2019 Fall

"Advanced Physical Metallurgy" - Non-equilibrium Solidification -

10.10.2019

Eun Soo Park

Office: 33-313 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by appointment

Q1: Theories for the glass transition

Theories for the glass transition

- A. Thermodynamic phase transition
 - Glass transition
 - H, V, S: continuous $C_p \alpha_T K_T$: discontinuous
 - → by thermodynamic origin, 2nd order transition
 - → In fact, it appears on some evidences that the glass transition is not a simple second-order phase transition.

$$R = \frac{\Delta \kappa_T \Delta C_P}{TV (\Delta \alpha_T)^2} \neq 1$$

B. Entropy

- Heat capacity \rightarrow dramatic change at T_g
- Description of glass transition by entropy (Kauzmann)

 $S = \int C_P d \ln T \longrightarrow$ The slow cooling rate, the lower $T_g \longrightarrow T_K$ or T_g^0

- → Measurement of Kauzmann temp. is almost impossible.
 - ($\cdot \cdot$ very slow cooling rate \rightarrow longer relaxation time \rightarrow crystallization)

З

Theories for the glass transition

C. Relaxation behavior

Below glass transition: frozen-in liquid

- → glass transition is observed when the experimental time scale (1) becomes comparable with the time scale for atom/molecule arrangement
- \rightarrow If (1) > (2) \Rightarrow liquid // (1)~(2) \Rightarrow glass transition// (1) < (2) \Rightarrow glass

(A concept of glass transition based on kinetic view point) : property of liquid-like structure suddenly changes to that of solid-like structure

- d. viscosity
 - Viscosity (10¹⁵ centiPoise= 10^{12-13} Pa s) at T_g
 - most glass forming liquid exhibit high viscosity.
 - In glass transition region, viscosity suddenly changes. (fragile glass)
 - → Fragility concept: Strong vs Fragile
- absolute rate model
- free volume model
- excess entropy model

Fragility

Fragility ~ ability of the liquid to withstand changes in medium range order with temp.

~ extensively use to figure out liquid dynamics and glass properties corresponding to "frozen" liquid state

< Classification of glass >

Angell-plot (Uhlmann)

Slope of the logarithm of viscosity, η (or structural relaxation time, τ) at T_{q}

Q2: Glass formation

Glass Formation results when

Liquids are cooled to below $T_m(T_L)$ sufficiently fast to avoid crystallization.

Nucleation of crystalline seeds are avoided

Growth of Nuclei into crystallites (crystals) is avoided

Liquid is "frustrated" by internal structure that hinders both events

"Glass Formation"

Critical cooling rate is inversely proportional to the diameter of ingot.

Critical Cooling Rates for Various Liquids

Table 3-5. Examples of Critical Cooling Rates (°C/s) for Glass Formation

Material	Homogeneous nucleation	Heterogeneous nucleation contact angle (deg)		
		100	60	40
SiO_2 glass ^a	9×10^{-6}	10^{-5}	8×10^{-3}	2×10^{-1}
GeO_2 glass ^a	3×10^{-3}	3×10^{3}	1	20
Na ₂ O·2SiO ₂ glass ^a	\bullet 6 × 10 ⁻³	8×10^{-3}	10	$3 \times 10^{+2}$
Salol	10			
Water	107			
Ag	10 ¹⁰			
Typical metal ^a	9×10^8	9×10^9	10 ¹⁰	5×10^{10}

^a After P. I. K. Onorato and D. R. Uhlmann, J. Non-Cryst. Sol., 22(2), 367–378 (1976).

Nucleation and Growth Rates Control R_c

- Nucleation, the first step...
- First process is for microscopic clusters (nuclei) of atoms or ions to form
 - Nuclei possess the beginnings of the structure of the crystal
 - Only limited diffusion is necessary
 - Thermodynamic driving force for crystallization must be present

1.2.3 Driving force for solidification

The creation of a critical nucleus ~ thermally activated process

 ΔT_N is the critical undercooling for homogeneous nucleation. Fig. 4.5 The variation of r* and r_{max} with undercooling ΔT The number of clusters with r* at $\Delta T < \Delta T_N$ is negligible.

Barrier of Heterogeneous Nucleation

How about the nucleation at the crevice or at the edge?

