Chapter 8. Wave Forces

Potential flow approach

Figure 8-1 Potential flow around a circular cylinder.
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Bernoulli equation at cylinder wall and far upstream:
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Steady flow term:
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Figure 8.2 Pressure distribution around cylinder for case of ideal flow. Note the
low pressure at the sides, & = 90°, and the symmetry with respect to 8 = 0° and
0 =90°.
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Figure 8.3 Calculation of elemental
force in x direction. AF, is positive in

AF, = (pa Af) cos 0
the downstream (—x) direction.

Drag force (=net force in x-direction):

2
dF, = joz” p(a,0)acosfdo = joz”{puz ® (1-4sin” 0) + p(I,O)}acosé’dé’ =0

No force on cylinder in ideal steady flow (D’Alembert’s paradox)

T

" Potential flow assumption precludes the formation of boundary layers and a wake



Pressure distribution for real flow:
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Figure 8.4 Measured pressure distributions around cylinders. (From Goldstein,
1938.)
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where D =2a = diameter of cylinder, A=2a = projected area/unit elevation,
R =UD /v = Reynolds number, C_= drag coefficient

=Cp(R)
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Figure 8.5 Variation of drag coefficient, Cp with Reynolds number R for a
smooth circular cylinder. (From H. Schlichting, Boundary Layer Theory. Copy-
right © 1968 by McGraw-Hill Book Company. Used with the permission of
McGraw-Hill Book Company.)



Unsteady flow:
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where V =7za® = volume of cylinder per unit length
C, =1+k, =inertia coefficient, k, = added mass coefficient

T

1: pressure gradient to accelerate the fluid in the absence of cylinder

k, : additional local pressure gradient to accelerate the neighboring fluid
around the cylinder (shape dependent, e.g. k, =1 for circular cylinder)

In the case where a cylinder is accelerating in quiescent water, C,, =k, because there
IS no pressure gradient in quiescent water.

Read textbook for more detailed explanation for the added mass coefficient, which is
briefly summarized as follows:

Vertical buoyancy force in hydrostatic (quiescent) fluid is
F, = pgV (i.e. Archimedes principle)
Vertical pressure gradient in hydrostatic fluid is

P _

pe -pP9g
Therefore
F__op



The buoyancy force in hydrostatic fluid is caused by the pressure difference in vertical
direction (i.e. larger pressure on the lower side of a body than on the upper side). There
iIs no horizontal buoyancy force in hydrostatic fluid because op/ox=0. However,
op/ox=0 inan accelerating fluid. In the form similar to the vertical buoyancy force in

hydrostatic fluid, the horizontal buoyancy-like force in accelerating fluid is

F. = _@V = pd—uV (d_u __lo , Euler equation)
OX dt dt p OX

Comparing with the inertia force,

du du

dF, =C,, oV —=(1+k_ oV —

| Mp dt (+ m)p dt
)

‘1’ indicates the horizontal buoyancy-like force in accelerating fluid
T
This force exists even if there is no structure. If there is a structure,

additional acceleration will occur around the structure, which is
represented by k_  (added mass coefficient)

(I+k,)pV =pV +k pV

v

mass of the structure  added mass

If a structure is accelerating through a quiescent ideal fluid, since there is no pressure
gradient in the fluid, the force would only be due to the added mass coefficient, i.e.
du du

dF, =C,, oV — =k_pV —
| Mp dt mp dt



Sarpkaya and Isaacson (1981), Mechanics of Wave Forces on Offshore Structures, gives

