Chapter 1 Concepts and Definitions

Contents

- 1.1 The Role of Hydrology and Hydraulic Engineering in Environmental Management
- 1.2 Environmental Hydraulics
- 1.3 Strategies and Approaches for Problems Solving
- 1.4 Basic Definitions and Concepts

1.1 The Role of Hydrology and Hydraulic Engineering in Environmental Management

• Water quality = water quantity

+ hydrodynamics of transport and mixing

+ chemistry and biology of natural water systems

atmosphere - air motion

hydrosphere - water motion

Fluid motions transport and disperse disposal of residuals

- massive discharges of wastewater into rivers and oceans

Without fluid motion, there is no transport and dispersion

[Ex] estuarine modification or barriers \rightarrow radically change the circulation patterns decreasing flushing of pollutants

1.1.1 Overall Framework for Environmental Management

•Environmental Fluid Mechanics

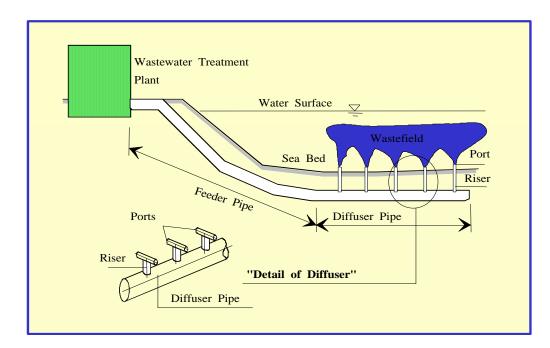
- study of <u>fluid motions</u> in the lower atmosphere, in the ground, and in rivers, lakes, and seas that relate to problems connected to human activities within the environment.

•Environmental Hydraulics

- study of <u>water motions</u> in the ground, and in rivers, lakes, and seas that relate to problems connected to human activities within the environment.

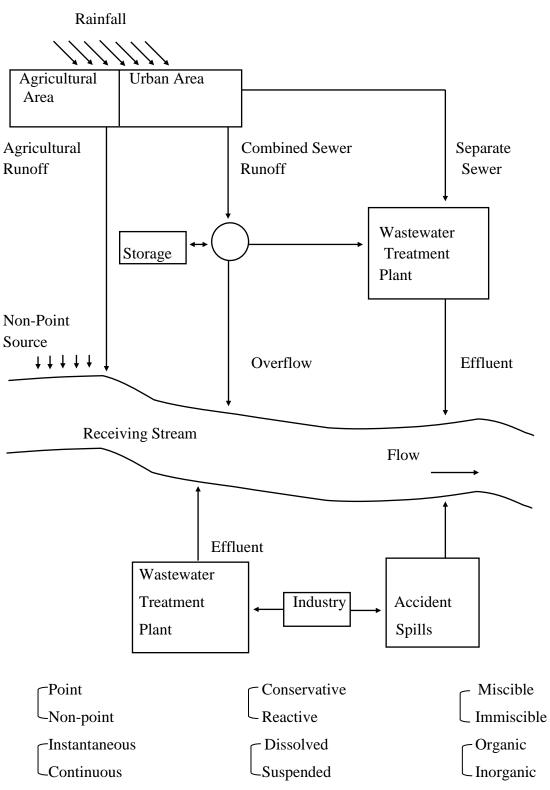
•Transport - Hydraulic engineer

Transformation - Chemist


Accumulation - Biologist

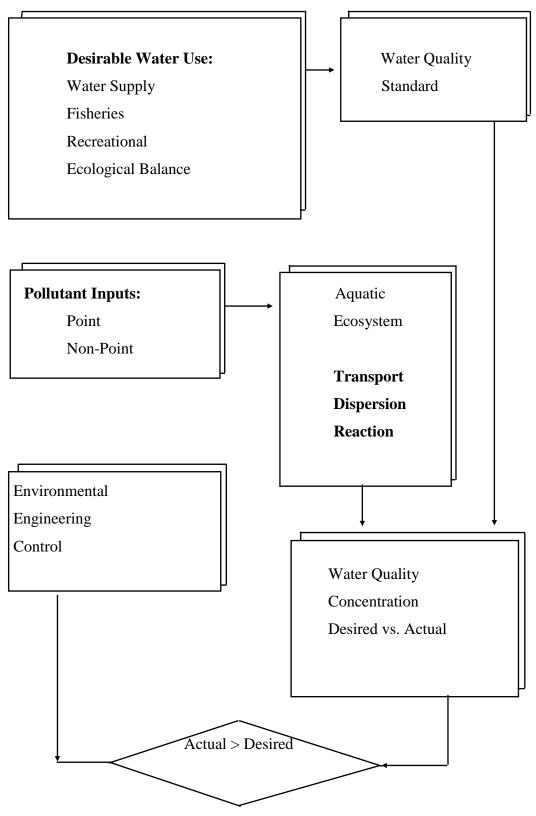
 \Rightarrow processes that takes places between the point where a pollutant is discharged into the

water environment and some other sites (downstream site in rivers) where the ambient water quality is observed.


