
Chapter 22. Molecular Reaction Dynamics 
Molecular encounters 
In solution we cannot so easily speak of collisions because the 
relative migration of the species is diffusional and the solvent 
hinders their free flight, but the rate at which the potentially 
reactive species encounter each other in solution can be calculated 
and related to the diffusion constants of the dissolved species. 

Collision theory 
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where σ : the collision cross-section,   
µ : the reduced mass. 

( )2
A BR Rπ +

The collision rate of A with B per unit vol. is ZAB. Therefore the rate 
of change of the number of A molecules per unit vol.,                     , is 
ZAB multiplied by the proportion of collisions that occur with a 
kinetic energy along the line of approach in excess of some threshold 
value Ea. 
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Reaction 
A / dm3mol−1s−1 

Ea / kJmol−1 P = σ∗/σ 
Experimental Theory 

2NOCl → 2NO + Cl2 9.4  x 109  5.9  x 1010 102 0.16 
2NO2 → 2NO + O2 2.0  x 109  4.0  x 1010 111 0.05 
2ClO → Cl2 + O2 6.3  x 107  2.5  x 1010 0 2.5  x 10−3 

K + Br2 → KBr + Br   1.0  x 1012 2.1  x 1010 0 4.8 
H2 + C2H4 → C2H6 1.24  x 106 7.3  x 1011 180 1.7  x 10−6 

Table 1 Activation energies, pre-exponential factors for gas-phase 
reactions 



Collision with sufficient energy is not the only criterion for reaction, 
and some other factor, such as the relative orientation of the colliding 
species, has taken into account.  

The reactive cross-section Pσ σ∗ =

P: Local properties of the reaction, the orientations required of the 
species, and the details of how close they have to come in order 
to react, so-called the steric factor. 
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‘harpoon mechanism’ 

When two molecules are close enough, an electron flips across to 
the Br2. In place of two neutral species there are now two ions, 
and so there is a Coulombic attraction between them. Under this 
influence the ions move together, the reaction takes place. 



The calculation depends on estimating the distance between K atom 
and Br2 molecules at which it is energetically favorable for the 
electron to leap from one to another. 

Ionization energy from K atom = I(K) 

Electron affinity of Br2 molecule = EA(Br2) 

Coulombic interaction between two ions 
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Calculation of  P values for K + Br2 

where R: the separation 
distance. 

The total change of energy 
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usually I(K) > EA(Br2) ⇒ ∆E becomes negative only when R has 
decreased to less than some critical value 
R* given by 
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the reactive cross-section 2
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where d = R(K) + R(Br2) 

For  K + Br2 → KBr + Br, 

         I(K) = 420 kJ/mol, EA(Br2) < 300 kJ/mol, d ≈ 310 pm 
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∴ P < 12, which is consistent with the experimental value of 4.8. 



Reactions in solution: diffusion control 

 The molecular motion is diffusional, in place of free flight, but 
the concepts of activation energy and steric requirements survive.  

 Since a molecule migrates only slowly into the region of a 
possible reaction partner, it also migrates only slowly away from 
it. In other words, the members of the encounter pair linger in 
each other’s vicinity for much longer than in a gas, and so their 
chance of undergoing reaction is greatly enhanced. 

The activation energy of reaction is a much more complicated 
quantity in solution than in the gas, for the encounter pair is 
surrounded by solvent, and its energy is determined by all the 
interactions. 
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kd: determined by the diffusion 
constants 

The encounter pair can break up without reaction or it can react to 
give products. 
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the steady-state approximation for (AB) 
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determined by the rate at which the species 
diffuse together through the medium: the 
reaction is diffusion-controlled. 
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In this case, the rate depends on the 
accumulation of energy in the encounter 
pair as a result of its interaction with the 
solvent molecules: the reaction is 
activation-controlled. 



Consider a static A molecule immersed in a solvent also containing B 
molecules. Consider a sphere of radius r surrounding the static 
molecule. What is the total flow of B molecules through its surface? 

2ˆ 4J r Jπ= total flow 
flux (the amount of material passing 
        through unit area per unit time) 

ˆ :J

From Fick’s first law of diffusion, 
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[B]: the molar concentration of the B molecules 
DB: their diffusion constant in the medium 

Calculation of the rate at which the molecules 
diffuse together 
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Figure 1 

The concentration profile for reaction 
in solution when a molecule B 
diffuses towards another reactant 
molecule and reacts if it reaches R*. 



