
Chapter 6. Wind-Generated waves 
 

6.1 Waves at Sea 
 
local wind wave (short-crested) + swell (long-crested) 
 

 

 
fully developed sea: unlimited fetch and duration of wind; wind energy input is 
                 balanced by energy dissipation due to wave breaking. 
 
growing sea: limited fetch and duration of wind (most cases in nature) 
 



6.2 Wind-Wave Generation and Decay 
 
• Phillips (1957): initial stage 
 
Turbulent wind energy is transferred to water by pressure fluctuation. 
 

 
 

ttH ∝)(  (linear growth of waves) 
 
• Miles (1957): developing stage 
 
After some waves are developed, eddies are formed at troughs. 
 

 
tetH α∝)(  (exponential growth of waves) 

 
Assume that wave growth = sum of linear + exponential growth, and find coefficients 
using field dat 
 
 



• Hasselmann (1962) 
 
wave interactions → energy transfer to lower frequencies 
 

 
 
Growth of wind waves depends on 

1) fetch length,  F
2) wind speed,  W
3) duration of wind,  dt
4) fetch width, B  
5) water depth,  d

   M

 

 
 



 
 

If , fetch-limited, gd CFt /> ),(, FWfTH =  

If , duration-limited, ggAd CFCxt // <= ),(, dtWfTH =  

 
 
6.3 Wave Record Analysis for Height and Period 
 
Zero-crossing method: 
 

 
 

nH  = average of the highest % of the wave heights n
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Wave height distribution 
 
Find probability density function, , by plotting histogram of wave height: )(Hp
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Longuet-Higgins:  is given by a Rayleigh distribution )(Hp
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cumulative probability,  ( )2/
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Fig. 6.5: line  → exceedance prob.a ⎟⎟
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Note: P  in the -axis of Fig. 6.5 must be y P−1  
 

line  → average of the highest % waves b n
 

 
 

ss HNHH 0.2ln707.0max ≅= : used for design of offshore structures 

 
Wave period distribution 
 

Joint probability of H  and T  
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where  = significant wave period from zero-crossing method sT

pT  = peak period from spectral analysis. 

 



6.4 Wave Spectral Characteristics 
 
Irregular waves = superposition of many sinusoidal waves of different frequency, 

amplitude, phase, and direction 
 

 
 
Using directional spectrum analysis, we obtain directional spectrum, ),( θfS . 
 
Assuming single wave direction, we obtain frequency spectrum, . )( fS
 

 



For a sinusoidal wave, energy per unit surface area or energy density is 
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Since gρ  = constant, we can write 
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where  = length of wave measurement. Considering the potential energy due to 
waves, 

*T
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Since kp EE = , the total energy density is 
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where the over-bar of 2η  denotes time-average. Note that 2η  is the variance of η . 

The definition of variance is [ ]2)()( μ−= xExVar . In our case, the mean, μ  is zero. 
 
For a discretely sampled η , 
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where  = number of samples in . N *T
 
Recalling 
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From Eq. (6.8) 
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where  = zeroth moment of spectrum. The th moment is given by 0m n
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Since 2ηρgE = , 0
2 m=η . Also, since 2
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In deep water, 0ms HH ≅ . As  decreases,  (see Fig. 6.7) kd 0ms HH >

 
6.5 Wave Spectral Models 
 

General form of frequency spectrum: 
4/

5)( fBe
f
AfS −=  

 
where  = empirical constants BA,
 
Bretschneider spectrum 
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Bretschneider-Mitsuyasu spectrum (applicable to finite depth) 
 

( ) ( )[ ]452 75.0exp205.0)( −− −= fTfTTHfS ssss  

 
Pierson-Moskowitz spectrum (for fully developed seas) 
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where  and W  = wind speed at 19.5 m above SWL 3101.8 −×=α 10)1.1~05.1( W≅  

 
JONSWAP spectrum (growing seas in deep water) 
 
Based on data of JOint North Sea WAve Project 
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where γ  = peak enhancement factor (typical value = 3.3), and 
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JONSWAP spectrum with 0.1=γ  = Pierson-Moskowitz spectrum 
 

 
 
TMA spectrum (includes effect of finite water depth) 
 

),( dfSS JTMA Φ=  
 
where  = Kitaigordskii shape function for finite depth effect: ),( dfΦ
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where  2/1)/(2 gdfd πω =

 

 



Directional wave spectra 
 
Frequency spectrum assumes waves with many different frequencies but a single 
direction. The real waves consist of many component waves with different frequencies 
and directions. Therefore, we need directional wave spectra. 
 

);()(),( θθ fGfSfS =  
 
where );( θfG  = directional spreading function, which represents directional 
distribution of wave energy. In general, );( θfG  varies with frequency, : f
 

small  → long-period waves → narrow spreading f
large  → short-period waves → wide spreading f

 
We take 
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so that );( θfG  represents relative magnitude of directional spreading of wave energy. 
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Cosine square function: 

  θ
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θθ 2cos2)();( == GfG  ← independent of  f

 



 
Mitsuyasu-type function: 
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maxss =  at , and  decreases as pff = s pff −  increases. 

Swell → larger  → narrow spreading maxs

Wind wave → smaller  → wide spreading maxs

 
 



6.6 Wave Prediction – SMB Method 
                       ↑ 
                      Sverdrup, Munk, Bretschneider 
 
Consider a box storm: 
 

 
By dimensional analysis, 
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Using Fig. 6.10, 
 

2W
gF  →    (1) ss TH ,

W
gtd  →    (2) ss TH ,

 
Choose the smaller values of (1) and (2). If (1) is smaller, it is fetch-limited condition. If 
(2) is smaller, duration-limited condition. 
 
For a typhoon, use Eqs. (6.37) and (6.38): 
 

R  = radius to maximum wind speed ( ) RW

ea ppp −=Δ  = strength of typhoon 

FV  = forward speed of typhoon 
1≅α  for slow moving typhoon 

 



6.7 Wave Prediction – Spectral Models 
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SPM:  →(w/o calculation of )→  for JONSWAP spectrum dtFW ,, )( fS pm TH ,0
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where  = minimum duration for fetch-limited condition, whereas  = actual 
duration. 

'dt dt

 

If , fetch-limited → Use Eqs. (6.40), (6.41) 'dd tt ≥

If , duration-limited → Calculate  using 'dd tt < F dd tt ='  with Eq. (6.42) 

→ Use Eqs. (6.40), (6.41) with new . F
 
6.8 Numerical Wave Prediction Models (read text) 
 



6.9 Extreme Wave Analysis 
 
Return period (再現期間)? 
 
Ex)  of 50 year return period = significant wave height which can occur once in 
every 50 years on the average. 

sH

 
How can we estimate  of 50 year return period with limited data (e.g. 2 year data)? sH
 
Return period analysis using Gumbel distribution 
 
1)  was measured every hour for 2 years. sH
2) Select daily maximum . sH

number of data, , 7302365 =×=N

r  = time interval in years = 00274.0
365
1

=  

3) Rearrange  in descending order from  to . sH )1(sH )(NH s

4) Compute cumulative probability,  for each . )( sHP sH

 

5) Plot  vs sH [ ]{ })(lnln sHP−−  → Find γβ ,  for best fit. 

Gumbel distribution: 
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7) Calculate  (  = 50 yr) by sH rT

{ } γβ +−−== )9999452.0ln(ln50rTsH  

 
Use similar procedures for other distributions (see Table 6.1) 
 
Encounter probability: 
 
   ← 재현기간 인 사건이 기간 rTTeE /1 −−= rT T  동안에 발생할 확률 
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