• Role of hydraulic engineer in environmental management

1) design of hydraulic structure (outfalls, diffusers)

-> jets and plumes


2) analyze water quality processes -> diffusion and dispersion

Conceptual View of Pollutant Inputs

- Environmental Control System
- Optimization of
- (a) control of pollutants at the source (pre-treatment, clean technology)
- (b) wastewater treatment (primary, secondary treatment)
- (c) disposal in the environment (post-treatment, wastewater outfalls)
- Role of Hydraulic Engineer (Environmental Hydraulics)
- make interface between man's activities and the natural environment
- draw water supply from natural water bodies
- develop technology how wastewater is returned \rightarrow design of outfalls

Flow Diagram of Water Quality Engineering

1-6

1.1.2 Using the Water Environment for Waste Assimilation

• Types of pollutant (from the least dangerous to the most hazardous)

(1) Natural inorganic salts and sediments

- not toxic unless in excessive doses

(2) Waste heat or heated water discharges

- cooling water for electric generating plants

- decrease water's assimilative capacity for oxygen

(3) Organic wastes

- domestic sewage \rightarrow biochemical oxygen demand (BOD)

- carbon, nitrogen, phosphorous: nutrients \rightarrow eutrophication

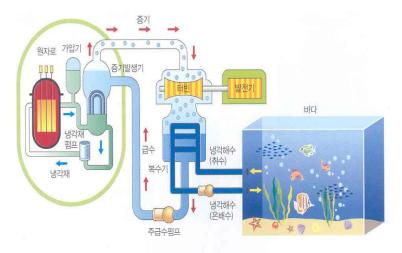
• BOD

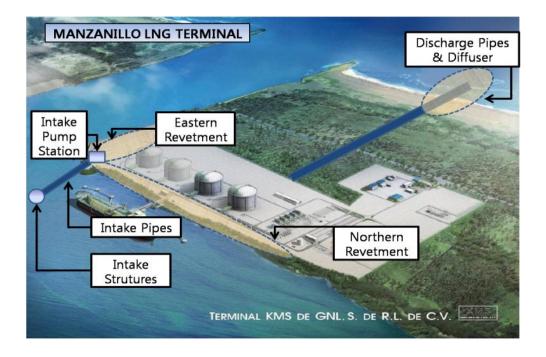
- amount of dissolved oxygen for bacteria to oxidize the organic wastes in the water

bacteria
Organic waste
$$+ O_2 \rightarrow CO_2 + H_2O$$

• COD

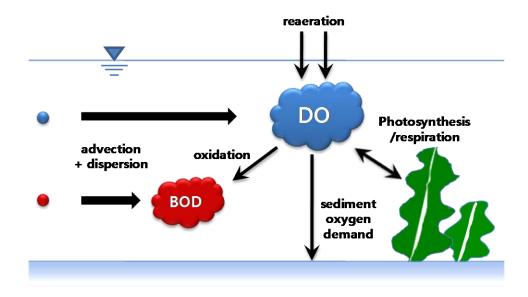
- amount of dissolved oxygen to oxidize the organic wastes using chemicals


COD > BOD


Yangz River

Nakdong River

Cooling system for nuclear power plant


LNG plant (Manzanillo, Mexico)

• Drinking water quality

class	BOD	
1	< 1ppm	
2	< 3ppm	
3	< 6ppm	
4	< 8ppm	

• ppm = parts per million = mg/ℓ

1ppm = 1g of BOD/1,000,000g of water

BOD-DO coupled system

(4) Trace metals

- industrial wastewater electro-planting, battery manufacturing, mining, smelting, refining
- lead, mercury, cadmium, selenium
- toxic in high concentration (accumulation)

(5) Synthetic organic chemicals

- slow to degrade in environment
- bioaccumulate in the aquatic food chain
- industrial chemicals: phenol, benzenes, PCB(Poly-Chlorinated Biphenyls),
- agricultural chemicals: pesticides, herbicides, DDT

* biological process (multiplying the concentration by a factor of 10^5 in successive food chain steps)

 \Leftrightarrow physical process of mixing (= high dilution reduces the concentration)

(6) Radioactive materials

- resulting from production of nuclear energy, nuclear weapons, and production of radioactive materials for industrial use

- plutonium - 239/240, strontium-90, cesium-137

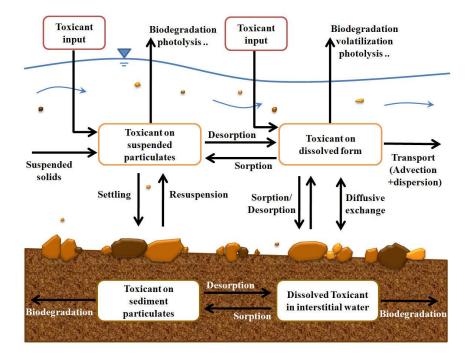
- long-term storage of radio-active wastes w/o leakage
- [Cf] radioisotopes for tracer materials: I-131 (half-life 8.3 days)

(7) Chemical and biological warfare agents

- exceedingly toxic; cannot be dispersed in the environment

[Re] "Dilution is the solution to pollution."

