Chapter 4 Calculation of Thermodynamic Properties

Energy

An average energy of one molecule

$$
\langle\varepsilon\rangle=\frac{E}{N}=\frac{\sum_{n} \varepsilon_{n} a_{n}}{N}=\sum_{n} \varepsilon_{n} \frac{a_{n}}{N}
$$

ε_{n} : the level energy
a_{n} : the occupation number for the level

The Boltzmann distribution for a series of non-degenerate energy levels

$$
\begin{aligned}
& \frac{a_{n}}{N}=\frac{e^{-\beta \varepsilon_{n}}}{q} \\
& \langle\varepsilon\rangle=\sum_{n} \varepsilon_{n} P_{n}=\sum_{n} \varepsilon_{n} \frac{a_{n}}{N}=\frac{1}{q} \sum_{n} \varepsilon_{n} e^{-\beta \varepsilon_{n}} ;-\frac{d q}{d \beta}=\sum_{n} \varepsilon_{n} e^{-\beta \varepsilon_{n}} \\
& \therefore\langle\varepsilon\rangle=-\frac{1}{q} \frac{d q}{d \beta}=-\frac{d \ln q}{d \beta} \\
& E=N\langle\varepsilon\rangle=-\frac{N}{q}\left(\frac{d q}{d \beta}\right)=-N\left(\frac{d \ln q}{d \beta}\right) \\
& \beta=\frac{1}{k T} \rightarrow \frac{d \beta}{d T}=\frac{d}{d T}(k T)^{-1}=-\frac{1}{k T^{2}} \\
& \therefore\langle\varepsilon\rangle=k T^{2}\left(\frac{d \ln q}{d T}\right) \\
& E=N k T^{2}\left(\frac{d \ln q}{d T}\right)
\end{aligned}
$$

Example:

Determine the total energy of an ensemble consisting of N particles that have only two energy levels separated by $h v$.

Figure 1. Depiction of the two-level system.

For the two-level system, the probability of occupying the excited energy level is

$$
\begin{aligned}
P_{1} & =\frac{a_{1}}{N}=\frac{e^{-\beta h v}}{q}=\frac{e^{-\beta h v}}{1+e^{-\beta h v}} \\
& =\frac{1}{e^{\beta h v}+1}
\end{aligned}
$$

At $T=0, P_{1}=0$
P_{1} increases until $h v \ll k T$.
At high temperature, $P_{1} \rightarrow 0.5$

Figure 2. Total energy as a function of temperature is presented for an ensemble consisting of units that have two energy levels separated by an amount $h v$.

Figure 3. The probability of occupying the excited state in a two-level system is shown as a function of temperature.

Energy and the Canonical Partition Function

Canonical ensemble: N, V, T are held constant; No p - V work

$$
\begin{aligned}
& \therefore U-U_{o}=q_{V} \\
& Q=\frac{q^{N}}{N!} \\
& \ln Q=\ln \left(\frac{q^{N}}{N!}\right)=N \ln q-\ln N! \\
& \begin{aligned}
\frac{d \ln Q}{d \beta} & =\frac{d}{d \beta}(N \ln q)-\frac{d}{d \beta}(\ln N!) \\
& =N \frac{d \ln q}{d \beta}
\end{aligned}
\end{aligned}
$$

Since $\langle\varepsilon\rangle=-\frac{d \ln q}{d \beta}, \frac{d \ln Q}{d \beta}=-N\langle\varepsilon\rangle=-U$

$$
U=-\left(\frac{d \ln Q}{d \beta}\right)_{v} \quad \text { Note: } E=U+p V . \text { At const } V, E=U .
$$

Example:

For an ensemble consisting of a mole of particles having two energy levels separated by $h v=1 \times 10^{-20} \mathrm{~J}$, at what temperature will the internal energy of this system equal 1.00 kJ ?

