$$

f is analytic in a domain D if and only if the first partial derivatives of u, v satisfy the two so-called Cauchy-Riemann equations everywhere in D.

Theorem 1 (Cauchy-Riemann equations).
Let $f(z)=u(x, y)+i u(x, y)$ be defined and continuous in some neighborhood of a point $z=x+i y$ and differentiable at z itself. Then at that point, the first-order partial derivatives of u and v exist and satisfy the Cauchy-Riemann equations (1). Hence if $f(z)$ is analytic in a domain D , those partial derivatives exist and satisfy (1) at all points of D .

Proof.

(2)

$$
\begin{gathered}
f^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z} \quad\left(\begin{array}{l}
f(z)=u+i v \\
z=x+i y
\end{array}\right. \\
\Delta z=\Delta x+i \Delta y .
\end{gathered}
$$

(3)

$$
f^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{u(x+\Delta x, y)-u(x, y)}{\Delta x}+i \lim _{\Delta x \rightarrow 0} \frac{v(x+\Delta x, y)-v(x, y)}{\Delta x}
$$

i) path I. $\Delta y \rightarrow 0$.

$$
\begin{equation*}
f^{\prime}(z)=\lim _{\Delta x \rightarrow 0} \frac{u x+\Delta x, y)-u(x, y)}{\Delta x}+i \lim _{\Delta x \rightarrow 0} \frac{v(x+\Delta x, y)-v(x, y)}{\Delta x} \tag{4}
\end{equation*}
$$

$$
f^{\prime}(z)=u_{x}+i v_{x}
$$

ii) Path II. $\Delta x \rightarrow 0$.

$$
f^{\prime}(z)=\lim _{\Delta y \rightarrow 0} \frac{u(x, y+\Delta y)-u(x, y)}{i \Delta y}+i \lim _{\Delta y \rightarrow 0} \frac{v(x, y+y+\Delta y)-v(x, y)}{i \Delta y}
$$

(5)

$$
f^{\prime}(z)=-i u_{y}+v_{y}
$$

$(4)=(5) \quad \therefore u_{x}=v_{y} v_{x}=-u_{y}$.
Theorem 2 (Cauchy-Riemann equations)
If two real-valued continuous functions $u(x, y)$ and $v(x, y)$ of two real variables x and y have continuous derivatives that satisfy the Cauchy-Riemann equations in some domain D , then the complex function $f(z)=u(x, y)+i v(x, y)$ is analytic in D .

Example 3. An analytic function of constant absolute value is constant. Show that if $f(z)$ is analytic in a domain D and $\mid f(z)=k=$ constant in D , then $f(z)=$ const in D .

Solution. $u^{2}+v^{2}=k^{2}$.

$$
u u_{x}+v v_{x}=0, u u_{y}+v v_{y}=0
$$

Cauchy-Riemann equations. $v_{x}=-u_{y}, \& v_{y}=u_{x}$

$$
\begin{align*}
& u \cdot u_{x}-v \cdot u_{y}=0 \\
& u \cdot u_{y}-v \cdot u_{x}=0
\end{align*}
$$

(a) $\cdot u+(\mathrm{b}) \cdot v:\left(u^{2}+v^{2}\right) \cdot u_{x}=0$.
$(\mathrm{a}) \cdot(-v)+(\mathrm{b}) \cdot u:\left(u^{2}+v^{2}\right) \cdot u_{y}=0$.
i) if $k^{2}=u^{2}+v^{2}=0$ then $u=v=0 \rightarrow f=0$.
ii) $u_{x}=u_{y}=0$ by C-R eq. $v_{x}=v_{y}=0$