- suitable only for heat and natural organic materials


[Re] Toxic substances: trace metals, synthetic chemicals, radioactive materials

- results in acute effects of mortality and long-term chronic effect

- tendency to sorb to particulates in the water body

- tendency to be toxic at relatively low concentrations of $\mu g/l$ or ng/l

- tendency to be concentrated by aquatic organisms and transferred up the food chain

1.1.3 Mass Balance Concepts in Residual Management

Conservation of mass

- Flux of substance source must balance the fluxes for subsequent transport and diffusion with <u>adjustments for chemical and biological conversions and sinks</u>, such as deposition on the <u>river bed or sea floor</u>.

- flux of solute mass = mass of a solute crossing a unit area per unit time in a given direction
- For steady state, total influx = total efflux

• Types of pollutant source

1) point source

- discharge from a structure which is specially designed for the outflow of wastewater or accidental spill

[Ex] - industrial and municipal sewerage system

- accidental spill of chemicals or oil from a ship

- release of heated water from power plant

2) nonpoint source

- widely distributed points where pollutants are introduced into the hydrologic cycle

[Ex] runoff of salts, soil erosion, acid rainfall, street drainage

[Cf] classification by input period

continuous input - municipal sewerage system, heated water from power plant

instantaneous input - accidental spills

Effluent discharge channel (Tancheon STP)

1.1.4 Impacts of Some Traditional Activities of Hydraulic Engineers

• Adverse effects of traditional hydraulic works on water quality

(1) man-made reservoirs \rightarrow summertime thermal stratification \rightarrow oxygen depletion in the lower layer

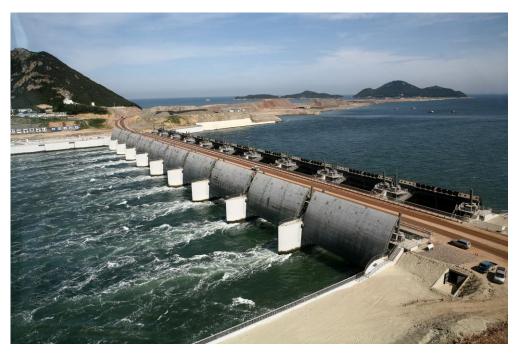
(2) diversion water for <u>consumptive uses</u> \rightarrow reduce river flow (inflow) and its ability to provide natural flushing

(3) canals \rightarrow transport huge amount of dissolved salts, sediment, nutrients and parasites

(4) agricultural drainage system \rightarrow accelerate the leaching of nutrients and salts from land to natural hydrologic systems

(5) breakwater for harbors \rightarrow interfere with natural nearshore circulation which could otherwise carry away pollutants

(6) estuarine modification or barriers \rightarrow radically change the circulation patterns decreasing flushing of pollutants


Panama Canal

Breakwater for harbors

SaemanGeum

SaemanGeum Barrier

1.2 Environmental Hydraulics

1.2.1 Hydrologic transport processes

• Hydrologic transport processes

- physical processes of flow of natural water bodies which cause pollutants or natural

substances to be transported and mixed, or exchanged with other media

⇐⇒ man-made unit process (chemical plant)

(1) Advection: transport by an imposed current system of receiving (ambient) water bodies

(2) Convection: vertical transport induced by hydrostatic instability (buoyancy)

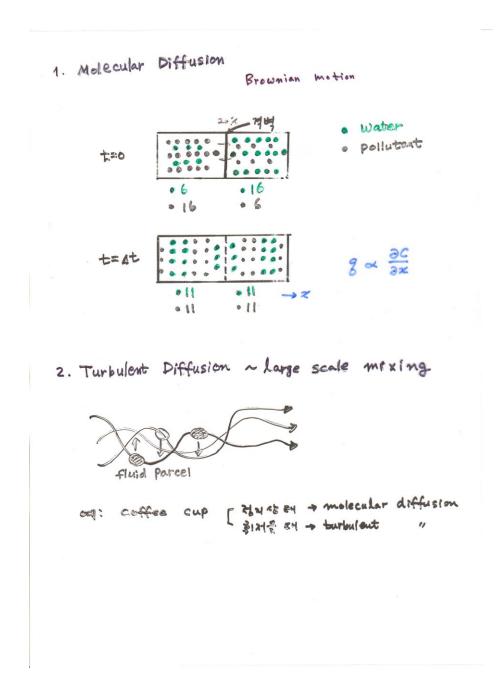
[Ex] - flow over a heated plate

- flow below a chilled water surface in a lake (winter time)

(3) Molecular diffusion

- scattering of particles by random molecular motion
- Brownian motion
- described by Fick's law
- molecular diffusivity

[Re] **diffusion** (physics): the process in which there is movement of a substance from an area of high concentration of that substance to an area of lower concentration

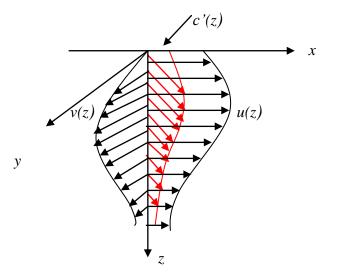

(4) Turbulent diffusion

- random scattering of particles by turbulent motion

- analogous to molecular diffusion

- molecular diffusion \ll turbulent diffusion

[Ex] mixing in coffee cup: in rest vs. stirring



(5) Shear (shear flow)