The overall concentration of B at any distance from A 

1.  When r ~ ∞, the concentration of B is the same as in the bulk 
solution [B]. 

2.  The total flow through a shell is the same whatever its distance 
from A, because no molecules are destroyed until A and B touch: 
therefore     is a constant independent of r.  
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At critical distance R*, A and B ‘touch’, reaction takes place, and B is 
removed: that is, when r = R*, [B]r = R* = 0. When this condition is 
substituted into the last equation we obtain an expression for the flow 
of B towards A: 
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This flow is the average amount of B molecules per unit time passing 
through any spherical surface centered on any A. 

The rate of the diffusion-controlled reaction is equal to the average flow 
of B molecules to all the A molecules in the sample. 
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Then the diffusion-controlled rate coefficient can be identified as 

Number of A molecules in the sample of volume V = NA[A]V 

∴ Global flow of all B to all A = 4πR*DBNA[A][B]V. 

A: static; B: mobile → unrealistic: This is easily remedied by replacing 
the diffusion coefficient DB by D = 
DA+DB. 

k2 = kd = 4πR*DNA 



RA, RB: the effective hydrodynamic 
radii of A and B 

Strokes-Einstein relation 
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k2 = kd = 4πR*DNA 

                 = 4πR*(DA+DB)NA 



1. Note that the radii have cancelled, and so in this approximation 
k2 is independent of the species involved in the reaction. 

2. Temperature-dependence of diffusion-controlled reaction 
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3. The diffusion-controlled reactions between ions 
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the reaction coordinate: The horizontal axis of the diagram 
representing the course of the reaction 

the transition coordinate: A pair of reactants has been brought to 
the degree of closeness and distortion 
such that a small distortion in an 
appropriate direction will send the system 
in the direction of products. This crucial 
configuration is called the transition 
state of the reaction. 

 

Activated Complex Theory (ACT) 

The reaction coordinate and the transition state 



Figure 2 

A reaction profile (for an 
exothermic reaction). The 
horizontal axis is the reaction 
coordinate, and the vertical axis is 
potential energy. The activated 
complex is the region near the 
potential maximum, and the 
transition state corresponds to the 
maximum itself. 
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 where                : the concentration of activated complex. 
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K: some constant of proportionality 

Formation and decay of the activated complex 



Once the activated complex has been found, motion along the 
reaction coordinate corresponds to a distortion of some relevant 
bonds. 

If the frequency of the crucial vibration of the complex is ν ‡, the 
frequency of passing through the transition state is also ν ‡. The 
rate of passage through the true transition state is proportional to 
the vibrational frequency ν ‡ along the reaction coordinate, and 
write 

 k‡ = κν ‡      

κ : the transition coefficient usually unity 

Estimation of the concentration of the activated 
complex 
We assume that all distributions of energy compatible with a given 
total energy are equally likely. 
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Energy levels of reactants and the 
activated complex. 



The partition function for this vibrational mode 
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where ν ‡ : its frequency (the same 
frequency that determine k ‡) 

where     : the partition function for all 
the other modes of the 
activated complex 
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The rate constant 

Eyring equation 

where 



How to use the Eyring equation: 

The possibility of using the Eyring equation to calculate the rate of 
a reaction depends on being able to calculate the partition function 
for the species involved. The reaction partition function can 
normally be calculated with confidence, either by using 
spectroscopic information about the energy levels or from the 
approximate expressions.  

The real difficulty lies in the determination of the partition 
function for the activated complex. 
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A, B: structureless particles: The only contributions to their 
partition function are the 
translational terms. 

Example of the calculation of a rate constant: 
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The activated complex is a diatomic molecule of mass mAB = mA + mB 
and moment of inertia IAB. There is only one vibrational mode, but 
that corresponds to motion along the reaction coordinate, and so it 
does not appear in     .  ‡q
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µAB: the reduced mass, RAB: the bond length of the diatomic 
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 reactive cross-section σ∗ 
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Compare with k2 derived from the collision theory: 
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Thermodynamic aspects 
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Since the activation energy is defined as 
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Reactions between ions 
The application of activated complex theory to reactions in solution 
is very complicated because of the involvement of the solvent in the 
activated complex. We shall accept this difficulty, but avoid coming 
to a dead spot by using the thermodynamic approach to k2. 
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Relating the activity coefficients to the ionic strength of the solution 
using the Debye–Hückel Limiting Law: 
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Slope = 2 
Figure 4 

The experimental ionic strength 
dependence of the rate constant 
of a hydrolysis reaction: the slope 
gives information about the 
charge types involved in the 
activated complex of the rate-
determining step. 



