11
Work and Energy Methods

11.1 Intreduction. Several work and energy methods have aiready been pre-
sented and used for computing deflections and analyzing statically indeterminate
structures. The method of virtual work was developed in Arts. 8.3 to 8.7, and
Castigliano’s first and second theorems were derived in Arts. 8.16 and 8.15,

respectively.
Several more energy relationships will be needed for the development of the

methods of systematic analysis to be discussed in Part 1. Specifically, the prin-

ciple of stationary total potential ener‘gy and the principle of stationary total com- -

plementary potential energy will be utilized in these subsequent discussions. Before
developing these two new principles, it will be helpful to review some basic defini-
tions. Then some of the previous developments regarding work and energy will
also be Teviewed, after which these concepts will be expanded to obtain the addi-
tional principles needed in the following chapters.

1.2 Some Basic Definitions and Concepts. Perhaps it should only be necessary
at this point to suggest that the reader review his elementary dynanics, concen-
trating particularly on the basic concepts and definitions introduced during the
elementary applications of Newton’s laws of motion. However, those ideas thal
are particularly pertinent to the present developments in this chapter will be re-
stated here for ready reference.

A force may be defined as any action that tends to change the state of motion
(or rest) of the body to which it is applied. When the point of application of an
active force moves, then the foree is said to do work #” equal to the product of the
force and the lineal displacement of its point of application in the direction of the

force.!

! In this case, the wards for oo and displarement are used in a generalized sense which may also

be interpreted to mean couple and rowarional displacement, respectively.
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If a force is verp gradually applied to a body, there will be essentially only static 4
deformation and displacement of the body, with no essendal acceleraﬁ)(;ns cl)c
changes of velocity involved.  In such cases, due to the deformation of the bod . .
the work done by the foree is stored up in the body by a particular form of otenliZi
energy referred to as strain energy.  If, on the other hand, a force is nor praduall .
applied, accelerations and changes of velocity, as well as deformation oftgh bod ,
will be produced and the work done by the force may be converted inteo 1()) t);l
strain energy and a change in the kinetic energy of the body. °

Most often we associate potential energy ¥~ with the capability (or potential) of
a weig}_ﬂ to do work. We measure such potential by selecting arbitrarily some
convenient datum plane such as shown in Fig. 11.14 and then computing 1); th
initial potential energy {or the initial potential) of the weight, to be the rﬂo:;iuc‘:
of D,, the initial distance of the weight from the datum, and W, the tP f
gravity acting on the weight. , : oree

Actualiy,_ of course, any active force P, whether it acts vertically or horizontall
or in any direction, has the potential for doing work, and therefore it has potentia)lr
energy. As in the case of the weight, any force P has an initial potential energy
¥, equal to PD,, where D, is the distance 10 a convenient datum measured in
the sense of, and along the line of action of, the force.

If the weight W, in Fig. 11.1) were pushed off of its supporfing ledge, it would
fall freely. As it feli, the weight would steadily acquire more and mo;e kinetic
energy, the amount of such energy at any instant being exactly equal to the potential
energy W, D it had lost between that instant and the start of its fall. On the other
hand, consider the situation shown in Fig. 11.1¢, where the weight is very graduall
transferred from the ledge to the supporting spring. It can be imagined that thiBS(
gradual tranfer is accomplished with the assistance of a friendly genie who at the
start of the transfer process bears the entire load of the weight. But as the transfer
proceeds, the spring gradually deflects and absorbs part of the load of the weight
Finally, the spring has deflected enough for the resisting force of the spring tc;
carry the entire load and the genic can be discharged for the time being. De-.
pcndlmg on whether the force-deflection characteristics of the spring are linear or *
nonlmlear, the load-transfer process can be depicted by Fig. 11.14 or e, respectively

During the gradual assumptlion of the weight W, by the spring, the weight has.
fost potentizl energy by the amount of - ¥, A,. Note that this amount is numeri-
cally equal to the area of the rectangle Oabe in either Fig. 1i.1d or e. On the
otner hand, the area Obe under force-deflection curve O in either of these figures
represents the strain energy stored in the spring.  During the gradual loading of
the stp_r.i‘ng‘,: the resisting force R of the spring at any displacement is equal and
opposite {o the net load; i.e., the différence between ihe‘\;"eight and the poftion of
the weight being supported by the genie. The curve @b therefore could alse repre-
sent the net load-deflection curve; and for such an interpretation the area Qbe
WOyld be equal to the work done by the net load during the gradual loading of the
spring.

The area (Jab above the curve Of represents that part of the potential energy
lost by the weight that Is sur vransfornred dite strain energy stored in the sprit;g.