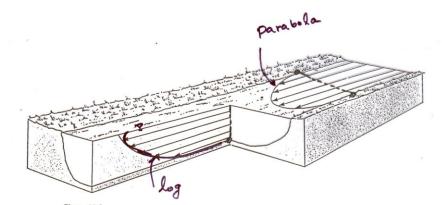
- advection of fluid at different velocities (direction and magnitude) at different positions

[Ex] - velocity distribution over stream bed

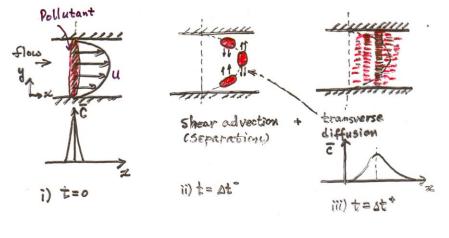
- complex flow in estuary or coastal areas

(6) Dispersion

- scattering of particles or cloud of contaminants by the combined effects of shear and


diffusion

- shear advection + vertical and/or transverse diffusion


- molecular diffusion \ll turbulent diffusion \leq dispersion

[Re] In optics, dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency, or alternatively when the group velocity depends on the frequency.

3. Shear Flow Dispersion

< -··

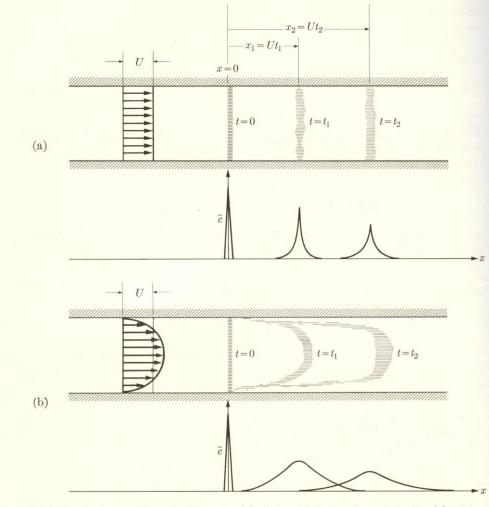


FIG. 16–10. Mechanism of longitudinal dispersion: (a) <u>turbulent diffusion</u> in uniform velocity flow; (b) <u>turbulent</u> dispersion due to <u>nonuniform velocity distribution</u>.

(7) Mixing

- diffusion or dispersion

- turbulent diffusion in buoyant jets and plumes

- any process which causes one parcel of water to be mixed with or diluted by another

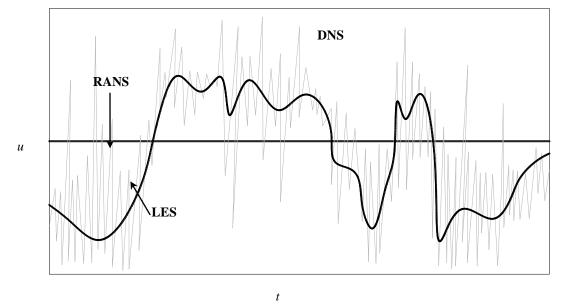
(8) Evaporation

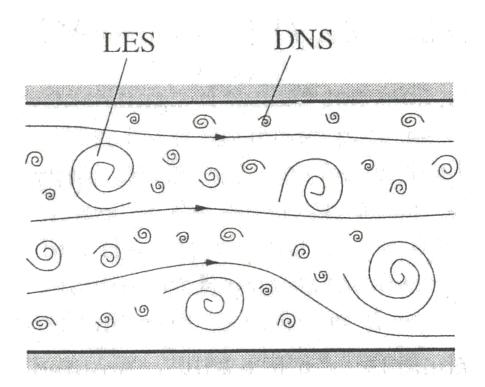
- transport of water vapor from a water or soil surface to the atmosphere

(9) Radiation

- flux of radiant energy at a water surface
- (10) Particle settling

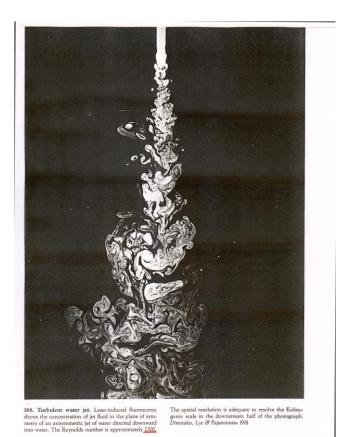
- sinking (or rising) of particles having densities different from the ambient fluid

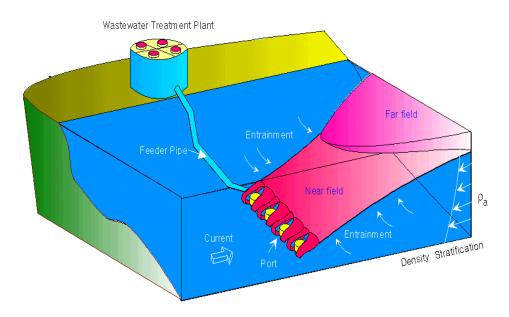

[Ex] sand grains, dead plankton \rightarrow downward transport of nutrients in lakes and ocean


(11) Particle entrainment

- picking up of particles (sand, organic detritus) from the bed by turbulent flow past the bed