Figure 5 

For a related series of reactions, 
as the magnitude of the standard 
reaction Gibbs energy increases, 
so the activation barrier 
decreases. The approximate 
linear correlation between     
and        is the origin of linear 
free energy relation (LFER).  
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Potential energy surfaces 

Consider a collision between H atom and an H2 molecule. The 
potential energy surface is the plot of the potential energy for all 
relative locations of the three hydrogen nuclei. Two parameters 
are required to define the nuclear separations: one is the HA–HB 
separation RAB, and the other is the HB–HC separation RBC. 

At the start of the encounter, RAB is infinite and RBC is the H2 
equilibrium bond length. At the end of a successful reactive 
encounter RAB is equal to the bond length and RBC is infinite. 



Figure 6 

The potential energy surface for the 
H + H2 reaction when the atoms are 
constrained to be collinear. 

AB = ∞R A section through the surface is the same as the H2 
potential energy curve.  

BC = ∞R A section through the surface is the molecular 
potential energy curve of an isolated HA–HB molecule. 



Figure 7 
The contour diagram (with contour of equal 
potential energy) corresponding to the 
surface in Fig. 6. Re marks the equilibrium 
bond length of an H2 molecule (strictly, it 
relates to the arrangement when the third 
atom is at infinity). 

Figure 8 
Various trajectories through the potential 
energy surface shown in Fig. 7. A 
corresponds to a path in which RBC is held 
constant as HA approaches; B corresponds to 
a path in which RBC lengthens at an early 
stage during the approach of HA. C is the path 
along the floor of the potential valley.  



Consider the changes in potential energy as HA approaches HB–
HC. If the HB–HC bond length is constant during the initial 
approach of HA, the potential energy of the H3 cluster would rise 
along the path marked A in Fig. 8. 

Path B: the HB–HC bond length increases while HA is still far 
away. 

Path C: the path of least potential energy RBC lengthening as 
HA approaches and begins to form a bond with HB. The 
HB–HC bond relaxes at the diamond of the incoming 
atom, and although the potential energy rises, it climbs 
only as far as the saddle-shaped region of the surface, 
to the saddle point marked C‡. 



The Dynamics of Electron transfer 

Electron transfer in homogeneous system 

Consider electron transfer from a donor species D to an acceptor 
species A in solution: 
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(1) Diffusion of D and A in solution 

(2) Complex formation 

 

(3) Reversible electron transfer 

 

(4) The formation of separated ions 
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Assuming that the main decay route for D+A− is dissociation 
of the complex into separated ions, or               :  '
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     The rate of product is controlled by diffusion of D and A in 
solution.  
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     This process controlled by the activation energy of electron  
transfer in the DA complex. 
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Using the transition state theory, 
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The Frank-Condon principle 

The nuclei do not have time to move when the system passes from 
the reactant to the product surface as a result of the transfer of an 
electron. 
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Figure 22.9 
The Gibbs energy surfaces of the 
complexes DA and D+A− involved in 
an electron transfer process are 
represented by parabolas 
characteristic of harmonic oscillators, 
with the displacement coordinate q 
corresponding to the changing 
geometries of the system. In the plot,      
and      are the values of q at which 
the minima of the reactant and 
product parabolas occur, respectively. 
The parabolas intersect at q=q*. The 
plots also portray the Gibbs energy of 
activation,        , the standard reaction 
Gibbs energy,         , and the 
reorganization energy, λ.   
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According to the theory for electron tunneling, 

et
rk e β−∝ (13) 

where β depends on the medium through which the 
electron must travel from donor to acceptor, and r is 
the edge-to-edge distance. 



Figure 22.10 
Correspondence between the electronic energy 
levels (shown on the left) and the nuclear energy 
levels (shown on the right) for the DA and D+A− 
complexes involved in an electron transfer process. 
(a) At the nuclear configuration denoted by      , the 
electron to be transferred in DA is in an occupied 
energy level and the lowest unoccupied energy level 
of D+A− is of too high energy to be a good electron 
acceptor. (b) As the nuclei rearrange to a 
configuration represented by q*, DA and D+A− 
become degenerate and electron transfer occurs by 
tunneling through the barrier of height V and width r, 
the edge-to-edge distance between donor and 
acceptor. (c) The system relaxes to the equilibrium 
nuclear configuration of  D+A− denoted by      , in 
which the lowest unoccupied electronic level of DA 
is higher in energy than the highest occupied 
electronic level of D+A−. 
(Adapted from R.A. Marcus and N. Sutin, Biochim. 
Biophys. Acta 1985, 811, 265.) 
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Figure 22.9 
The Gibbs energy surfaces of the 
complexes DA and D+A− involved in 
an electron transfer process are 
represented by parabolas 
characteristic of harmonic oscillators, 
with the displacement coordinate q 
corresponding to the changing 
geometries of the system. In the plot,      
and      are the values of q at which 
the minima of the reactant and 
product parabolas occur, respectively. 
The parabolas intersect at q=q*. The 
plots also portray the Gibbs energy of 
activation,        , the standard reaction 
Gibbs energy,         , and the 
reorganization energy, λ.   
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The expression for the rate of electron transfer 
The Gibbs energy of activation for electron transfer 