Energy and Molecular Energetic Degree of Freedom

$$
\begin{aligned}
q_{t o t} & =q_{t} q_{r} q_{v} q_{e} \\
U & =-\left(\frac{d \ln Q}{d \beta}\right)_{V}=-N\left(\frac{d \ln q}{d \beta}\right)_{V}=-N\left(\frac{d \ln q_{t} q_{r} q_{v} q_{e}}{d \beta}\right)_{V} \\
& =-N\left(\frac{d}{d \beta}\left(\ln q_{t}+\ln q_{r}+\ln q_{v}+\ln q_{e}\right)\right)_{V} \\
& =-N\left[\left(\frac{d \ln q_{t}}{d \beta}\right)_{V}+\left(\frac{d \ln q_{r}}{d \beta}\right)_{V}+\left(\frac{d \ln q_{v}}{d \beta}\right)_{V}+\left(\frac{d \ln q_{e}}{d \beta}\right)_{V}\right] \\
& =U_{t}+U_{r}+U_{v}+U_{e}
\end{aligned}
$$

Translations

$$
U_{t}=-\frac{N}{q_{t}}\left(\frac{d q_{t}}{d \beta}\right)_{V}, \text { where } q_{t}=\frac{V}{\Lambda^{3}}, \Lambda^{3}=\left(\frac{h^{2} \beta}{2 \pi m}\right)^{\frac{3}{2}}
$$

$$
\begin{aligned}
\therefore U_{t} & =-\frac{N}{q_{t}}\left(\frac{d q_{t}}{d \beta}\right)_{V}=-\frac{N \Lambda^{3}}{V}\left(\frac{d}{d \beta}\left(\frac{V}{\Lambda^{3}}\right)\right) \quad \Lambda^{3}=\left(\frac{h^{2} \beta}{2 \pi m}\right)^{\frac{3}{2}} \\
& =-N \Lambda^{3}\left(\frac{d}{d \beta}\left(\frac{2 \pi m}{h^{2} \beta}\right)^{\frac{3}{2}}\right)_{V} \\
& =-N \Lambda^{3}\left(\frac{2 \pi m}{h^{2}}\right)^{\frac{3}{2}}\left(\frac{d}{d \beta} \beta^{-\frac{3}{2}}\right)_{V} \\
& =-N \Lambda^{3}\left(\frac{2 \pi m}{h^{2}}\right)^{\frac{3}{2}}\left(-\frac{3}{2} \beta^{-\frac{5}{2}}\right) \\
& =\frac{3}{2} N \Lambda^{3}\left(\frac{2 \pi m}{h^{2} \beta}\right)^{\frac{3}{2}} \beta^{-1} \\
& =\frac{3}{2} N \beta^{-1} \\
\therefore U_{t} & =\frac{3}{2} N k T=\frac{3}{2} n R T
\end{aligned}
$$

Rotations

For a diatomic molecule in the high-temperature limit within the rigid rotor approximation,

$$
q_{r}=\frac{1}{\sigma \beta h c B}
$$

$$
\begin{aligned}
U_{r} & =-\frac{N}{q_{r}}\left(\frac{d q_{r}}{d \beta}\right)_{V}=-N \sigma \beta h c B\left(\frac{d}{d \beta} \frac{1}{\sigma \beta h c B}\right)_{V}=-N \beta\left(\frac{d}{d \beta} \beta^{-1}\right)_{V} \\
& =-N \beta\left(-\beta^{-2}\right)=N \beta^{-1} \\
\therefore U_{r} & =N k T=n R T
\end{aligned}
$$

The concept of equipartition

$$
\begin{array}{ll}
U_{r}=n R T & \text { (linear polyatomic) } \\
U_{r}=\frac{3}{2} R T & \text { (non-linear polyatomic) }
\end{array}
$$