• flow analysis - mean velocity is important


• pollutant analysis - fluctuation and <u>irregularities in hydrologic systems</u> are equally important



1.2.2 Buoyant Jets and Plumes

- submerged (momentum) jet
- increase the dilution of effluent discharge with the surrounding waters
- submerged buoyant jet
- when discharge fluid is lighter or heavier than surrounding waters
- heated water discharge (momentum jet) vs. wastewater discharge (buoyant jet)
- plume
- initial momentum is not important

- •Analysis of buoyant jets and plumes
- a) jet parameters : initial momentum flux, mass flux, buoyancy flux
- b) ambient conditions : ambient density stratification, ambient velocity
- c) geometric factors : jet shape, angle, orientation

1.2.3 Density-Stratified Flows in a Natural Environment and Geophysical Fluid

Mechanics

• Density stratification

 \rightarrow lake, reservoirs - due to temperature variation

 \rightarrow estuary - salinity profiles

- internal structure causes effect on both mean flow fields and turbulent mixing and

dispersion

1.2.4 Sedimentation and Erosion

- particle setting and entrainment, stream morphology
- erosion, transport and deposition \rightarrow "Advance River Engineering"

1.2.5 Interdisciplinary Modeling

- fate of pollutants governed by combination of physical, chemical and biological processes
- different $\underline{\text{time scales}}$ between the dominance of the various processes
- hydrodynamic mixing in the jets min
- dispersion, biochemical reaction hours, days
- biological or ecological effects weeks, months

1.3 Strategies and Approaches for Problems Solving

1.3.1 Strategies

• Strategy:

- a. Identify problems
- b. For large complicated problems, break a problem (of mixing) into submodels (component parts)
- c. Use two or more approaches (mixed approaches/hybrid modeling)

- interweaving of all of the approaches

- better than single approach, computer model, hydraulic model, and field studies

[Re] Approaches:

- computer modeling
- hydraulic modeling
- field experimentation
- (1) Problem identification
- a) For acute toxic effects
- \rightarrow predict <u>maximum instantaneous point concentration</u> of a pollutant

b) For long-term ecological effects

 \rightarrow predict changes in monthly <u>averages over broad areas</u>

At different scales of length and time, different processes will be important.

 \rightarrow Table 1.1 Effluent flow from a sewer outfall (ocean)

phase	phenomenon	length scale	time scale
1		(m)	(sec)
1	initial jet mixing	< 10 ²	< 10 ³
2	establishment of sewage field	$10 \sim 10^{3}$	$10^2 \sim 10^3$
3	natural lateral diffusion / dispersion	$10^2 \sim 10^4$	$10^3 \sim 10^5$
4	advection by currents	$10^3 \sim 10^5$	$10^3 \sim 10^6$
5	large scale flushing (by tidal motion)	$10^4 \sim 10^6$	$10^6 \sim 10^8$

(2) Definition of submodels

a) Omnibus model

- cover all steps

b) Component models

- break problems into components for different length and time scales

- simplifying (idealized) representations can be made

- concentrate on the dominant processes and important features of the environment

[Ex] Thermal discharge problem

· near-field mixing:

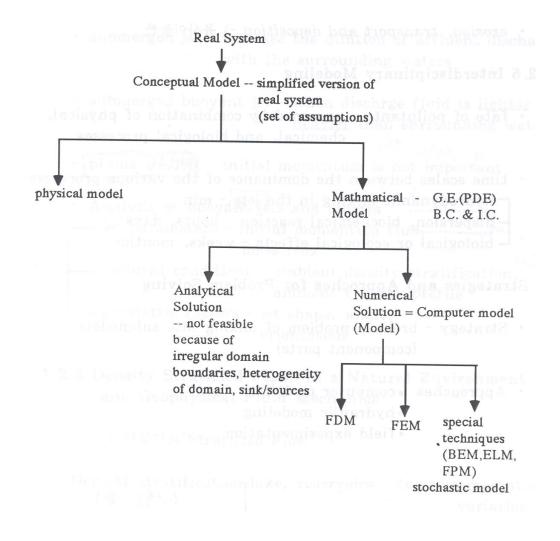
- initial jet and plume mixing occurs; momentum and buoyancy of the jet are important

(active mixing) \rightarrow use <u>hydraulic modeling</u>

 \cdot far-field mixing:

- heat loss, natural lateral dispersion and advection by currents are dominant (passive mixing)

 \rightarrow use <u>computer model</u>


- results from near-field model are used as input of far-field model

[Re] Model

- idealized representations

- concentrate on the dominant processes and important features of the water domain

- omit many secondary details or interactions

• Computer model:

- numerical solution of mathematical equations

 \rightarrow cannot be better that the validity of the underlying approximations

- can include meteorological factors (wind, surface cooling)

- can avoid scaling errors

• Physical model:

- reproduce complex 3-D flows (density-stratified flows)

- large scale phenomena (large scale vortices, internal waves and hydraulic jumps, multilayer shear flows, gravitational spreading) are represented

- scaling errors \rightarrow <u>viscous effects</u> are too strong in reduced laboratory models