APPENDIX A
Table 2.3 Added Masses of Various Bodies

SHAPE . ADDED MASS
: PER UNIT LENTH = FP V' Ca
~~—— MOTION
)e.;‘
CIRCLE o e— Cp= 1
ELLIPSE onb?
P ———-
ELLIPSE pmal
e ———
PLATE omwe
~a—— .
a/b a/b
RECTANGLE e  1.00 pma 1 1.51 pmal
10 1.14 " 0.5 1.70 "
5 1.21 ™ 0.2 1.98 *©
2 1.3 " 0.1 2.23 * (Wendel 1950)
DIAMOND 2 0.8 "
1 0.76 "
~ 0.5 0.67 "
0.2 0.61 " {Wendel 1950)

a/c’ = 2.6 '
b/c = 3.6 2.11 pra® (Patton 1965)
REGULAR n = 3  0.654 pma2
POLYGON 4 o0.787 *
i ————— 5 8.823 L)
6 -0.867 "
OR ' - 1.380 «  (Wendel 1950)
n SIDED



Forces due to real fluids

Morison equation:

du

dt

Assuming constant C, and C,, over the depth and using linear wave theory,

dF =dF, +dF, =%CDpAu|u|+CM PV

Total force =F = J._"hdF = Eq. (8.36)

Moment about seabed =M = J'_"h(h +z)dF = Eq. (8.38)

To determine C, and C,, for real fluid, minimize
1 |
82 :TZ(Fmi - I:pi)2
i=1

with respect to C, and C,, for the data groups of approximately same Reynolds

number.
C, = f(R) asshown in Figure 8.9
C,, =1.33 as shown in Figure 8.10 (k, reduces to 0.33 from 1.0 for potential flow)
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Figure 8.9 Drag coefficient variation with Reynolds number as determined by
Dean and Aagaard (1970). Copyright 1970 SPE-AIME.



Relative importance of inertia and drag forces:

(dF)mex _ Cuzkh D
(dFD)max CD H

Therefore, large D/ H — inertia-dominant
small D/H — drag-dominant
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Figure 8.13 H/D versus h/L, for condition of equal maximum drag and inertia
force components.
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where u, T /D = Keulegan-Carpenter number, and S/D = displacement parameter

S ., 8

T/4
u=u,cosot; S =J'O u,, coscotdt =

< >

u,T
27

large u,T/D or S/D — drag-dominant

small u T/D or S/D — inertia-dominant



Maximum total force:

F. = F, cosot|cosot | -F, sinot

| — Fr = Fp cos? ot — Fy sinat

=3 Fp cos ot | cos o7 |

) » ot

Figure 8.18 Illustration of force component combination for the case of
|Fi] =2]|Fp]|.

(F;),, occurs somewhere between ot =-90° and ot =0°.
At (F),, dF /dt=0=-2F,ccos(ct), sin(ot),, — F o cos(at),, (8.67)

Two possible roots:

2
1) Dividing Eq. (8.67) by ocos(at),,, sin(ot),, Rk (F),=F,+ al
2F, 4F,

2) cos(ot), =0 — (F),, =F, < Thissolution must be taken if F, /2F, >1



Inertia force dominant case

Large structure — Drag force is negligible — Potential flow theory
MacCamy and Fuchs solution for circular cylinder:

Incident wave propagating in +x direction is
4 =— gH coshk(h+2) gilla-ot)
' 20 coshkh

_ _gH coshk(h+2) {Jo(kr) +>_2i" cos m49\]m(kr)}ei"t
m=1

20 coshkh
which satisfies the Laplace equation, BBC, LKFSBC and LDFSBC.

Reflected wave from the cylinder is
2 . _iot COShk(h+2)
= cosm@[J_(kr)+iY_(kr)]e"" ———~
8 Z;JAﬂ [ (kr) +1Y,, (kr)] “osh kh

which satisfies the Laplace equation, BBC, and radiation boundary condition for large
kr.

