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Chapter 4 Calculation of 
Thermodynamic Properties 
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Example:  
   Determine the total energy of an ensemble consisting of  
   N particles that have only two energy levels separated by hv. 

Figure 1. Depiction of the 
two-level system. 



For the two-level system,  
the probability of occupying 
the excited energy level is 
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At T=0, P1=0 
P1 increases until hv<<kT. 
At high temperature, P1 → 0.5 

Figure 2. Total energy as a function of  
temperature is presented for an ensemble 
consisting of units that have two energy  
levels separated by an amount hv.  

Figure 3. The probability of  
occupying the excited state in  
a two-level system is shown as 
a function of temperature.  



Canonical ensemble: N, V, T are held constant; No p-V work 
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Energy and the Canonical Partition Function 



Example:  
   For an ensemble consisting of a mole of particles having two  
   energy levels separated by hv=1x10−20 J, at what temperature 
   will the internal energy of this system equal 1.00 kJ? 



Energy and Molecular Energetic Degree 
of Freedom 
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Rotations 
For a diatomic molecule in the high-temperature limit within the 
rigid rotor approximation, 
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Vibrations 
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Figure 4. The variation in average 
vibrational energy as a function of 
temperature where                      .  11000 cmν −=

For the high-temperature limit,   , i.e., .vkT hc Tν θ 
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For a diatomic molecule, 



Heat Capacity 
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Example:  
  Determine the heat capacity for an ensemble consisting of units that 
  have only two energy levels separated by an arbitrary amount of 
  energy hν. 



Translational Heat Capacity 
For an ideal gas, 
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Rotational Heat Capacity 
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Vibrational Heat Capacity 
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For a polyatomic molecule, it has 3N-6 or 3N-5  
vibrational dergee of freedom. 
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Figure 5. Evolution in the vibrational 
contribution to CV as a function of temperature. 
Calculations are for a molecule with three 
vibrational degrees of freedom as indicated 
in the top panel. Contribution for each 
vibrational mode (top) and the total vibrational 
contribution (bottom). 
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Figure 6. The constant volume heat capacity 
for gaseous HCl as a function of temperature. 
The contributions of translational (yellow), 
rotational (orange), and vibrational (light blue) 
degrees of freedom to the heat capacity are 
shown. 

For a diatomic molecule, 



The Einstein Solid 
The Einstein solid model was developed to describe the thermodynamic  
properties of atomic crystalline systems. 
 
1. All of the harmonic oscillators are assumed to be separable. 
2. The harmonic oscillators are assumed to be isoenergetic. 

For a crystal containing N atoms, there are 3N vibrational degrees of 
freedom  
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The total heat capacity is identical to that of a collection of 3N 
harmonic oscillators. 



Figure 7. Comparison of CV for 
diamond to the theoretical prediction of 
the Einstein solid model. The classical 
limit of 24.91 J/mol K is shown as the 
dashed line. 

Note that the model predicts that the heat capacity should reach a 
limiting value of 24.91 J/mol K or 3R at high temperature. 
This limiting law is known as the Dulong and Petit Law, and 
represents the high-temperature or classical prediction for the heat 
capacity of such systems. 

the Dulong and Petit Law 



Figure 8. Comparison of CV 
versus           for C, Cu, and Al. vT Θ

A plot of CV versus T/θv can describe the variation in heat capacity 
for all solids. 
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Entropy of an Ideal Monatomic Gas 

3
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( U NkT← = for monoatomic gas)
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V1→V2   for an ideal monatomic gas 
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Example: 
  Determine the standard molar entropy of Ne and Kr under standard 
  thermodynamic conditions (298 K, Vm= 24.4 l = 0.0244 m3). 



Residual Entropy 
For CO, at thermodynamic standard temperature and pressure 
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Figure 9. The origin of residual entropy for CO. Each CO molecule in the 
solid can have one of two possible orientations as illustrated by the central CO. 
Each CO will have two possible directions such that the total number of 
arrangements possible is 2N where N is the number of CO molecules.  



Because each CO molecule can assume one of two possible orientations, 
the entropy associated with this orientational order is  

ln ln 2 ln 2 ln 2NS k W k Nk nR= = = =

For 1 mol,  ln 2 5.76  S R J mol K= = ⋅

Note: The third law of thermodynamics states that the entropy of a  
          pure and crystalline substance is zero at 0 K. 
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Helmholtz Energy 
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Enthalpy 
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For an ideal gas,  
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Example:  
   Calculate the Gibbs energy for 1 mol of Ar at 298.15 K and  standard 
   pressure (105 Pa), assuming that the gas demonstrates ideal behavior. 
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Chemical Equilibrium 
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The vibrational and electronic ground state are not equivalent for all 
species, since the presence of a bond between the two atoms in the  
molecule lowers the energy of the molecule relative to the separated 
atomic fragments. 

Figure 10. The ground-
state potential energy 
curve for a diatomic 
molecule.  
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Because the energy of the atomic fragments is defined as zero, the 
ground vibrational state is lower than zero by an amount equal to the 
dissociation energy of the molecule,     . Dε
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Figure 11. The statistical interpretation of 
equilibrium. (a) Reactant and product species 
having equal ground-state energies are 
depicted. However, the energy spacings of the 
product are less than the reactant such that 
more product states are available at a given 
temperature. Therefore, equilibrium will lie 
with the product. (b) Reactant and product 
species having equal state spacings are 
depicted. In this case, the product states are 
higher in energy than those of the reactant 
such that equilibrium lies with the reactant. 

(b) 



Example: 
   What is the general form of the equilibrium constant for the 
   dissociation of a diatomic molecule? 
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Canonical ensemble 
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