Vibrations

$$
\begin{aligned}
q_{v} & =\frac{1}{1-e^{-\beta h c \tilde{v}}} \\
U_{v} & =-\frac{N}{q_{v}}\left(\frac{d q_{v}}{d \beta}\right)_{V}=-N\left(1-e^{-\beta h c \tilde{v}}\right)\left(\frac{d}{d \beta}\left(\frac{1}{1-e^{-\beta h c \tilde{v}}}\right)\right)_{V} \\
& =-N\left(1-e^{-\beta h c \tilde{v}}\right)\left(-h c \tilde{v} e^{-\beta h c \tilde{v}}\right)\left(1-e^{-\beta h c \tilde{v}}\right)^{-2} \\
& =\frac{N h c \tilde{v} e^{-\beta h c \tilde{v}}}{\left(1-e^{-\beta h c \tilde{v}}\right)} \\
& =\frac{N h c \tilde{v}}{e^{\beta h c \tilde{v}}-1}
\end{aligned}
$$

Figure 4. The variation in average vibrational energy as a function of temperature where $\tilde{v}=1000 \mathrm{~cm}^{-1}$.

For the high-temperature limit, $k T \gg h c \tilde{v}$, i.e., $T \gg \theta_{v}$.

$$
\begin{aligned}
& e^{x}=1+x+\frac{x^{2}}{2}+\cdots \cong 1+x \quad x \ll 1 \\
& x=\beta h c \tilde{v}=\frac{h c \tilde{v}}{k T}, k T \gg h c \tilde{v} \quad U_{v}=\frac{N h c \tilde{v}}{e^{\beta h c \tilde{v}}-1} \\
& U_{v}=\frac{N h c \tilde{v}}{e^{\beta h c \tilde{v}}-1}=\frac{N h c \tilde{v}}{(1+\beta h c \tilde{v})-1}=\frac{N h c \tilde{v}}{\beta h c \tilde{v}}=\frac{N}{\beta}=N k T=n R T
\end{aligned}
$$

$$
\theta_{v}=\frac{h c \tilde{v}}{k}
$$

The high-temperature limit is applicable when $T \geq 10 \theta_{v}$.

Review

For a diatomic molecule,

$$
\begin{aligned}
U_{\text {tot }} & =U_{t}+U_{r}+U_{v}+U_{e} \\
& =\frac{3}{2} N k T+N k T+\frac{N h c \tilde{v}}{e^{\beta h c \tilde{v}}-1}+0 \\
& =\frac{5}{2} N k T+\frac{N h c \tilde{v}}{e^{\beta h c \tilde{v}}-1}
\end{aligned}
$$

Heat Capacity

$$
C_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}=-k \beta^{2}\left(\frac{\partial U}{\partial \beta}\right)_{V}
$$

Example:
Determine the heat capacity for an ensemble consisting of units that have only two energy levels separated by an arbitrary amount of energy $h v$.

Translational Heat Capacity

For an ideal gas,

$$
\begin{aligned}
& U_{t}=\frac{3}{2} N k T \\
& C_{V, t}=\left(\frac{d U_{t}}{d T}\right)_{V}=\frac{3}{2} N k
\end{aligned}
$$

Rotational Heat Capacity

$$
\begin{array}{ll}
U_{r}=N k T & \text { (linear) } \\
U_{r}=\frac{3}{2} N k T & \text { (non-linear) } \\
C_{V, r}=N k & \text { (linear) } \\
C_{V, r}=\frac{3}{2} N k & \text { (non-linear) }
\end{array}
$$

Vibrational Heat Capacity

$$
\begin{aligned}
& U_{v}= \frac{N h c \tilde{v}}{e^{\beta h c \tilde{v}}-1} \\
& \begin{aligned}
\therefore C_{V, v} & =\left(\frac{d U_{v}}{d T}\right)_{V}=-k \beta^{2}\left(\frac{d U_{v}}{d \beta}\right)_{V} \\
& =-N k \beta^{2} h c \tilde{v}\left(\frac{d}{d \beta}\left(\frac{1}{e^{\beta h c \tilde{v}}-1}\right)\right)_{V} \\
& =-N k \beta^{2} h c \tilde{v}\left(-\frac{h c \tilde{v} e^{\beta h c \tilde{v}}}{\left(e^{\beta h c \tilde{v}}-1\right)^{2}}\right)_{V} \\
& =N k \beta^{2}(h c \tilde{v})^{2} \frac{e^{\beta h c \tilde{v}}}{\left(e^{\beta h c \tilde{v}}-1\right)^{2}} \\
& =N k\left(\frac{\theta_{v}}{T}\right)^{2} \frac{e^{\theta_{v} / T}}{\left(e^{\theta_{v} / T}-1\right)^{2}}
\end{aligned}
\end{aligned}
$$

