
Chapter 9. Waves over Real Seabeds 
 
We have to consider the followings in real sea: 
 

- viscosity (fluid) 
- Roughness, rigidity, permeability (seabed) 

 
Effect of viscosity 
 
Inside the bottom boundary layer, 
 

- Viscosity is important. 
- No-slip condition at bottom: 

   0=
∂
∂

−=
−= hzx

u φ  

 
Linear laminar Navier-Stokes equation for viscous fluid: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

−=
∂
∂

2

2

2

21
z
u

x
u

x
p

t
u ν

ρ
 

g
z
w

x
w

z
p

t
w

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

−=
∂
∂

2

2

2

21 ν
ρ

 

 
To evaluate relative sizes of various terms, introduce nondimensional variables: 
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By chain rule, 
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The x -momentum equation becomes 
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which implies that frictional stresses are negligible so that there is a slip boundary 
condition at the bottom (  at 0≠u hz −= ). However, physically, there is no flow at the 
bottom in the viscous flow. Hence, our argument above must be modified.  
 
Near the bottom,  varies rapidly with u z . Therefore, the vertical length scale must be 
different from the horizontal length scale. Let us take the vertical length scale as the 
boundary layer thickness, δ , so that 
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Using this scale but the same scales as before for other parameters, 
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The second term on the RHS is again very small compared with other terms, but the last 

term is of  with )1(O σνδ /~ . Now, the x -momentum equation can be 

approximated to 
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Assuming rp uuu += , where  and , respectively, represent the potential and 

rotational part of the flow, we can separate the equation into 
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each of which has a form of Euler equation and diffusion equation, respectively. 
 
For the potential flow part, we have 
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For the rotational part, assume 
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Substituting into the diffusion equation, 
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Solving this equation and keeping only the term that decays away from bed (or 
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Time-out 
 
De Moivre theorem: ninn erz //1 θ=  
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See Figure 9.1 for the horizontal velocity profile near the bed.  
 



The vertical velocity in the bottom boundary layer can be obtained from the continuity 
equation: 
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Bed shear stress 
 

)4/(

)4/(

)(

cosh

2
2

cosh

22cosh

)(

πσ

πσ

σ

σ
νρ

ν
σ

σ
μ

ν
σ

ν
σ

σ
μ

μμτ

−−

−−

−

=

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂

∂
≅⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

=−=

tkxi

tkxi

tkxi

rp
zx

e
kh

gak

e
kh

gak

ei
kh

gak

z
u

z
u

x
w

z
uhz

 

 

where the relationship, 4/2)1( πiAeiA −=− , was used by De Moivre theorem. In terms 

of flow velocity, we have 
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where  = potential flow velocity outside boundary layer. Solving for the friction 

coefficient, , 
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See Figure 9.2 of textbook for linear relation between  and  for laminar 

flow. 

flog bRlog

 
Energy dissipation 
 
Mean rate of energy dissipation is given by (Fluid Dynamics, Batchelor) 
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Consider waves on a flat bottom. Since )(xfCg ≠ , we have 
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which states that the wave amplitude decays exponentially with x . 
 



Turbulent boundary layer 
 
Large waves + Rough bottom → Turbulent boundary layer (most cases in nature) 
 
In turbulent boundary layer, 
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as shown in Figure 9.2 and where 
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considering only skin friction without form drag due to ripples. 
 
The bed shear stress is given by 
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Note that the time average of shear stress is zero. The mean rate of energy dissipation is 
not zero and is given by 
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Energy loss with distance 
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On flat bottom, 
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Defining  and integration give )sinh6/( 33 khgCfA gπσ=
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Using the boundary condition  at 0aa = 0=x , we get 01 /1 aC −= . Therefore 
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Finally we have 
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which is not exponential decay with x . For small , we have 0Aa
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Waves over viscous mud bottom 
 

 
 
At the bottom, we need the kinematic and dynamic matching conditions: 
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In Region 1, we can assume the solution as 
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where the second term is included because the vertical velocity is no longer zero at the 
bottom. Using LDFSBC, 
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Using LCFSBC, 
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Multiplying  on both sides, khg cosh/
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From LDFSBC, 
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Plug in LCFSBC, 
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Now, 
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Note: On rigid bottom,  or . 0=B khgk tanh2 =σ

 
In Region 2, assuming infinite depth,  
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which indicates exponential decay as −∞→+ zh . The horizontal velocity is given by 
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Assuming  is small and using the linearized kinematic matching condition at the 
boundary: 
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Applying dynamic matching condition: 
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where the last two terms represent hydrostatic pressures due to water and mud, 
respectively. 

 
 
Linearizing, 
 

hzg
t

g
t

−=−
∂
∂

=−
∂
∂

on2
2

21
1

1 χρ
φ

ρχρ
φ

ρ  

 

022011 gmdigmAi ρσρρσρ −−=−−  

 

⎟
⎠
⎞

⎜
⎝
⎛−−+=

σ
ρρσρσρ iBkgBiAi )( 1221  

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ −=

−
−= 22

1

2
2

1

12

1

2 1
)(

σσρ
ρ

σρ
ρρ

ρ
ρ gkgkB

gkB
BA  

 
Now, 
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where Eqs. (9.51) and (9.52) were used. Rearranging gives the dispersion relationship: 
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We have two possible cases: 
 

gk=2σ  ← surface wave case 
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Using Eqs. (9.52) and (9.59), 
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For surface wave case, 
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The free surface and interface are in phase, and the free surface amplitude is greater 
than the interface amplitude. 
 

 
 



For interfacial wave case, 
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00 / ma  depends of 12 / ρρ  and . kh 1/ 00 <ma  if 2/ 12 <ρρ  for . 0=kh

12 / ρρ  can be larger for larger  to satisfy kh 1/ 00 <ma . Also the free surface and 

interface are  out of phase because °180 0/ 00 <ma  always. 

 

 

 
Because the free surface and interface are  out of phase, between them a quasi-
bottom exists where there is no vertical flow. If we denote its vertical distance from the 

SWL as 
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the dispersion relationship becomes 
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Waves over rigid, porous bottom 
 

 
 
At the bottom, we need the kinematic and dynamic matching conditions: 
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In the porous medium, we use the equation for unsteady Darcy’s flow: 
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where  = porosity and n K  = permeability constant. Using ρμν /= , the above 
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Using the continuity equation, 02 =⋅∇ ur , we get 
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which is the governing equation in the porous medium. 
 
As with the waves over a mud bottom, assume the solutions as 
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which give non-zero vertical velocity at the bottom and exponential decay of pore 
pressure as . −∞→+ zh
 
As done for viscous mud bottom, LKFSBC and LDFSBC give 
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Dynamic matching condition at the bottom: 
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The LHS and RHS are imaginary and real, respectively. Therefore we get 
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which are in conflict. To satisfy the dispersion relationship, the wave number should be 
complex: 
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The real part is related to the wave length, while the imaginary part determines the 
spatial damping: 
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In intermediate depth, where we can assume that 1/ <<νσK  and  (or no 
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which is shown in Figure 9.6 of textbook.  
 

In shallow water where 10/π<kh ,  and  are given by Eqs. (9.95) and (9.96), 

respectively. 
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