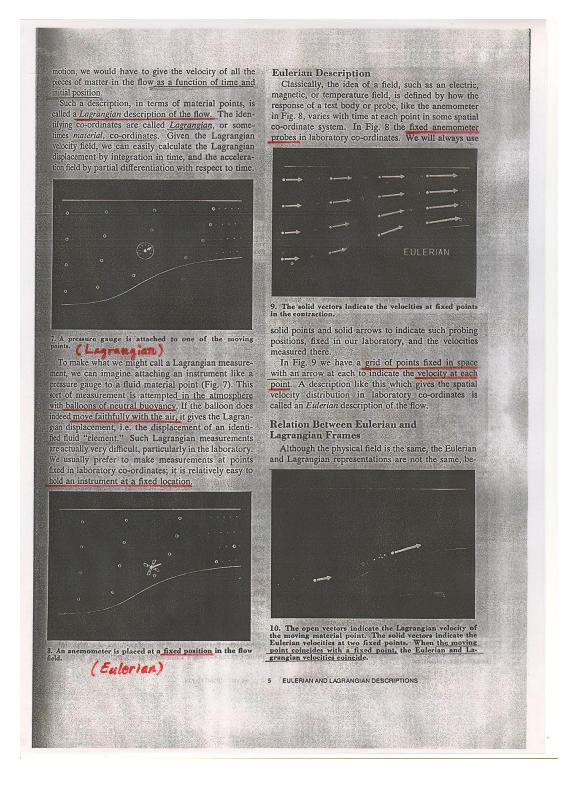
[Re] scaling based on Froude laws

- Reynolds numbers are much reduced from the prototype

- alter turbulence and resistance characteristics

- distorted models are used for big estuary (river) model

• Field Studies


-can be used to verify or adjust numerical models

a. Eulerian-type measurements

- fixed-location recording meter \rightarrow time series data at a fixed point

b. Lagrangian experiments

- follow drogues to track flow trajectories and dispersion \rightarrow time series data for a given parcel of water

1.3.2 Approaches

- Order-of-magnitude analysis
- quick approximate solution (quick-and-dirty)
- scaling
- powers of ten
- show the correct dependence on the most important parameters
- based on dimensional analysis

[Ex] complete vertical mixing

Find longitudinal distance required for complete vertical mixing of <u>surface discharge</u> pollutants

mixing time
$$T = \alpha \frac{d^2}{\varepsilon_v}$$
 (time scale)

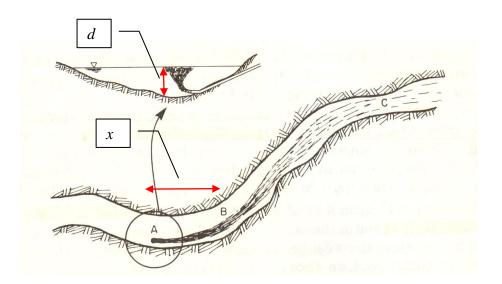
$$d = depth (cm)$$

 \mathcal{E}_{v} = vertical eddy diffusivity (m^{2}/s)

set $\mathcal{E}_{v} = 0.07u^{*}d$

$$u^*$$
 = shear velocity = $\overline{u}\sqrt{\frac{f}{8}}$

f = Darcy - Weisbach friction factor


then
$$T = \alpha \frac{d^2}{0.07 d\overline{u}} \sqrt{\frac{8}{f}}$$

$$\sqrt{\frac{8}{f}} \approx 15; \ \alpha \approx 0.35$$
$$\therefore T \approx 75 \frac{d}{\overline{u}}$$

substitute $X = \overline{u}T$

$$\therefore \frac{x}{d} \approx 75 \approx 10^2$$

x = longitudinal distance required for complete vertical mixing

1.4 Basic Definitions and Concepts

1.4.1 Concentration

• Concentration

- units of mass of tracer or contaminant per unit volume

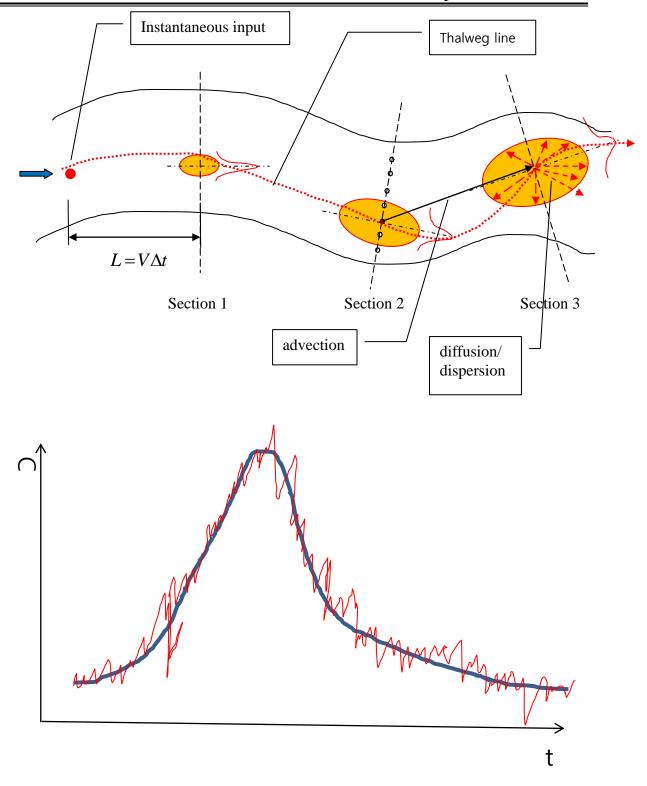
$$C = \lim_{\Delta V \to 0} \frac{\Delta M}{\Delta V}$$