For a polyatomic molecule, it has $3 N-6$ or $3 N-5$ vibrational dergee of freedom.

$$
\left(C_{V, v}\right)_{t o t}=\sum_{m=1}^{3 N-6 \text { or } 3 N-5}\left(C_{V, v}\right)_{m}
$$

Figure 5. Evolution in the vibrational contribution to C_{V} as a function of temperature. Calculations are for a molecule with three vibrational degrees of freedom as indicated in the top panel. Contribution for each vibrational mode (top) and the total vibrational contribution (bottom).

Review

For a diatomic molecule,

$$
\begin{aligned}
C_{V, t o t} & =C_{V, t}+C_{V, r}+C_{V, v} \\
& =\frac{3}{2} N k+N k+N k \beta^{2}(h c \tilde{v})^{2} \frac{e^{\beta h c \tilde{v}}}{\left(e^{\beta h c \tilde{v}}-1\right)^{2}} \\
& =\frac{5}{2} N k+N k \beta^{2}(h c \tilde{v})^{2} \frac{e^{\beta h c \tilde{v}}}{\left(e^{\beta h c \tilde{v}}-1\right)^{2}}
\end{aligned}
$$

Figure 6. The constant volume heat capacity for gaseous HCl as a function of temperature. The contributions of translational (yellow), rotational (orange), and vibrational (light blue) degrees of freedom to the heat capacity are shown.

The Einstein Solid

The Einstein solid model was developed to describe the thermodynamic properties of atomic crystalline systems.

1. All of the harmonic oscillators are assumed to be separable.
2. The harmonic oscillators are assumed to be isoenergetic.

For a crystal containing N atoms, there are $3 N$ vibrational degrees of freedom

$$
C_{V, \text { tot }}=3 N k\left(\frac{\theta_{v}}{T}\right)^{2} \frac{e^{\theta_{v} / T}}{\left(e^{\theta_{v} / T}-1\right)^{2}}
$$

The total heat capacity is identical to that of a collection of $3 N$ harmonic oscillators.

Note that the model predicts that the heat capacity should reach a limiting value of $24.91 \mathrm{~J} / \mathrm{mol} K$ or $3 R$ at high temperature.
This limiting law is known as the Dulong and Petit Law, and represents the high-temperature or classical prediction for the heat capacity of such systems.

A plot of C_{V} versus T / θ_{v} can describe the variation in heat capacity for all solids.

Figure 8. Comparison of C_{V} versus T / Θ_{v} for C, Cu, and Al .

Entropy

entropy \Rightarrow a measure of the distribution of energy

partition function

$$
\begin{aligned}
U & =U(0)+\sum_{n} \varepsilon_{n} a_{n} \\
d U & =d U(0)+\sum_{n} a_{n} d \varepsilon_{n}+\sum_{n} \varepsilon_{n} d a_{n} \\
d U & =\sum_{n} \varepsilon_{n} d a_{n} \quad \leftarrow \text { at constant volume }\left(d \varepsilon_{n}=0\right) \\
d U & =d q_{r e v}=T d S
\end{aligned}
$$

$$
\therefore d S=\frac{d U}{T}=k \beta \sum_{n} \varepsilon_{n} d a_{n}
$$

$$
\beta \varepsilon_{n}=\frac{\partial \ln W}{\partial a_{n}}+\alpha \quad\left(\leftarrow \frac{\partial \ln W}{\partial a_{n}}+\alpha-\beta \varepsilon_{n}=0\right)
$$

$$
\begin{aligned}
\therefore d S & =k \sum_{n}\left(\frac{\partial \ln W}{\partial a_{n}}\right) d a_{n}+k \alpha \sum_{n} d a_{n} \\
& =k \sum_{n}\left(\frac{\partial \ln W}{\partial a_{n}}\right) d a_{n}=k(d \ln W) \\
(& \left.\leftarrow \sum_{n} d a_{n}=0, \text { i.e., the number of molecules is constant }\right)
\end{aligned}
$$

