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1. Definition of interfaces (degree of interdiffusion and roughness)
(a) organic- organic (e.g. in OLED)
(b) organic-metal (e.g. for electrical contacts)
(c) organic-insulator (e.g. in OTFT)

2. The crystal structure

Which structure is present? (Note that polymorphism is very common in organics
Are different structures coexisting?

Orientation of the structure (epitaxy)

Is the structure strained (epitaxy)?

(a
(b
(c
(d

)
)
)
)

3. Crystalline quality/defect structure
(a) Mosaicity
(b) Homogeneity within a given film (density of domain boundaries etc.)
(c) Density of defects
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* adsorption (as a result of a certain impingement rate)
* (re-)desorption,

* intra-layer diffusion (on a terrace)
« interlayer diffusion (across steps)
* nucleation and growth of islands.

F. Schreiber, phys. stat. sol. (a) 201, No. 6, 1037—-1054 (2004)
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1. Organic molecules are ‘extended objects’ and thus have internal degrees of freedom
(vibrational, conformational, and orientational). This is probably the most fundamental
difference between growth of atomic and growth of organic systems.

2. The size of the molecules and the associated unit cells are greater than that of typical

(inorganic) substrates.

(a) The effective lateral variation of the potential is smeared out (i.e., averaged over the size of the
molecule), making the effective corrugation of the substrate as experienced by the molecule
generally weaker than for atomic adsorbates. > More translational domains.

(b) Organics frequently crystallize in low-symmetry structures, which again can lead to multiple
domains (not only translational, but also orientational domains). Importantly, both are a source of
disorder, in addition to those known from inorganic systems (e.g., vacancies).

(a) Orientational degrees of freedom, potentially
leading to orientational domains (additional source of disorder).
They can also give rise to orientational transitions during growth.

(b) Molecules larger than the unit cells of (inorganic) substrates,
thus leading to translational domains.
N ~ N — —~, Generally, this can also lead to a smearing-out of the corrugation
B2 i, S e S e, S W g N S g
€ € ¢ ¢ ¢ ¢ ¢ ¢ of the substrate potential experienced by
(b) the adsorbate.
F. Schreiber, phys. stat. sol. (a) 201, No. 6, 10371054 (2004)
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3. The interaction potential (molecule-molecule and molecule-substrate) is generally

different from
the case of atomic adsorbates, and van-der-Waals interactions are more important.

(a) The response to strain is generally different. Potentially, more strain can be accommodated.
The different (‘softer’) interactions with the substrate and the corrugation of the potential have
also been discussed in terms of ‘van-der-Waals epitaxy’ and ‘quasi-epitaxy’.

(b) The importance of van-der-Waals interactions implies that the relevant temperature scales (for
evaporation from a crucible and also for diffusion on the substrate) are usually lower.
However, the total interaction energy of a molecule (integrated over its ‘contact area’ with a
surface) can be substantial and comparable to that of strongly interacting (chemisorbing) atomic
adsorbates.

(c) Since we are concerned with closed-shell molecules and van-der-Waals-type crystals, there are
no dangling bonds at the organic surface, and thus the surface energies are usually weaker
than for inorganic substrates.

(d) If the surface of the substrate is ‘strongly interacting’, diffusion is limited and thus the evolution of
well-ordered films is hampered. In the extreme case of a ‘very reactive’ surface (e.g., with
dangling bonds available), the molecules may even dissociate upon adsorption.

F. Schreiber, phys. stat. sol. (a) 201, No. 6, 1037—-1054 (2004)
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v: the surface energies
The relative contributions of the free substrate surface, v, the film surface, y;, and the film-

substrate interface, y; are related to the different growth modes:

Y .
. \ Yi

\ film / AGinterface LYs—Ve TV

3 growth modes

1) Frank-Van der Merwe Growth: 7t > 7¥s 17

The atoms of the deposit material are more strongly attracted to the substrate than they are to themselves.
Growing layer reduces surface energy; “wets” the surface completely
- smooth, layer-by-layer growth
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2) Vollmer-Weber Growth (“V-W”): Vi <Vst7i

Growing layer wants to minimize interface energy and its own surface energy

—islands starting at the first monolayer:
The deposit atoms are more strongly bound to each other than they are to the substrate.

& pns

3) Stranski-Krastanov (*SK”) Growth -

Balance of forces changes during growth:
Typically, first layer wets surface but subsequent layers

do not.

Change in balance of forces is often due to strain in the
growing layer, typically due to a mismatch in lattice
constants between substrate and film.

Q STRANSK] - KRASTANOY
Figure Basic modes of thin-film growath
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M. Célle and W. Briitting, phys. stat. sol. (a) 201, No. 6, 1095-1115 (2004).
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(a) Result after first regrowth of as-purchased organic material..
(b) At the end of the second regrowth no dark residue is present at the position of
the source material, which demonstrate the purifying effect of the growth process.

R. W. |. de Boer, M. E. Gershenson, A. F. Morpurgo, and V. Podéorov phys. stat. sol. (a) 201, No. 6, 1302—1331 (2004).
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S. R. Forrest, Nature 428, 911 (2004).
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Development of the pentacene layer-by-layer contrast
during deposition on Si(001) during growth at a rate of
10-2 monolayers per minute (one monolayer (ML) ~15 A ).

two layers

three layers

‘Jbum.

