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Q1: Theories for the glass transition



Theories for the glass transition

A. Thermodynamic phase transition

e (Glass transition

H,V,S: continuous C, oy Ky discontinuous
— by thermodynamic origin, 2"d order transition
: : Ax-AC
— In fact, it appears on some evidences that the glass = P >
transition is not a simple second-order phase transition. TV(Aa;)

B. Entropy

e Heat capacity — dramatic change at T,

e Description of glass transition by entropy (Kauzmann)

S = J‘ de INT | — The slow cooling rate, the lower T, —Tygor Tg"

— Measurement of Kauzmann temp. is almost impossible.

( -.- very slow cooling rate —longer relaxation time — crystallization )
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Theories for the glass transition
C. Relaxation behavior

Below glass transition: frozen-in liquid

— If (1) > (2) =» liquid // (1)~(2) == glass transition// (1) < (2) =% glass

(A concept of glass transition based on Kinetic view point)

: property of liquid-like structure suddenly changes to that of solid-like structure
d. viscosity
e Viscosity (101> centiPoise= 10'*13 Pas) at T,
e most glass forming liquid exhibit high viscosity.

e In glass transition region, viscosity suddenly changes. (fragile glass)
— Fragility concept: Strong vs Fragile

e Viscous flow — Several atomistic model | absolute rate model

e free volume model

» excess entropy model



Fragility

% Fragility ~ ability of the liquid to withstand changes in medium range order with temp.

~ extensively use to figure out liquid dynamics and glass properties

corresponding to “frozen” liquid state

< Classification of glass >

Strong network glass : Arrhenius behavior
Ea
T

| | n = n,exp[—=]
R
Fragile network glass : Vogel-Fulcher relation

— 7, exp[———]
1= expl—

< Quantification of Fragility >
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Q2: Glass formation



Glass formation

Retentionof liquidphase l ‘ Formation of crystallinephases l

Glass Formation results when
Liquids are cooled to below T, (T,) sufficiently fast to avoid crystallization.
[ Nucleation of crystalline seeds are avoided
Growth of Nuclei into crystallites (crystals) is avoided

Liquid is “frustrated” by internal structure that hinders both events

== “Glass Formation”




Critical cooling rate is inversely proportional to the diameter of ingot.
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Critical Cooling Rates for Various Liquids

Table 3-5. Examples of Critical Cooling Rates (°C/s) for Glass Formation

Heterogeneous nucleation
contact angle (deg)

Homogeneous
Material nucleation 100 60 40
e e ————_————————— ,
SiO, glass’ l 9 x 107°] 107 8x107% 2 x 1071
GeO, glass® T 3x 1073 T 3% 103 1 20
Na,O-2Si0, glass® 6 x 1073 8 x 1073 10 3 x 10*2
Salol 10
Water 107
' 1010
Typical metal® 9 x 108 9 x 10° 101° 5 x 10

“ After P. I. K. Onorato and D. R. Uhlmann, J. Non-Cryst. Sol., 22(2), 367-378 (1976).



Nucleation and Growth Rates Control R.

= Nucleation, the first step...

= First process is for microscopic clusters (nuclei) of atoms or ions to form
o Nuclei possess the beginnings of the structure of the crystal
0 Only limited diffusion is necessary
0 Thermodynamic driving force for crystallization must be present

%o |




1.2.3 Driving force for solidification

solidification

Liqguid — Solid
A

Liquid




The creation of a critical nucleus ~ thermally activated process

6= 21y _(ZySLijé 1
L,

~ AG,

- 0 ATy + AT

AT\ is the critical undercooling for homogeneous nucleation.

Fig. 4.5 The variation of r* and r ., with undercooling AT

max

The number of clusters with r* at AT < ATy is nebﬁgible.



Barrier of Heterogeneous Nucleation

16 7y 3, 167y (2—3c0s6 +cos’ b)

AG*: 3 2 8(9):

AG; 3AG 4
m AGE :AG;0m0£2—3003i+00530]
v. | T 30059+003¢9:S(8)
V, +V; L

How about the nucleation at the crevice or at the edge?
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Growth of crystals from nuclei

= Growth processes then enlarge existing nuclei
» Smallest nuclei often redissolve

= Larger nuclei can get larger

» Thermodynamics favors the formation of larger nuclei

000
o s
0000




Kinetic Roughening

Rough interface - Ideal Growth — diffusion-controlled — dendritic growth

Smooth interface - Growth by Screw Dislocation
Growth by 2-D Nucleation

Small AT — “feather” type of growth 4= Large AT — cellular/dendritic growth

A
The growth rate of the singular interface
cannot be higher than ideal growth rate. . Continuous
5 growth /-
= (rough interface) . v ka(AT,)"I
<\ S y nTmTTTETT T
When the growth rate of the singular = SPelfal growth
Interface is high enough, it follows the 5 (smdoth interface)
ideal growth rate like a rough interface. :
Sulzface nucleation
— kinetic roughening (Sfﬂooth interface)
v o0 exp (-kZ/AT)

Interface undercooling, AT1
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Nucleation and Growth Control R.