$\therefore S=k \ln W$ the Boltzmann formula

$$
\begin{aligned}
S & =k \ln \left[\frac{N!}{\prod_{n} a_{n}!}\right]=k \ln N!-k \ln \prod_{n} a_{n}! \\
& =k \ln N!-k \sum_{n} \ln a_{n}!=k(N \ln N-N)-k \sum_{n}\left(a_{n} \ln a_{n}-a_{n}\right) \\
& =k\left(N \ln N-\sum_{n} a_{n} \ln a_{n}\right) \quad\left(\leftarrow \sum a_{n}=N\right) \\
& =k\left(\sum_{n} a_{n} \ln N-\sum_{n} a_{n} \ln a_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-k \sum_{n} a_{n} \ln \frac{a_{n}}{N} \\
& =-k \sum_{n} a_{n} \ln P_{n}
\end{aligned}
$$

where P_{n} is the probability of occupying energy level n.

$$
\begin{aligned}
& \ln P_{n}=\ln \left(\frac{e^{-\beta \varepsilon_{n}}}{q}\right)=-\beta \varepsilon_{n}-\ln q \\
& \begin{aligned}
\therefore S & =-k \sum_{n} a_{n} \ln P_{n} \\
& =-k\left(\sum_{n} a_{n}\left(-\beta \varepsilon_{n}-\ln q\right)\right) \\
& =k \beta \sum_{n} a_{n} \varepsilon_{n}+k \sum_{n} a_{n} \ln q \\
& =k \beta E+k N \ln q
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{E}{T}+k \ln q^{N} \\
& =\frac{E}{T}+k \ln Q \\
& =\frac{U}{T}+k \ln Q \\
U & =-\left(\frac{\partial \ln Q}{\partial \beta}\right)_{V}=k T^{2}\left(\frac{d \ln Q}{d T}\right)_{V} \\
\therefore S & =\frac{U}{T}+k \ln Q=k T\left(\frac{d \ln Q}{d T}\right)_{V}+k \ln Q \\
& =\left(\frac{d}{d T}(k T \ln Q)\right)_{V}
\end{aligned}
$$

Entropy of an Ideal Monatomic Gas

$$
\begin{aligned}
S & =\left(\frac{d}{d T}(k T \ln Q)\right)_{V}=\frac{U}{T}+k \ln Q \\
& =\frac{1}{T}\left(\frac{3}{2} N k T\right)+k \ln \frac{q_{\text {rans }}^{N}}{N!} \quad\left(\leftarrow U=\frac{3}{2} N k T \text { for monoatomic gas }\right) \\
& =\frac{3}{2} N k+N k \ln q_{\text {trans }}-k(N \ln N-N) \\
& =\frac{5}{2} N k+N k \ln q_{\text {rann }}-N k \ln N \\
& =\frac{5}{2} N k+N k \ln \frac{V}{\Lambda^{3}}-N k \ln N \\
& =\frac{5}{2} N k+N k \ln V-N k \ln \Lambda^{3}-N k \ln N \\
& =\frac{5}{2} N k+N k \ln V-N k \ln \left(\frac{h^{2}}{2 \pi m k T}\right)^{3 / 2}-N k \ln N
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{5}{2} N k+N k \ln V+\frac{3}{2} N k \ln T-N k \ln \left(\frac{N^{2 / 3} h^{2}}{2 \pi m k}\right)^{3 / 2} \\
& =\frac{5}{2} n R+n R \ln V+\frac{3}{2} n R \ln T-n R \ln \left(\frac{n^{2 / 3} N_{A}^{2 / 3} h^{2}}{2 \pi m k}\right)^{3 / 2}
\end{aligned}
$$