$$
u=v=\mathrm{const} \rightarrow f=\mathrm{const}
$$

Polar form. $z=r(\cos \theta+i \sin \theta)$

$$
\begin{gathered}
f(z)=u(r, \theta)+i v(r, \theta) \\
x=r \cos \theta, y=r \sin \theta \cdot \rightarrow r=\sqrt{x^{2}+y^{2}}, \theta=\arctan \frac{y}{x} \\
r_{x}=\frac{x}{\left(x^{2}+y^{2}\right)^{1} / 2}=\frac{x}{r}, \quad r_{y}=\frac{y}{\left(x^{2}+y^{2}\right)^{1} / 2}=\frac{y}{r} \\
\theta_{x}=\frac{1}{1+(y / x)^{2}}\left(-\frac{y}{x^{2}}\right)=-\frac{y}{x^{2}+y^{2}}=-\frac{y}{r^{2}} \\
\theta_{y}=\frac{1}{1+(y / x)^{2}} \cdot \frac{1}{x}=\frac{x}{x^{2}+y^{2}}=\frac{x}{r^{2}} \\
u_{x}=u_{r} \cdot r_{x}+u_{\theta} \cdot \theta_{x}=\frac{x}{r} \cdot u_{r}-\frac{y}{r^{2}} u_{\theta} \\
u_{y}=v_{r} \cdot r_{y}+v_{\theta} \cdot \theta_{y}=\frac{y}{r} \cdot v_{r}+\frac{x}{r^{2}} v_{\theta} .
\end{gathered}
$$

Since $u_{x}=v_{y} \quad r x \cdot u_{r}-y u_{\theta}=r y v_{r}+x v_{\theta} \cdots$ a)

$$
\begin{aligned}
u_{y}=u_{r} \cdot r_{y}+u_{\theta} \cdot \theta_{y} & =\frac{y}{r} u_{r}+\frac{x}{r^{2}} u_{\theta} . \\
-v_{x} & =-v_{r} \cdot r_{x}-v_{\theta} \cdot \theta_{x}
\end{aligned}=-\frac{x}{r} \cdot v_{r}+\frac{y}{r^{2}} v_{\theta} . ~ \$
$$

Since $u_{y}=-v_{x} \quad r_{y} u_{r}+x u_{\theta}=-r x v_{r}+y v_{\theta} \cdots$ b)
a) $\times x+\mathrm{b}) \times y \quad u_{r} \cdot r \cdot\left(x^{2}+y^{2}\right)=v_{\theta}\left(x^{2}+y^{2}\right)$

$$
\therefore u_{r}=\frac{1}{r} v_{\theta}
$$

a) $\times y-$ b) $\times x:-\left(y^{2}+x^{2}\right) u_{\theta}=r\left(y^{2}+x^{2}\right) v_{r}$

$$
\therefore v_{r}=-\frac{1}{r} u_{\theta}
$$

(7) $u_{r}=\frac{1}{r} v_{\theta}, v_{r}=-\frac{1}{r} u_{\theta} \quad(r>0)$

21.3 Laplace's Equation. Harmonic Functions. \Rightarrow (Solution of Laplace's Equation)

Theorem 3 (Laplace's equation)
If $f(z)=u(x, y)+i v(x, y)$ is analytic in a domain D , then u and v satisfy Laplace's equation.
(8) $\nabla^{2} u=u_{x x}+u_{y y}=0$.
and
(9) $\nabla^{2} v=v_{x x}+v_{y y}=0$.
respectively, in D and have continuous second partial derivatives in D.

Proof.

i) $\left.\begin{array}{l}u_{x}=v_{y} \Rightarrow u_{x x}=v_{y x} \\ u_{y}=-v_{x} \Rightarrow u_{y y}=-v y x\end{array}\right) \Rightarrow u_{x x}+u_{y y}=0$
ii) $\left.\begin{array}{l}u_{x}=v_{y} \Rightarrow u_{x y}=v_{y y} \\ u_{y}=-v_{x} \Rightarrow u_{y x}=-v x x\end{array}\right) \Rightarrow v_{x x}+v_{y y}=0$

If two harmonic functions u and v satisfy the Cauchy-Riemann equations in a domain D , they are the real and imaginary parts of an analytic function f in D .
Then v is said to be a conjugate harmonic function of u in D .

Example 4. How to find a conjugate harmonic function by the Cauchy-Riemann equations.

$$
u=x^{2}-y^{2}-y
$$

sol) $u_{x}=2 x, u_{x x}=2, u_{y}=-2 y-1, u_{y y}=-2$.

$$
u_{x x}+u_{y y}=2-2=0 \quad \therefore \text { harmonic function. }
$$

By C-R. $v_{y}=u_{x}=2 x, v_{x}=-u_{y}=2 y+1$.

$$
\begin{gathered}
v=2 x y+h(x) \Rightarrow v_{x}=2 y+d h / d x \\
\therefore d h / d x=1 \Rightarrow h(x)=x+c \\
v=2 x y+x+c
\end{gathered}
$$