-
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Figure 11.1 Work and energy relationships

In this case, the area Oab represents the work done by the gex-lie in partially holding
back the weight so that the net load on the spring gradually increases from zevo 0

the final value W;.
In the parlance of structural mecha
fore lost to the system is called the complementary

nics, the work done by the genie and there-
work done by the net load.

Likewise, interpreting Fig. 11.1d and ¢ as they are actually drawn to represent the
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force-defiection behavior of the spring, the areas Obe above the curves are said to
represent the complementary strain energy of the spring. '

11.3 Principle of Stationary Total Potential Energy. There is a general prin-
ciple of rigid-body mechanics that can be represented by Fig. 11.2, in which iden-
tical balls are shown resting on three different types of surfaces representing the
cases of stable, neutral, and unstable equilibrium, respectively. In each case, a
small horizontal displacement of the ball would not be accompanied by any essen-
tial vertical displacement. Therefore, for such small horizontal displacements of
the balls from their equilibrium positions shown, there is no change in the poten-
tial energies associated with the weights W,. Reasoning from situations like that
represented in Fig. 11.24, it can be stated that the potential energy of a systern has a
stationary value when the system is in equilibrium and this value is a minimuom
when the equilibrium is stable.

These considerations suggest the validity of the principle of stationary total
potential energy for deformable structural systems. For such a system, the total
potential energy of the system consists in part of the potential of the active applied
loads #7, the remainder consisting of the strain energy stored in the structure %
both these parts can be expressed mathematically in terms of the relevant in-
depéndent displacements of the system. If the system is in stable equilibrium
under the loads, the total potential energy of the system must be at a minimum.

‘Therefore, for small displacements of the system from the equilibrium position,
there must be no significant changes in the t%al potential energy % + ¥, or

6 (% +¥) =0 ' L1

where the subscript D has been added to the variation symbol § to emphasize that
only deformations and displacements are to be varied. When the following
minimizing conditions are expressed mathematically, # equations are obtained,
from which the » displacements A can be computed, thereby defining the deflected
position of the system in its equilibrium position under the active applied loads:
—?-m(%’+1’")—0 -i(%+V}—0 i(f’.7z+’if)m0 (1.2
8A, T oA, T T eA, B ’
In the setup of these equations, the strain energy of the system can be evaluated
from expressions such as those developed in Art. 8.15. The potential of any load
P; can be expressed as ¥7,; — P;A;, and such quantities may be summed for all

J
loads of the system to obtain the potential of the entire load system:

R S 31 ¢ Oy 30 S (T

in which ¥", ; is a constant that represents the potential (with respect to some con-
venient datum) of the load P; in its original position on the unloaded, and hence
undeformed, system. With respect to the process of applying Eq. (11.2), note that

! Basically these equations represent force-equilibrium conditions in the directions of the
displacements A.
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Figure 11.2 Stationary Potential Energy

a fact be computed for each load since these values of

the value of ¥7,; need not 1
differentiated in turn with

¥ ,;, being constants, contribute nothing when partially

respect to each of the deflections, A.
Although we shall not do so formally in this presentation, the principle of total

potential energy we have been considering can be rigorously derived by an appli-
cation of the theorem of virtual deformations, discussed in Art. 11.4. The total
potential energy principle has been expressed mathemetically by Egs. (11.1) and

(11.2), and may be stated in words as follows:

Principle of stationary total potential energy:

Of all geometrically compatible deformation states of a structural system that
also satisfy the deflection poundary conditions, those that also satisfy the force
equilibrium requirerments give stationary and m inimum values to the fotal potential

energy.

1t should be noted tﬂét this principle is Lalid theoretically for all structural systems,
ng significant changes in

linear or otherwise, and that even large deformations causi
geometry can, in principle, be handled. Admittedly, however, cases involving
large defiections and/or nonlinear behavior result in very cumbersome solutions
which may be impractical to complete.

It is also particularly important to recog
total potential energy is not based in any way on

of energy. If it were, the principle would have to a
forms of potential energy possessed by the system but also for the kinetic energy
involved and any losses or diversions of energy that might occur. The principle
of stationary total potential energy is simply a very useful relationship regarding
all the potential energy ipvolved in the system. The various terms of the relation-
* ship can often be evaluated without much difficulty, and the solution of the re-
sulting equations leads to useful resulis. o '
11.4 Virtual-Werk Theorems. Several virtual-work relationships have al-
ready been discussed. Bernoulii’s principle of virtual work for rigid bodies was de-
veloped in Art. 8.3, The principle of virtual work for deformable bodies was

developed in Art, 8.4 and converted into a convenient form for use in deflection
latter principle of virtual work is restated here

nize that the principle of stationary
the concept of the conservation
ccount not only for the various

computations in Art, 8.3, This
for convenient reference.
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Principle of virtual work for deformable bodies:

Ifa deformable body is in equilibrium under a virtual O-force system and remains
in equilibrium while the bady is subjected (o a small and compatible deformaltion,
the external virtual work done by the external Q-forces acting on the body is equal
10 the internal virtual work of deformation done by the internal ¢ stresses.