The Sackur-Tetrode Equation

$$
\therefore S=n R \ln \left[\frac{V e^{\frac{5}{2}}}{n N_{A} \Lambda^{3}}\right]=n R \ln \left[\frac{R T e^{\frac{5}{2}}}{\Lambda^{3} N_{A} p}\right] \quad \text { where } \Lambda^{3}=\left(\frac{h^{2}}{2 \pi m k T}\right)^{\frac{3}{2}}
$$

$V_{1} \rightarrow V_{2}$ for an ideal monatomic gas

$$
\Delta S=S_{\text {final }}-S_{\text {initial }}=n R \ln \frac{V_{2}}{V_{1}}
$$

\because The second term of the Sackur-Tetrode equation depends only on volume while the other terms are unchanged.

$$
\begin{aligned}
& T_{1} \rightarrow T_{2} \quad \Delta V=0 \\
& \\
& \quad \Delta S=S_{\text {final }}-S_{\text {initial }}=\frac{3}{2} n R \ln \frac{T_{2}}{T_{1}}=n C_{V} \ln \frac{T_{2}}{T_{1}}
\end{aligned}
$$

Example:

Determine the standard molar entropy of Ne and Kr under standard thermodynamic conditions ($298 \mathrm{~K}, V_{m}=24.4 \mathrm{l}=0.0244 \mathrm{~m}^{3}$).

Residual Entropy

For CO, at thermodynamic standard temperature and pressure

$$
\begin{aligned}
& S_{\text {cal }}=197.9 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K} \\
& S_{\text {exp }}=193.3 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K} \\
& S_{\text {cal }}-S_{\text {exp }}=4.6 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}=\text { residual entropy }
\end{aligned}
$$

Figure 9. The origin of residual entropy for CO. Each CO molecule in the solid can have one of two possible orientations as illustrated by the central CO. Each CO will have two possible directions such that the total number of arrangements possible is 2^{N} where N is the number of CO molecules.

Because each CO molecule can assume one of two possible orientations, the entropy associated with this orientational order is
$S=k \ln W=k \ln 2^{N}=N k \ln 2=n R \ln 2$
For $1 \mathrm{~mol}, S=R \ln 2=5.76 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
Note: The third law of thermodynamics states that the entropy of a pure and crystalline substance is zero at $0 K$.

Other Thermodynamic Functions

$$
\begin{aligned}
& H=U+p V \\
& A=U-T S \\
& G=H-T S
\end{aligned}
$$

Helmholtz Energy

$$
\begin{aligned}
A & =U-T S=U-T\left(\frac{U}{T}+k \ln Q\right) \quad\left(\leftarrow S=\frac{U}{T}+k \ln Q\right) \\
& =-k T \ln Q \\
p & =-\left(\frac{\partial A}{\partial V}\right)_{T} \\
& =-\left(\frac{\partial(-k T \ln Q)}{\partial V}\right)_{T} \\
& =k T\left(\frac{\partial}{\partial V} \ln Q\right)_{T} \\
Q & =\frac{q^{N}}{N!} \\
p & =k T\left(\frac{\partial}{\partial V} \ln \frac{q^{N}}{N!}\right)_{T}
\end{aligned}
$$

$$
\begin{aligned}
& =k T\left(\frac{\partial}{\partial V} \ln q^{N}-\frac{\partial}{\partial V} \ln N!\right)_{T} \\
& =k T\left(\frac{\partial}{\partial V} \ln q^{N}\right)_{T} \\
& =N k T\left(\frac{\partial}{\partial V} \ln q\right)_{T}
\end{aligned}
$$

For a monatomic gas,

$$
\begin{aligned}
q & =\frac{V}{\Lambda^{3}} \\
\therefore p & =N k T\left(\frac{\partial}{\partial V} \ln \frac{V}{\Lambda^{3}}\right)_{T} \\
& =N k T\left(\frac{\partial}{\partial V} \ln V-\frac{\partial}{\partial V} \ln \Lambda^{3}\right)_{T} \\
& =N k T\left(\frac{\partial}{\partial V} \ln V\right)_{T} \\
& =\frac{N k T}{V}=\frac{n R T}{V} \quad(\leftarrow \text { ideal gas law })
\end{aligned}
$$