Poor glass formers:

o Liquids which quickly form large numbers of nuclei close to T,
o That grow very quickly

Good glass formers

o Liquids that are sluggish to form nuclei even far below T
a That grow very slowly




Nucleation and Growth Rates — Poor Glass Formers

T, >
Rate
= Strong overlap of growth
Growth Rate (m/sec) and nucleation rates
= Nucleation rate is high
s Growth rate is high
T

= Both are high at the same
temperature

Nucleation Rate (#/cm3-sec)




Nucleation and Growth Rates - Good Glass Formers

T >
" Rate
= No overlap of growth
Growth Rate (m /sec) and nucleation rates
m Nucleation rate is small
m Growth rate is small
T

= Atany one temperature one
of the two is zero

Nucleation Rate (#/cm3-sec)




Q3: Classical Nucleation Theory-TTT diagram



Nucleation Rate Theory

Rate at which atoms or ions in the liquid organize into
microscopic crystals, nuclei

[ = number of nuclei formed per unit time per unit volume of liquid

Nucleation Rate (I) o  number density of atoms x

fastest motion possible x

thermodynamic probability of
formation x

diffusion probability




Nucleation Rate Theory

| = Mxp(-NW*/RT)gxp(-AED/RT)

T Y- — '
Number density Fastest motion Thermodynamic probability Diffusion probability

n = number density of atoms, molecules, or
formula units per unit volume
= p N/Atomic, molecular, formula weight

Y = vibration frequency ~ 1013 sec!

N = Avogadro’s number
= 6.023 x 1023 atoms/mole

wW* = thermodynamic energy barrier to form nuclei

AE,  =diffusion energy barrier to form nuclei
~ viscosity activation energy




Nucleation Rate - Thermodynamic barrier W*

................. WS — 47-”'26’ surface
= c IS the surface energy
= W, = 4/3nr3AGcrsyt(T) bulk

(T), the Gibb’s Free-Energy

cryst

of Cryst. per unit volume, V,,

Wigt = Wg + Wy

= Atr’, (OW(r)/ or),..« =

u I' = ZG/ AGcryst(T)
s W(r') =W’ = 167 63/3(AGq, o (T))?




Nucleation Rate I(T)

| = nvexp(-N 167t 63/3(AG,.«(T))? IRT)exp(-AE/RT)

crsyt

AGryst(T) = AHeryst(Tin J(L = TIT))V iy = AHcrys(Ti JAT o/ Tio)

cryst cryst

+ AGyy(T) / Liquid is Stable
) ) Approx. for c:
\ o~ 1/3AH, , INY3V 273
i nOte AHme": — AH(_';ryst

1 _Liquid and Crystal are in equilibrium
Crystal is Stable ™




Growth Rates - u(T)

= Crystal growth requires
o Diffusion to the nuclei surface

o Crystallization onto the exposed crystal lattice

[

AG

cryst

Vi, = VexXp(-AEL/RT)
Vel = Vexp('(AED' AGcryst) /RT)

Vet = Vioc ™ Ve ~

vexp(-AE,/RT) -
VEXD(-(AED- AGcryst) /RT)

W=av,=avexp(-AE,/RT) x
(1 N exp(AGcryst) / RT)




Growth Rates - u(T)

Diffusion coefficient, D

D(T) = azvexp[—AED } :( fRT ]

RT 3Nman(T)
Stokes-Einstein relation between D andn p = (‘ATET
Tnr

Hence: B RT B AH Y AT .
E”(T)_(anazn(T)Il_eXp ( RT j[T j J




Nucleation and Growth Rates

Nucleation and Growth Rates for Water
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Nucleation and Growth Rates

Nulceation and Growth for Silica
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Time-Temperature-Transformation Curves (TTT)

How much time does it take at any one temperature
for a given fraction of the liquid to transform
(nucleate and grow) into a crystal?

AT) ~ml(T)u(T)°th/3

where fis the fractional volume of crystals formed,
typically taken to be 109, a barely observable crystal

volume.

Nucleation rates Growth rates




Time Transformation Curves for Water

T-T-T Curve for water
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Time Transformation Curves for Silica

T-T-T Curve for Silica
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TTT curves and the critical cooling rate, R_

time
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FIGURE 2.3
Time-temperature—transformation (T-T-T) curves (solid lines) and the corresponding contin-
uous cooling transformation curves (dashed lines) for the formation of a small volume fraction
tor pure metal Ni, jand| Au.,Ge,,Si. | Pd..5i,. |and|Pd,Cu,Si | alloys.
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