Growth of crystals from nuclei

- Growth processes then enlarge existing nuclei
- Smallest nuclei often redissolve
- Larger nuclei can get larger
- Thermodynamics favors the formation of larger nuclei

Kinetic Roughening

 \rightarrow diffusion-controlled \rightarrow dendritic growth Rough interface - Ideal Growth Smooth interface - Growth by Screw Dislocation Growth by 2-D Nucleation Small $\Delta T \rightarrow$ "feather" type of growth \longrightarrow Large $\Delta T \rightarrow$ cellular/dendritic growth The growth rate of the singular interface Continuous cannot be higher than ideal growth rate. Growth rate, ν growth (rough interface) $\mathcal{V} = k_3(\Delta)$ $\boldsymbol{\mathcal{V}} = k_1 \Delta T_i$ Spiral growth When the growth rate of the singular (smooth interface) Interface is high enough, it follows the ideal growth rate like a rough interface. Surface nucleation (smooth interface) \rightarrow kinetic roughening $v \propto \exp(-k_2/\Delta T_i)$

Interface undercooling, ΔT_{i}

Nucleation and Growth Control R_c

- Poor glass formers:
 - Liquids which quickly form large numbers of nuclei close to T_m
 - That grow very quickly
- Good glass formers
 - □ Liquids that are sluggish to form nuclei even far below T_m
 - □ That grow very slowly

Nucleation and Growth Rates – Poor Glass Formers

Nucleation and Growth Rates – Good Glass Formers

Q3: Classical Nucleation Theory-TTT diagram

Nucleation Rate Theory

- Rate at which atoms or ions in the liquid organize into microscopic crystals, nuclei
 - I = number of nuclei formed per unit time per unit volume of liquid
- Nucleation Rate (I) ∞ <u>number density of atoms x</u> <u>fastest motion possible x</u> <u>thermodynamic probability of</u> <u>formation x</u> <u>diffusion probability</u>

Nucleation Rate Theory

Number density Fastest motion Thermodynamic probability Diffusion probability

- n = number density of atoms, molecules, or formula units per unit volume
 - = ρ N/Atomic, molecular, formula weight
- v = vibration frequency ~ 10^{13} sec⁻¹

 $I = n_v exp(-NW^*/RT) exp(-\Delta E_D/RT)$

- N = Avogadro's number
 - $= 6.023 \times 10^{23}$ atoms/mole
- W^{*} = thermodynamic energy barrier to form nuclei
- ΔE_D = diffusion energy barrier to form nuclei
 - ~ viscosity activation energy

Nucleation Rate – Thermodynamic barrier W*

$$W_{tot} = W_{S} + W_{B}$$

At r^{*}, $(\partial W(r) / \partial r)_{r=r^*} = 0$ r^{*} = - 2 σ / $\Delta G_{cryst}(T)$ W(r^{*}) = W^{*} = 16 $\pi \sigma^3$ /3($\Delta G_{cryst}(T)$)²

Nucleation Rate I(T)

I =
$$n_v \exp(-N \ 16\pi \ \sigma^3/3(\Delta G_{crsyt}(T))^2 / RT) \exp(-\Delta E_D / RT)$$

$$\Delta G_{cryst}(T) = \Delta H_{cryst}(T_m)(1 - T/T_m)/V_m \equiv \Delta H_{cryst}(T_m)(\Delta T_m/T_m)$$

Growth Rates - \mu(T)

- Crystal growth requires
 - Diffusion to the nuclei surface
 - Crystallization onto the exposed crystal lattice

Growth Rates - \mu(T)

Diffusion coefficient, D

$$D(T) = a^{2} v \exp\left[\frac{-\Delta E_{D}}{RT}\right] = \left(\frac{fRT}{3N\pi a \eta(T)}\right)$$

......

Stokes-Einstein relation between D and η $D = \frac{k_{\rm B}T}{6\pi \eta r}$

Hence:

$$\mu(T) = \left(\frac{fRT}{3N\pi a^2 \eta(T)}\right) \left(1 - \exp\left[\left(\frac{\Delta H_m}{RT}\right)\left(\frac{\Delta T}{T_m}\right)\right]\right)$$

Nucleation and Growth Rates

Nucleation and Growth Rates

Nulceation and Growth for Silica

Time-Temperature-Transformation Curves (TTT)

- How much time does it take at any one temperature for a given fraction of the liquid to transform (nucleate and grow) into a crystal?
- $f(t,T) \sim \pi I(T) \mu(T)^{3} t^{4}/3$

where <u>*f* is the fractional volume of crystals</u> formed, typically taken to be 10⁻⁶, a barely observable crystal volume.

Time Transformation Curves for Water

T-T-T Curve for water

Time Transformation Curves for Silica

T-T-T Curve for Silica

TTT curves and the critical cooling rate, R_c

FIGURE 2.3

Time-temperature-transformation (T-T-T) curves (solid lines) and the corresponding continuous cooling transformation curves (dashed lines) for the formation of a small volume fraction for pure metal Ni, and Au₇₈Ge₁₄Si₈, Pd₈₂Si₁₈, and Pd₇₈Cu₆Si₁₆ alloys.