Enthalpy

$$
\begin{array}{rlr}
H & =U+p V \\
& =-\left(\frac{\partial}{\partial \beta} \ln Q\right)_{V}+V\left(-\frac{\partial A}{\partial V}\right)_{T} & \left(\leftarrow p=-\left(\frac{\partial A}{\partial V}\right)_{T}\right) \\
& =-\left(\frac{\partial}{\partial \beta} \ln Q\right)_{V}+V\left(-\frac{\partial(-k T \ln Q)}{\partial V}\right)_{T} & (\leftarrow A=-k T \ln Q) \\
& =k T^{2}\left(\frac{\partial \ln Q}{\partial T}\right)_{V}+V k T\left(\frac{\partial \ln Q}{\partial V}\right)_{T} \\
& =T\left[k T\left(\frac{\partial \ln Q}{\partial T}\right)_{V}+V k\left(\frac{\partial \ln Q}{\partial V}\right)_{T}\right]
\end{array}
$$

Gibbs Energy

$$
G=A+p V
$$

$$
\begin{aligned}
& =-k T \ln Q+V k T\left(\frac{\partial \ln Q}{\partial V}\right)_{T} \\
& =-k T\left[\ln Q-V\left(\frac{\partial \ln Q}{\partial V}\right)_{T}\right]
\end{aligned}
$$

For an ideal gas,

$$
\begin{aligned}
G & =A+p V \\
& =-k T \ln Q+N k T \\
& =-k T \ln \left(\frac{q^{N}}{N!}\right)+N k T \\
& =-k T \ln q^{N}+k T \ln N!+N k T \\
& =-N k T \ln q+k T(N \ln N-N)+N k T \\
& =-N k T \ln q+N k T \ln N \\
& =-N k T \ln \left(\frac{q}{N}\right)=-n R T \ln \left(\frac{q}{N}\right)
\end{aligned}
$$

Example:

Calculate the Gibbs energy for 1 mol of Ar at 298.15 K and standard pressure ($10^{5} \mathrm{~Pa}$), assuming that the gas demonstrates ideal behavior.

Chemical Equilibrium

For the reaction $a A+b B=c C+d D$,

$$
\Delta G^{0}=c G_{C}^{0}+d G_{D}^{0}-a G_{A}^{0}-b G_{B}^{0}
$$

$$
\Delta G^{0}=-R T \ln K
$$

$$
\begin{aligned}
\Delta G^{0} & =c\left(-R T \ln \left(\frac{q_{C}^{0}}{N}\right)\right)+d\left(-R T \ln \left(\frac{q_{D}^{0}}{N}\right)\right)-a\left(-R T \ln \left(\frac{q_{A}^{0}}{N}\right)\right)-b\left(-R T \ln \left(\frac{q_{B}^{0}}{N}\right)\right) \\
& =-R T\left(\ln \left(\frac{q_{C}^{0}}{N}\right)^{c}+\ln \left(\frac{q_{D}^{0}}{N}\right)^{d}-\ln \left(\frac{q_{A}^{0}}{N}\right)^{a}-\ln \left(\frac{q_{B}^{0}}{N}\right)^{b}\right) \\
& =-R T \ln \left[\frac{\left(\frac{q_{C}^{0}}{N}\right)^{c}\left(\frac{q_{D}^{0}}{N}\right)^{d}}{\left(\frac{q_{A}^{0}}{N}\right)^{a}\left(\frac{q_{B}^{0}}{N}\right)^{b}}\right]
\end{aligned}
$$

$$
\therefore K_{p}=\left[\frac{\left(\frac{q_{C}^{0}}{N}\right)^{c}\left(\frac{q_{D}^{0}}{N}\right)^{d}}{\left(\frac{q_{A}^{0}}{N}\right)^{a}\left(\frac{q_{B}^{0}}{N}\right)^{b}}\right]
$$

The vibrational and electronic ground state are not equivalent for all species, since the presence of a bond between the two atoms in the molecule lowers the energy of the molecule relative to the separated atomic fragments.