No-flow condition at the cylinder, o(¢4, +¢;)/or=0 at r=a, gives

¢.+R=Re{gH C““'““*”e*“{%(kr)— J(ke) (%(kr)ﬂ%(kr»}

2o cosh kh Jo(ka) _ IYO (ka)
i J. (ka) _
+2;| {Jm(kl’)_ 3. (ka)—iY, (ka) (Jm(kr)HYm(kr))}}cos me}

Using the unsteady form of Bernoulli equation to obtain the pressure (see Eqg. 8.5), force
per unit length of the cylinder is obtained:

oF = 2pgH coshk(h+z) G (Bjcos(at )
k cosh kh L
where
tana = Jll(ka); G(Rj: L
Y, '(ka) L) /3, '(ka)? +Y, (ka)’

Comparing with the general formula for inertial force,



ou
dF, =C,, pV Y

we find C,, =4G(D/L)/7°(D/L)?
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Figure 8.19 Variation of inertia coefficient Cy and phase angle a of maximum
force with parameter D/L.

C, and « reduce to 2.0 and O, respectively, for small values of D/L, as predicted

from potential flow theory.

Wave force on large rectangular objects:

Figwre 820 Dynamic wave pressures on rectangular object.

l,, I,,and I, =lengthin x, y,and z directions

z=-S atthe bottom of the object



Calculate the horizontal inertia force F, due to wave propagating in the x direction
In the absence of the structure,

gH coshk(h+2)
2 cosh kh

p(x,z,t) = pgnK (z) = P cos(kx —ot)

S+l 1, ogH cos(k t) I Sinh(2k|3j
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2
R(x +1,t) = fj% L, p(x, +1,,2,t)dz
. 1
sinh (klsj
=IZI3LQ'”_ICOS[|<(X1 +1,) —ot)]cosh k(h -S +IE3)—2

2coshkh 1 K,
2

£ _p_p _ hblpgHkcoshk(h—S +1;/2) sinh(kl, /2) sin(kl, /2) . k( +I—lj—at
o 2cosh kh kl, /2 K, /2 T

This can be written in a more familiar form:

y Sinh(Kl, /2) sin(, /2) au
x K,/2  KL/2 ot

where ou/ot is evaluated at the center of the rectangular object.

For an object occupying from bottom to water surface, S=1,=h gives

F - L1,hpgHk cosh(kh / 2) sinh(kh / 2) sin(kl, / 2) sin k(xi +|—1]—0’[
2cosh kh kh/2 kl, /2 2

Accounting for the interaction of the structure with the waves,
F'=@Q+Kk,)F,

Added mass coefficient, k,, should be determined by experiments or Table 2.3 of



Sarpkaya and Isaacson (1981)
The vertical force can be calculated in a similar manner:

v Sinh(Kl; /2) sin(, /2) ow
: K,/2 K /2 ot

where ow/ ot is again evaluated at the center of the object.

If the tank is situated on the bottom, such that the wave-induced pressure is not
transmitted to the bottom of the tank,

£ = py SON(a) sin(d, 12) aw
K, Kl /2 at

where ow/ ot is now calculated at the center of the top of the object.



Spectral approach for irreqular waves

For inertia-dominant case,

prD? o2

Total force (F,) oK

=G(o)H,; G(o)=C,,

max

For the case in which both drag and inertia forces are important, the force on an element
length ds atadistance s above the seabed is

2

dF :(CDQJD u? c050t|c050~t|—c“”’+”[)

u,o sin at]ds

Linearizing,
C, pD 2
dF = (%um cosot —C“”’%Dumasin at] ds

where
CDL :CD\/EU rms
T

Force spectrum is related to surface wave spectrum by
Sie(0) = Xy (o) |2 Sq(o-)

where

2
2
[ Xe (0) |2={¥\/§umxu<as)} {% X, (0,5)o

U, coshks
— =0 -
[77] sinh kh

U, =\/j0°°| X,(o,8)F S, (0)do

2

X,(o,8)=

Total wave force over the entire water depth is



S (0) :{[CT”DJ a%el(aw[CM”T”Dzj GZ(G)}SU(J)

where

I:urms (s) cosh ksds
sinh kh

G, (o) =

2

G, (o) ="7