(14) ( )20

0 +
4

: the standard reaction Gibbs energy for DA D A
: the reorganization energy, the energy change associated

           with molecules rearrangements that must take place so 
            that

G
G

G

λ
λ

λ

−

∆ +
∆ =

∆ →

‡

+ DA can take on the equilibrium geometry of D A−

0 , 0G Gλ∆ = − ∆ =‡

The reaction is not slowed down by an activation barrier when the 
reorganization energy is equal to the standard reaction Gibbs energy. 

From eqs. (12) and (13), 
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Derivation of eq (14) 

DA R, D A P+ −= =

The molar Gibbs energies, ,R ,P( ) and ( )m mG q G q

( )

( )
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, : the value of  at which the minima of the reactant
           and product parabolas occur, respectively
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where α is the parameter representing the fractional change in q. 
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From eqs. (a), (b), (d) and (e), 
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From eqs. (f) and (g), 

(h) 2G α λ∆ =‡

Because                                 , combining eqs. (b), (c), (d), (g) and (h) 
gives 
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Combining eqs. (h) and (i), 
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Experimental results 
( )20
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Assuming that the edge-to-edge distance, the reorganization energy, 
and        are constant,  vκ ‡

20 0

et
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RT G Gk

RT RTλ
   ∆ ∆

= − − +   
   

A plot of          versus        should be shaped like a downward 
parabola.   
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Figure 22.11 
Variation of           with          for a series of 
compounds with the structures given in 1. 
Kinetic measurements were conducted in 2-
methyltetrahydrofuran and at 296 K. The 
distance between donor (the reduced biphenyl 
group) and the acceptor is constant for all 
compounds in the series because the 
molecular linker remains the same. Each 
acceptor has a characteristic standard 
reduction potential, so it follows that the 
standard Gibbs energy for the electron 
transfer process is different for each 
compound in the series. The line is a fit to a 
version of eq 17 and the maximum of the 
parabola occurs at 
 
(Reproduced with permission from J.R. Miller, 
L.T. Calcaterra, and G.L. Closs, J. Amer. 
Chem. Soc. 1984, 106, 3047.)   
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Electron Transfer Processes at Electrodes 
 
The electrode-solution interface 
 
Formation of electrical double layers at the boundary between 
the solid and liquid phases creates an electrical potential 
difference, called the Galvani potential difference. 
 
Models for the electrode-solution interface 
 
1. Helmholtz layer model 
 The location of the sheet of ionic charge, which is called the 

outer Helmholtz plane (OHP), is identified as the plane 
running through the solvated ions. Refinement of this model 
considers ions that have discarded their solvating molecules 
and have attached to the electrode surface by chemical bonds, 
forming the inner Helmholtz plane (IHP). 



Figure 22. 12 
A simple model of the electrode-
solution interface treats it as two 
rigid planes of charge. One plane, 
the outer Helmholtz plane (OHP), is 
due to the ions with their solvating 
molecules and the other plane is 
that of the electrode itself. The plot 
shows the dependence of the 
electric potential with distance from 
the electrode surface according to 
this model. Between the electrode 
surface and the OHP, the potential 
varies linearly from  φM, the value in 
the metal, to φS, the value in the 
bulk of the solution. 



2. The Gouy-Chapman model of the diffuse double layer 

    The disordering effect of thermal motion is taken into account in 
the some way as the Debye-Huckel model describes the ionic 
atmosphere of an ion. 

Figure 22. 13 
The Gouy-Chapman model of the 
electrical double layer treats the 
outer region as an atmosphere of 
counter-charge, similar to the 
Debye-Huckel theory of ion 
atmosphere. The plot of electrical 
potential against distance from the 
electrode surface shows the 
meaning of the diffuse double layer. 



3. The Stern model 

 The above two models are combined in the Stern model, in which 
the ions closest to the electrode are constrained into a rigid 
Helmholtz plane while outside that plane the ions are dispersed as 
in the Gouy-Chapman model. 