Figure 10. The groundstate potential energy curve for a diatomic molecule.

Because the energy of the atomic fragments is defined as zero, the ground vibrational state is lower than zero by an amount equal to the dissociation energy of the molecule, ε_{D}.

$$
\begin{aligned}
q_{v}^{\prime} & =\sum_{n} e^{-\beta \varepsilon_{n}}=e^{-\beta\left(-\varepsilon_{D}\right)}+e^{-\beta\left(-\varepsilon_{D}+h c \tilde{v}\right)}+e^{-\beta\left(-\varepsilon_{D}+2 h c \tilde{v}\right)}+\cdots \\
& =e^{\beta \varepsilon_{D}}\left(1+e^{-\beta h c \tilde{v}}+e^{-2 \beta h c \tilde{v}}+\cdots\right) \\
& =e^{\beta \varepsilon_{D}} q_{v}
\end{aligned}
$$

$$
\therefore K_{p}=\frac{\left(\frac{q_{C}^{0}}{N}\right)^{c}\left(\frac{q_{D}^{0}}{N}\right)^{d}}{\left(\frac{q_{A}^{0}}{N}\right)^{a}\left(\frac{q_{B}^{0}}{N}\right)^{b}} e^{\beta\left(c \varepsilon_{C}+d \varepsilon_{D}-a \varepsilon_{A}-b \varepsilon_{B}\right)}
$$

$$
=\frac{\left(\frac{q_{C}^{0}}{N}\right)^{c}\left(\frac{q_{D}^{0}}{N}\right)^{d}}{\left(\frac{q_{A}^{0}}{N}\right)^{a}\left(\frac{q_{B}^{0}}{N}\right)^{b}} e^{-\beta \Delta \varepsilon}
$$

Example:

What is the general form of the equilibrium constant for the dissociation of a diatomic molecule?

$$
\mathrm{X}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{X}(\mathrm{~g})
$$

Summary

$q_{\text {total }}=q_{t} q_{r} q_{v} q_{e}$
$q_{t}=\frac{V}{\Lambda^{3}}$ where $\Lambda=\left(\frac{h^{2} \beta}{2 \pi m}\right)^{1 / 2}$
$q_{r}=\frac{1}{\sigma \beta h c B}$ where $B=\frac{h}{8 \pi^{2} c I} ; I=\mu r^{2} ; \mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \quad$ for diatomic
$q_{r}=\frac{\sqrt{\pi}}{\sigma}\left(\frac{1}{\beta h c B_{A}}\right)^{1 / 2}\left(\frac{1}{\beta h c B_{B}}\right)^{1 / 2}\left(\frac{1}{\beta h c B_{C}}\right)^{1 / 2}$ for non-linear polyatomic
$q_{v}=\frac{1}{1-e^{-\beta h c \tilde{v}}}$
$\left(q_{v}\right)_{\text {total }}=\sum_{i=1}^{3 N-50 \mathrm{r} 3 N-6}\left(q_{v}\right)_{i}$
$Q=q^{N}$ for distinguishable
$Q=\frac{q^{N}}{N!}$ for indistinguishable

Canonical ensemble

$$
\begin{aligned}
& U=-\left(\frac{d \ln Q}{d \beta}\right)_{V} \\
& S=\left(\frac{d}{d T}(k T \ln Q)\right)_{V} \\
& A=-k T \ln Q \\
& p=k T\left(\frac{\partial \ln Q}{\partial V}\right)_{T} \\
& G=-k T\left[\ln Q-V\left(\frac{\partial \ln Q}{\partial V}\right)_{T}\right] \\
& \mu=-k T\left(\frac{\partial \ln Q}{\partial N}\right)_{V, T}
\end{aligned}
$$