where ΔM = tracer mass in elemental volume ΔV

• Time average of *C*

$$C = C(x, y, z, t)$$

 \rightarrow include turbulent fluctuations


$$\overline{C}(x, y, z, t_0) = \frac{1}{T} \int_{t_0}^{t_0 + T} C(x, y, z, t) dt$$

where *T* = averaging time interval

- sec, min for turbulence fluctuation

$$\overline{C} = fn(x, y, z, t_0, T)$$

→ slowly varying function; reflects only change of flow rate and ambient water conditions
- hours, day for unsteady flow

• Spatial average of *C*

$$\overline{C}_{v}(x_0, y_0, z_0, t) = \frac{1}{V} \iiint_{\Delta V} C(x, y, z, t) dV$$

- wipes out turbulent fluctuations occurring on scales smaller than $V^{\frac{1}{3}}$

- Flux average of $C = \overline{C}_f$
- flux = mass per unit area per unit time

Flux of contaminant mass through AA

=
$$\overline{C}_f \cdot (\text{flux of water through AA})$$

$$\int_{A} C \ u \ dA = \overline{C}_{f} \int_{A} u \ dA = \overline{C}_{f} Q$$
$$\therefore \ \overline{C}_{f}(t) = \frac{1}{Q} \int_{A} C \ u \ dA$$

• Total mass M

$$M = \int_0^T \overline{C}_f(t) \ Qdt = \int_0^T \int_A C \ u \ dAdt$$

1.4.2 Dilution

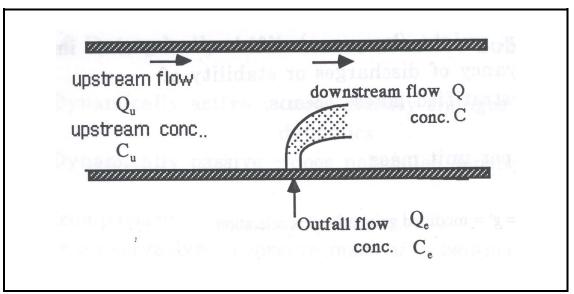
• Dilution: rate at which tracer is diluted, *S*

$$S = \frac{\text{total volume of sample}(= \text{vol. of mixture})}{\text{volume of effluent contained in the sample}}$$

 $S=1 \rightarrow$ undiluted effluent

p = volume fraction of effluent in a sample

= 1/S = relative concentration


- mixture of effluent with ambient water of background concentration C_a

items	effluent	ambient water	mixture
vol.	vol_e	vol_a	$vol_e + vol_a$
conc. of contaminant	C _e	C_a	$\frac{vol_e C_e + vol_a C_a}{vol_e + vol_a}$ (<u>harmonic mean</u>)

$$\therefore C = \frac{vol_e C_e + vol_a C_a}{vol_e + vol_a} = \frac{(vol_e + vol_a)C_a + vol_e (C_e - C_a)}{vol_e + vol_a}$$
$$= C_a + \frac{vol_e}{vol_e + vol_a} (C_e - C_a)$$
$$= C_a + P(C_e - C_a)$$
$$= C_a + \frac{1}{S} (C_e - C_a)$$

 \rightarrow increment of concentration above background is <u>reduced by the dilution</u> factor *S* or *p* from the point of discharge to the point of measurement of effluent

$$\therefore p = \frac{C - C_a}{C_e - C_a}$$
$$S = \frac{C_e - C_a}{C - C_a}$$

Mass balance at effluent outfall

• After effluent is fully mixed across the section,

mass rate of substance upstream + mass rate added by outfall

= mass rate of substance downstream from outfall

$$Q_u C_u + Q_e C_e = QC$$

 $w \Rightarrow Q_e C_e = \text{impact waste load [M/T]}$

• dilution of a composite sample

$$\overline{S} = \frac{\text{total vol.}}{\text{total effluent vol.}} = \frac{1}{P} = \frac{\sum_{i=1}^{N} \text{vol}_{i}}{\sum_{i=1}^{N} \text{vol}_{i} \frac{1}{S_{i}}}$$

1.4.4 Density

• weight density of water plays an important role in mixing in water body

weight density = weight per unit volume = ρg = weight/vol.

where ρ = mass density = *M*/*vol*. g = gravitational acceleration

• Variation of ρ is less than 3% in estuary and ocean

 \Rightarrow unimportant for fluid acceleration (fluid dynamics)

 \Rightarrow however, weight (buoyancy) difference (= $g\Delta\gamma$) is important for buoyancy of

discharges of stability of density-stratified flows (mixing mechanics)

