
Chapter 8. Wave Forces 

 

Potential flow approach 

 

 
 

2 2 2
2

2 2 2 2

1
0

r r r r z

   


   
     

   
 with ru

r


 


, 

1
u

r




 


, zu
z


 


 

2

2
( , , ) ( ) 1 cos

a
r t U t r

r
  

 
  

 
 

2

2
( , , ) ( ) 1 cos 0r

r a r a

a
u a t U t

r r

 
 

 
        

 

2

2

1
( , , ) ( ) 1 sin 2 ( )sin

r a r a

a
u a t U t U t

r r
  
  

 
       

 

 

Bernoulli equation at cylinder wall and far upstream: 
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                 Steady flow term      Inertial term 

 



Steady flow term: 
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pressure at front face = pressure at rear face → net pressure force = 0 

 

 
 

Drag force (=net force in x-direction): 
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No force on cylinder in ideal steady flow (D’Alembert’s paradox) 

   ↑ 

∵ Potential flow assumption precludes the formation of boundary layers and a wake 

 



Pressure distribution for real flow: 
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where 2D a = diameter of cylinder, 2A a = projected area/unit elevation, 

/UD R = Reynolds number, DC = drag coefficient 

 

 



Unsteady flow: 
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where 2V a  = volume of cylinder per unit length 
      1M mC k   = inertia coefficient, mk = added mass coefficient 

       ↑ 

       1: pressure gradient to accelerate the fluid in the absence of cylinder 

       mk : additional local pressure gradient to accelerate the neighboring fluid  

around the cylinder (shape dependent, e.g. 1mk   for circular cylinder) 

 

In the case where a cylinder is accelerating in quiescent water, M mC k  because there 

is no pressure gradient in quiescent water. 

 

Read textbook for more detailed explanation for the added mass coefficient, which is 

briefly summarized as follows: 

 

Vertical buoyancy force in hydrostatic (quiescent) fluid is 

 

BF gV  (i.e. Archimedes principle) 

 

Vertical pressure gradient in hydrostatic fluid is 
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The buoyancy force in hydrostatic fluid is caused by the pressure difference in vertical 

direction (i.e. larger pressure on the lower side of a body than on the upper side). There 

is no horizontal buoyancy force in hydrostatic fluid because / 0p x   . However, 

/ 0p x    in an accelerating fluid. In the form similar to the vertical buoyancy force in 

hydrostatic fluid, the horizontal buoyancy-like force in accelerating fluid is 
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 , Euler equation) 

 

Comparing with the inertia force, 
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↑ 

               ‘1’ indicates the horizontal buoyancy-like force in accelerating fluid  

↑ 

This force exists even if there is no structure. If there is a structure, 

additional acceleration will occur around the structure, which is 

represented by mk  (added mass coefficient) 

 

(1 )m mk V V k V      

 

mass of the structure   added mass 

 

If a structure is accelerating through a quiescent ideal fluid, since there is no pressure 

gradient in the fluid, the force would only be due to the added mass coefficient, i.e. 

I M m
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Sarpkaya and Isaacson (1981), Mechanics of Wave Forces on Offshore Structures, gives 



Forces due to real fluids 

 

Morison equation: 
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Assuming constant DC  and MC  over the depth and using linear wave theory, 

Total force =
h

F dF



  = Eq. (8.36) 

Moment about seabed = ( )
h

M h z dF



  = Eq. (8.38) 

 

To determine DC  and MC  for real fluid, minimize 
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with respect to DC  and MC  for the data groups of approximately same Reynolds 

number. 

( )DC f R  as shown in Figure 8.9 

1.33MC   as shown in Figure 8.10 ( mk  reduces to 0.33 from 1.0 for potential flow) 

 



 

Relative importance of inertia and drag forces: 
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Therefore, large /D H → inertia-dominant 

         small /D H → drag-dominant 
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where /mu T D  = Keulegan-Carpenter number, and /S D  = displacement parameter 
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large /mu T D  or /S D  → drag-dominant 

small /mu T D  or /S D  → inertia-dominant 



 

Maximum total force: 
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( )T mF  occurs somewhere between 90t     and 0t   . 

 

At ( )T mF , / 0 2 cos( ) sin( ) cos( )T D m m I mdF dt F t t F t            (8.67) 

 

Two possible roots: 
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Inertia force dominant case 

 

Large structure → Drag force is negligible → Potential flow theory 

 

MacCamy and Fuchs solution for circular cylinder: 

 

Incident wave propagating in x  direction is 
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which satisfies the Laplace equation, BBC, LKFSBC and LDFSBC. 

 

Reflected wave from the cylinder is 
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which satisfies the Laplace equation, BBC, and radiation boundary condition for large 

kr . 

 

No-flow condition at the cylinder, ( ) / 0 atI R r r a      , gives 
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Using the unsteady form of Bernoulli equation to obtain the pressure (see Eq. 8.5), force 

per unit length of the cylinder is obtained: 
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Comparing with the general formula for inertial force, 
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we find 3 24 ( / ) / ( / )MC G D L D L  

 

MC  and   reduce to 2.0 and 0, respectively, for small values of /D L , as predicted 

from potential flow theory. 

 

Wave force on large rectangular objects: 

 

 
1l , 2l , and 3l  = length in x , y , and z  directions 

 

z S   at the bottom of the object 

 



Calculate the horizontal inertia force xF  due to wave propagating in the x  direction 

 

In the absence of the structure, 

 

cosh ( )
( , , ) ( ) cos( )

2 coshp

gH k h z
p x z t g K z kx t

kh

  
    

3
3

2 3 1 3
1 1 2 1

3

1
sinh

cos( ) 2
( , ) ( , , ) cosh

12cosh 2
2

S l

S

kl
l l gH kx t l

P x t l p x z t dz k h S
kh kl

  



 
         

   

3

2 1 1 2 1 1

3
2 3 3

1 1

3

( , ) ( , , )

1
sinh

2
cos[ ( ) )]cosh

12cosh 2
2

S l

S
P x l t l p x l z t dz

kl
l l gH l

k x l t k h S
kh kl

 

 


  

 
         

 


 

1 2 3 3 3 1 1
1 2 1

3 1

cosh ( / 2) sinh( / 2) sin( / 2)
sin

2cosh / 2 / 2 2x

l l l gHk k h S l kl kl l
F P P k x t

kh kl kl

           
  

 

This can be written in a more familiar form: 
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where /u t   is evaluated at the center of the rectangular object. 

 

For an object occupying from bottom to water surface, 3S l h   gives 
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Accounting for the interaction of the structure with the waves, 

 

' (1 )x m xF k F   

 

Added mass coefficient, mk , should be determined by experiments or Table 2.3 of 



Sarpkaya and Isaacson (1981) 

 

The vertical force can be calculated in a similar manner: 
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where /w t   is again evaluated at the center of the object. 

 

If the tank is situated on the bottom, such that the wave-induced pressure is not 

transmitted to the bottom of the tank, 
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where /w t   is now calculated at the center of the top of the object. 

 



Spectral approach for irregular waves 

 

For inertia-dominant case, 
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For the case in which both drag and inertia forces are important, the force on an element 

length ds  at a distance s  above the seabed is 
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Linearizing, 
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Force spectrum is related to surface wave spectrum by 
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Total wave force over the entire water depth is 
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