Y
Evolution of the dendritic shape of pentacene

islands on cvclohexene-saturated Si(001).
a,0=0.25MLb,@=05ML;c,@=075NL,d, O =1ML
- F

Diffusion-limited
aggregation
T. A. Witten, L. M. Sander, Phys. Rev.
B 27, 5686 (1983).
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Figure 4 Coverage-dependent fractal dmension of single-molecular-layer pentacene
islands on cyclohexene-saturated SiD01). a, Experiment; b, modified DLA (diffusion
limited aggregation) simulation. Independently of the experimental conditions, including
growth rate variations and substrate surface preparation as ilkestrated by the different
colours and symbols, the fractal dimension follows a universal curve.

F.-J. M. z. Heringdorf, M. C. Reuter and R. M. Tromp, Nature 412, 517-520 (2001)
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J. M. Shaw, P. F. Seidler, IBM J. Res. & Dev., 45, 3 (2001)
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The controlled deposition of metals on organics (‘top electrode’) is non-trivial. In order to reduce
problems related to interdiffusion (and ultimately short-circuiting) and traps related to surface
states, different strategies can be pursued.

1. Deposition at low temperatures to ‘freeze in’ the interdiffusion;

2. Deposition at (moderately) high rates with the idea that the metals are quickly forming larger aggregates which are
then less mobile and diffuse less far into the organic film;

3. Use of ‘suitably reactive’ metals and/or organics, so that a strong interaction at the top layer(s) of the organic
material prevents interdiffusion;

4. ‘Soft deposition’ by ‘thermalising’ or at least reducing the energy of the impinging metal atoms by ‘baffling’ these
using a noble gas or other means;

5. Miscellaneous other non-thermal deposition strategies including, e.g., electrochemical deposition may be attempted.

: % s N =
~ 4 o ¥
N

Diindeno(1,2,3,-cd,1’,2",3"-Im)perylene
(Ca,Hy6, DIP, ared dye)

Fig. 8  Cross-sectional TEM images of two Au/DIPSiliconoxide heterostructures. While the Au contact prepared
al =120 °C and o rate of 23 Admin (left) exhibits rather well-defined interfaces, the Au contact prepared at 70 °C
and a rate of 0.35 Afmin (right) shows strong interdiffusion. Note that individual lattice planes of the DIF film
can be resolved. From Ref. [50] with permission.

F. Schreiber, ghxs. stat. sol. ‘a=201 No. 6, 1037-1054 @04)

14/23 Changhee Lee, SNU, Korea




Organic Semiconductor

Vacuum Deposition: Low molecular mass dyes = Eessaeira

2009. 15t Semester

* Best way to deposit small molecules into thin films.

» Advantages are that multilayer thin films can be built up. This is not easily achievable using
solution processing - as each layer tends to dissolve underlying layers.

 Vacuum deposited films are often of very high purity having very low contaminant levels.
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* Depositing materials from solution is very cheap. Large areas can be covered. Expensive
vacuum systems are not needed.

« To process macromolecules, it is important to maintain material solubility - generally
achieved by incorporation of bulky alkyl (unsaturated) side-groups. These groups are un-
conjugated (no

delocalised electrons - contain o bonds only). However they are important for
macromolecules (polymers), as they permit the solvent molecules to solubilize the molecule.
* Macromolecules are usually spin-cast or dip-cast into thin films.

. Ink-jet
Green |nk|:| cartridge

Red ink Blue ink

R N

Alkyl chain (C Hy,40)

PNl

Qutward Force
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M. S. Arnold, G. J. McGraw, S. R. Forrest, and R. R. Lunt, Appl. Phys. Lett. (2008) 92, 053301.
Cordelia Sealy. Materials Today, 2008. 3. 20 (http://www.materialstoday.com/archive/2008/11-04/news05.html
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LITI Process (Contact transfer in ambient condition)
Laser

Color donor sheets

Samsung SDI / 3M

g,

Samsung SDI, 17" UXGA (1,600%1,200) AMOLED

*RGB 77| 20| =z & T{7|& (donor film)2 AMOLED backplane 7| Ztofl 2 &A| 71 5
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DuPont’s laser patterning process DuPont’s solution process

DuPont Solution Process for OLEDs

Backplune Continsaus salution
Coating. Frinting

« F7He] Z€F (donor/receiver) & 2¢l Ctg A2 20[XHE L7450 THEHEZS| of2
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e F7|HERA o tHHA M =™l 80| 7ts
G. B. Blanchet, Y. L. Loo, J. A. Rogers, F. Gao, and C. R. Fincher, Appl. Phys. Lett. 82, 463
(2003).(Du Pont)
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ITO 0.85pum

ElEEs Hole Transport Layer 0.15 pm
Substrate
Transfer Gap 1-10 pm
Planarization Layer 2.6 ym
""""""""""""""" Organic Transfer Layer 0.02 pm
Doner Cr Absorption Layer 0.04 pm
4 ~— Si Antireflection Layer 0,05 pm
A Polyimide Thermo-plastic  75um
IR Laser 8.5 m x 20pm
A=810 nm Laser x 256 channels
THZED 7|8 2kH0| LHSHA RXAIZEZZ 1-10um 2| spacers 4504, 40 nmel
A8 T35S Z&ste THZ S0l ol X[ 20| MY & AFHSH0] TS S0l A
THEEN =xE R7|ZH0| £550 7| H2 R 0| SH LS 5t= 7=

Color patterning method without shadow mask: transfer in a vacuum chamber
Boroson et al. SID 2005 Digest p172 (Eastman Kodak)
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Gravure Printing
(Dai Nippon Printing Co, SID 05 DIGEST, pg. 1196 (2005)

L

Screen Printing
H. Antoniadis (OSRAM), IMID’05

D. A. Pardo, G. E. Jabbour, N. Peyghambarian,
Advanced Materials, 12, 1249 (2000).
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Roll-to-Roll Process
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