Chapter 9. Waves over Real Seabeds

We have to consider the followings in real sea:

- viscosity (fluid)
- Roughness, rigidity, permeability (seabed)

Effect of viscosity

Inside the bottom boundary layer,

- Viscosity is important.
- No-slip condition at bottom:
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Linear laminar Navier-Stokes equation for viscous fluid:
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To evaluate relative sizes of various terms, introduce nondimensional variables:



By chain rule,
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The x-momentum equation becomes
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which implies that frictional stresses are negligible so that there is a slip boundary
condition at the bottom (u=0 at z=-h). However, physically, there is no flow at the
bottom in the viscous flow. Hence, our argument above must be modified.

Near the bottom, u varies rapidly with z. Therefore, the vertical length scale must be
different from the horizontal length scale. Let us take the vertical length scale as the
boundary layer thickness, ¢, so that
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Using this scale but the same scales as before for other parameters,
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The second term on the RHS is again very small compared with other terms, but the last

term is of O() with 6~+v/o . Now, the x -momentum equation can be

approximated to
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Assuming u=u, +u,, where u, and u,, respectively, represent the potential and

rotational part of the flow, we can separate the equation into
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each of which has a form of Euler equation and diffusion equation, respectively.

For the potential flow part, we have
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For the rotational part, assume
u, = Af (z)e'®
Substituting into the diffusion equation,
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Solving this equation and keeping only the term that decays away from bed (or
f(z)>0 as (h+2z) > x),

f(z)= BeVo/v(h+2) _ ga-(-ioi2v(hi2)
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Now u, becomes
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Using u=u, +u, =0 at z=-h,
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See Figure 9.1 for the horizontal velocity profile near the bed.



The vertical velocity in the bottom boundary layer can be obtained from the continuity
equation:
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Bed shear stress
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where the relationship, A(l—i)=+/2Ae"*'*, was used by De Moivre theorem. In terms

of flow velocity, we have
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where u, = potential flow velocity outside boundary layer. Solving for the friction
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coefficient, f,
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or

fo_8 . R, =U, ¢,/v=¢i0o/v<10°~10* for smooth bottom
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See Figure 9.2 of textbook for linear relation between log f and logR, for laminar

flow.

Enerqgy dissipation

Mean rate of energy dissipation is given by (Fluid Dynamics, Batchelor)
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Consider waves on a flat bottom. Since C, = f(x), we have
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which states that the wave amplitude decays exponentially with x.



Turbulent boundary layer

Large waves + Rough bottom — Turbulent boundary layer (most cases in nature)

In turbulent boundary layer,
f="flk./c)
as shown in Figure 9.2 and where

k, =2d,,

e

considering only skin friction without form drag due to ripples.

The bed shear stress is given by
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Note that the time average of shear stress is zero. The mean rate of energy dissipation is
not zero and is given by
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Energy loss with distance
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On flat bottom,
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Using the boundary condition a=a, at x=0, weget C, =—-1/a,. Therefore



Finally we have
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which is not exponential decay with x. For small Aa,, we have
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Waves over viscous mud bottom
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At the bottom, we need the kinematic and dynamic matching conditions:
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on z=-h+y

In Region 1, we can assume the solution as

¢, =(Acoshk(h + z) + Bsinhk(h + z) )™~



where the second term is included because the vertical velocity is no longer zero at the
bottom. Using LDFSBC,

a, =7 (Acosh kh + Bsinh kh)
g

Using LCFSBC,
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Multiplying g/cosh kh on both sides,
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Now,
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Note: On rigid bottom, B=0 or o? = gk tanhkh.

In Region 2, assuming infinite depth,
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which indicates exponential decay as h+ z — —oo. The horizontal velocity is given by
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where u, is the boundary layer correction given by (cf. Eq. 9.9)
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Assuming w, is small and using the linearized kinematic matching condition at the
boundary:
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Applying dynamic matching condition:

P, =P, on z=-h+y
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where the last two terms represent hydrostatic pressures due to water and mud,
respectively.
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Linearizing,

o¢ By,
plj—plgzzpz atz—ngz on z=-h

—iop,A— p,gm, =—-iop,d — p,gm,

) . iBk
iop,A=iop,B+(p, - pl)g(_ 7)

A:&B_(pz—pl)ng:B{&[l_g_k}g_k}

2 2 2
P1 PO P1 9 o

Now,
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where Eqgs. (9.51) and (9.52) were used. Rearranging gives the dispersion relationship:
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We have two possible cases:

o? =gk <« surface wave case
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Using Egs. (9.52) and (9.59),
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For surface wave case,

a—o = gk = 1 = ekh > 1
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The free surface and interface are in phase, and the free surface amplitude is greater
than the interface amplitude.
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For interfacial wave case,
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|a, /m,| depends of p,/p, and kh. |a,/m,|<1 if p,/p, <2 for kh=0.
p, | p, can be larger for larger kh to satisfy |a0 /m0|<1. Also the free surface and

interface are 180° out of phase because a,/m, <0 always.
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Because the free surface and interface are 180° out of phase, between them a quasi-
bottom exists where there is no vertical flow. If we denote its vertical distance from the

SWLas |z,| so that
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the dispersion relationship becomes
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Waves over rigid, porous bottom

Sanol : porous med;um

At the bottom, we need the kinematic and dynamic matching conditions:
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In the porous medium, we use the equation for unsteady Darcy’s flow:
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where n = porosity and K = permeability constant. Using v=u/p, the above
equation can be written as

Since G, oce'™ " the above equation becomes
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K~10"°~10" m? and v~10"° m?s. Therefore, (oK /v)~10"°~10"°. Thus, the

preceding equation can be approximated to
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Using the continuity equation, V-0, =0, we get
v? p, =0

which is the governing equation in the porous medium.

As with the waves over a mud bottom, assume the solutions as
¢, =(Acoshk(h+ z) + Bsinhk(h + z) g’

and
p, = DekhDgite-a)

which give non-zero vertical velocity at the bottom and exponential decay of pore
pressureas h+z——oo.

As done for viscous mud bottom, LKFSBC and LDFSBC give
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Dynamic matching condition at the bottom:
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The LHS and RHS are imaginary and real, respectively. Therefore we get
o?=gktanhkh and o2 = gkcothkh

which are in conflict. To satisfy the dispersion relationship, the wave number should be
complex:

k=k, +ik,

The real part is related to the wave length, while the imaginary part determines the
spatial damping:
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In intermediate depth, where we can assume that Ko /v <<1 and k,h<<1 (or no

significant damping), Reid and Kajiura (1957) obtained
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which is shown in Figure 9.6 of textbook.

In shallow water where |kh| <7 /10, k; and k, are given by Egs. (9.95) and (9.96),

respectively.