Figure 22. 14 
A representation of the Stern 
model of the electrode-solution 
interface. The model incorporates 
the ides of an outer Helmholtz 
plane near the electrode surface 
and of a diffuse double layer 
further away from the surface. 



The Butler-Volmer Equation 
Consider a reaction at the electrode in which an ion is reduced 
by the transfer of a single electron. 
The current density j : the electric current flowing an electrode 

divided by the area of the electrode 

{ }(1 )
0

:
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Ff F
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= −
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 E : the electrode potential at equilibrium (no net flow of current) 
E’ : the electrode potential when a current is being drawn from 

the cell 
 α : the transfer coefficient α=0 (reactant-like) α=1 (product-like) 
 j0 : the exchange-current density when the electrode is at 

equilibrium 
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This equation shows that the current density is proportional to 
the overpotential, so at low overpotentials the interface behaves 
like a conductor that obeys Ohm’s law. 
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Derivation of the Butler-Volmer equation 
 
Electrode reaction: heterogeneous reaction 
The flux of products: the amount of material produced over a 
region of the electrode surface in an interval of time divided by 
the area of the region and the duration of the interval 
 
Product flux=kr[species] 
 
The rate of reduction of Ox and the rate of oxidation of Red 

Ox c

Red a

[Ox]
[Red]

v k
v k

=

=

The net current density at the electrode is the difference between 
the current densities arising from the reduction of Ox and the 
oxidation of Red. 

(1) 
(2) 



The current density j arising from the redox processes are the rate 
multiplied by the charge transferred per mole of reaction (F). 

c c

a a

[Ox] for Ox Red Cathodic current  density

[Red] for Red Ox Anodic current density

j Fk e
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= − = −

> → >
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Figure 22. 15 
The net current density is 
defined as the difference 
between the cathodic and 
anodic contributions. (a) When 
ja>jc, the net current is anodic, 
and there is a net oxidation of 
the species in solution. (b) When 
jc>ja, the net current is cathodic, 
and the net process is reduction.  



According to the transition state theory 

a c

a c

: the activation Gibbs energy
: a constant

Sunstituting eq 4 into eq 3
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Figure 22.16 
The potential φ  varies between 
two plane parallel sheets of 
charge, and its effect on the 
Gibbs energy of the transition 
state depends on the extent to 
which the latter resembles the 
species at the inner or outer 
planes. 

(4) 

(5) 



Consider the reduction rate  
If the transition state of activated complex is product-like, 

x Red.O e−+ →

c c

c

(0)

(0) :

G G F

G

φ∆ = ∆ + ∆

∆

‡‡

‡ the activation Gibbs energy in the absence of a 
potential difference across the double layer 

Figure 22.17 
When the transition state resembles a 
species that has undergone reduction, 
the activation Gibbs energy for the 
anodic current is almost unchanged, but 
the full effect applies to the cathodic 
current. (a) Zero potential difference; (b) 
nonzero potential difference. 

(6) 



If the transition state is reactant-like, 

Figure 22.18 
When the transition state resembles a 
species that has undergone oxidation, 
the activation Gibbs energy for the 
cathodic current is almost unchanged 
but the activation Gibbs energy for the 
anodic current is strongly affected. (a) 
Zero potential difference; (b) nonzero 
potential difference. 
 



In a real system, 

c c (0)
0 1 (usu. 0.5)

G G Fα φ
α α

∆ = ∆ + ∆

< < ≈

‡‡

Figure 22.19 
When the transition state is 
intermediate in its resemblance to 
reduced and oxidized species, as 
represented here by a peak located 
at an intermediate position as 
measured by α (with 0<α<1), both 
activation Gibbs energies are 
affected; here, α=0.5. (a) Zero 
potential difference; (b) nonzero 
potential difference. 

(7) 



Consider Red + e−       Ox. Red discards an electron to the electrode, 
so the extra work is zero if the transition state is reactant-like. The 
extra work is the full            if it resembles the product. In general, F φ− ∆
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If the cell is balanced against an external source, the Galvani 
potential difference        can be identified as the (zero-current) 
electrode potential E. 
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When these equations apply, there is no net current at the 
electrode (as the cell is balanced), so the two current densities 
must be equal. Hence, we denote them both as j0. 
 
When the cell is producing current, the electrode potential 
changes from its zero-current value E to a new value E’, and the 
difference is the electrode’s overpotential η =E’−E. Hence, ∆φ 
changes to ∆φ = E+η and the two current densities become 
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