• buoyancy per unit mass

$$g \frac{\Delta \rho}{\rho} = g' = \text{modified gravitational acceleration}$$

• $\sigma_t = \sigma - units$ for water density

$$\rho = 1 + \frac{\sigma_t}{1000} (g/cm^3) = 1000 + \sigma_t (kg/m^3)$$

 $\sigma_t = \sigma - units$ = $f_n(temperature, salinity) \rightarrow See App.1$

1.4.5 Density Stratification

• density profile $\rho_a(z)$ z = vertical coordinates $\frac{d\rho_a}{dz} < 0$ • linear density stratification $-g\frac{d\rho_a}{dz} = const.$

1.4.6 Dynamically Active versus Passive Substances

- Dynamically active substance:
- cause significant density changes to affect the flow dynamics
- massive heated water discharge
- need to recalculate flow fields at each time step \rightarrow coupled model
- Dynamically passive substance:
- does not cause density changes
- wastewater discharge

- flow fields are separately calculated and used as given input to mixing analysis \rightarrow scalar transport model

[Cf] conservative substance: conserve mass

non-conservative substance: reactive, BOD

1.4.7 Velocity Distribution in Turbulent Shear Flow

- turbulent shear flow in a long pipe or channel
- driving force: pressure gradient and gravity
- resisting force: shear stresses at the wall
- velocity contour map (Fig.5.11)
- u = u(y, z)
- Vertical velocity distribution
- approximated by a logarithmic function

a) Pipe:
$$u = \overline{u} + \frac{3}{2} \frac{u^*}{\kappa} + \frac{2.30}{\kappa} u^* \log_{10} \frac{z}{R}$$
 (1.27)

b) Wide channel :
$$u = \overline{u} + \frac{u^*}{\kappa} + \frac{2.30}{\kappa} u^* \log_{10} \frac{z}{d}$$
 (1.28)

where z = distance from the wall

R = pipe radius

d = channel depth

- = Von Karman constant ≈ 0.4
- mean velocity in the cross section related to mean wall shear stress

$$\tau_o = \frac{1}{8} f \rho \overline{u}^2 \longrightarrow [\text{Re1}]$$

where $\tau_o =$ mean wall shear stress

f = Darcy-Weisbach friction factor

f - estimated from Moody diagram for circular pipes

- use Moody diagram $R_h = D/4$ with for open channels

$$\overline{u} = \frac{1}{A} \int_{A} u(y, z) dA$$

$$\sqrt{\frac{\tau_o}{\rho}} = \sqrt{\frac{f}{8}}\overline{u}$$

define

$$\sqrt{\frac{\tau_o}{\rho}} \equiv u^* = \text{ shear (friction) velocity} \rightarrow [\text{Re2}]$$

• mean shear stress \leftarrow balance of force

$$\tau_o = \rho g R_h S$$

$$\therefore u^* = \sqrt{g R_h S} \longrightarrow [\text{Re3}]$$

$$\frac{\overline{u}}{u^*} = \sqrt{\frac{8}{f}}$$

[Re1]

$$h_{L} = f \frac{L}{D} \frac{v^{2}}{2g}, \quad h_{L} = \frac{\tau_{0}L}{\gamma R_{h}}$$
$$\therefore \tau_{o} \frac{L}{\gamma \frac{D}{4}} = f \frac{L}{D} \frac{v^{2}}{2g}$$
$$\therefore \tau_{o} = \frac{1}{8} f \rho v^{2}$$

[Re2]

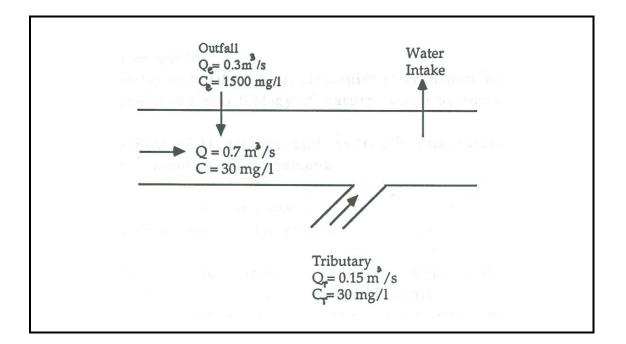
Shear velocity
$$= u^* = \sqrt{\frac{\tau_o}{\rho}} = \sqrt{gRS}$$
 for steady unsteady flow

$$= \sqrt{gD \left(S_o - \frac{\partial D}{\partial x} - \frac{v}{g}\frac{\partial v}{\partial x} - \frac{1}{g}\frac{\partial v}{\partial x}\right)} \quad \text{for}$$

unsteady flow

- dimensions of velocity

- varies with the boundary friction au_o


[Re3]

$$\tau_o = \gamma R_h \frac{h_L}{l}$$

 $S_0 =$ channel slope for uniform flow

Homework #1

Due: 1 Week from Today

Upstream flow with a background level of chlorides, a conservative substance, of $30 \text{mg}/\ell$ is supplemented by an industrial discharge of $0.3 \text{m}^3/\text{s}$ carrying $1,500 \text{mg}/\ell$ chlorides and a downstream tributary of $0.15 \text{m}^3/\text{s}$ with background chlorides concentration of $30 \text{mg}/\ell$. Assume downstream tributary chlorides concentration does not vary with flow.

To maintain a desired chlorides concentration of $250 \text{mg/}\ell$ at the water intake, determine: (a) the required industrial reduction in chloride concentration (b) the required increase in tributary flow.