In order to visualize this statement mathematically, it is convenient to think of
this principle in the form applicable to frameworks,

virtual-force system

Y 0i= Y FpAL (4 @

| —
e

deformations caused by actual forges

Two important corollaries can be reasoned from this principle of virtual work.
The first may be stated as follows: .

Theorem of virtual forces for deformable bodies:

If, during any statically possible virtual variation {from the equilibrium state of the
virtual Q-force system, tie external virtual work done by the viriual variation of
the external Q forces is equal to the internal virtual work done by the virtual varia-
tion of the internal Q stresses, then theanchanging displacements and strains of
the deformation system 1o which the deformable body is being subjected are in-
ternally compatible and externally consistent with the support constraints imposed
on the body.

Mathematically this theorem may be expressed as follows:

variation of virtual-force system

i I

| E—

. vumipauibie deflormaiion

(11.5)

where the subscript £ has been added to the variation symbol & to emphasize that
only the external  forces and the internal (0 stresses are to be varied. The second
corollary may be stated as follows:

Theorem of @rtual_deformationg for deformable bodies:

If, during any consistent virtual variation of a compatible defo:;ma!ion system to
whicha deformable body is subjected, the external virtual work done by the external
Q forees during the virtual variations of the deformations is equal to the internal
virtual work dane by the internal Q-stresses during the vaviation, then the external
Q forces, which have remained constant during the variation of the deformations
are in a state of eauilibrivon with the internal ) stresses. ’

Y S S U Y Y W B Y X |
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Mathematically this second theorem may be expressed as follows:

coovirtual-Force system in equilibriam

4 l

Y 08,0) = ¥ Fo dp(AL)

- 1T

variation of defurmation system

(11.6)

where the subscript D has been added to the variation symbol & to emphasize that
only deformations and displacements are to be varied.

It should be noted that the principle of virtual work and its two corollaries are
valid for any type of deformation no matter what its cause and for linear or non-
linear material. The only limitation is that the deformaltions should not be so large
that the equilibrium conditions of the structure need to be altered 1o include the
effects of these large displacements.

11.5 Principle of Stationary Total Complementary Potential Energy. Like
potential energy, the complementary potential energy of a system can often be
readily evaluated. Also, as in the case of potential energy, there is a useful
relationship involving the complementary potential energy of a structural system.
This complementary energy relationship is also nor based on the concept of the
conservation of enérgy. The relationship may be stated as follows:

Principle of stationary total complementary potential energy:

Of all force states satisfving the equilibrium equations and the force boundary
conditions, those that also satisfy the geometric compatibility requirements
give stationary and mininium ua[ue{ to the total complementary potential energy.
]
Mathematically this retationship involving =*, the total complementary potential
energy, which is equal to the sum of the complementary strain energy #* and the
complementary potential energy of the active applied loads ¥*, may be written

SAn*y =0 %* +¥V*)=0 (11.7)

where the subscript £ has been added to the variation symbol § tc emphasize that
only the external forces and internal stresses are to be varied. Basically this rela-
tionship leads to statements of the geometric compatibility conditions.

The complementary strain energy #* can be evaluated in a manner similar to the
evaluation of the strain energy 4. Whereas %, the density, i.e., the strain energy
per unit volume, of the strain energy %, is computed from the expression
Y = fa' de
the density %* of the complementary strain energy #* is computed from the re-
ciprocal relationship

w* = [edo (11.9)

IE

(11.8)

COMPLEMENTARY-STRA 379

Comparisons of these expressions with similar quantities for the spring shown on
Figs. 11.1d and e reveals that the computation of % is associated so to speak with
the arca under the curve and the computation of #* is associated with the area
above the curve. Applying Eq. (11.9) to a particular structural member would
lead to the value of its complementary strain energy.

In somewhat similar fashion, the value of the complementary potential energy ¥ *
of an active load P can be determined. The work #” done by such a'load moving
through a displacement A in the sense of its line of action is equal to [ PdA, On
the other hand, the complementary work %~ done by such a load, as the load varies
is equal to J AdP. However, from the definition of the potential energy {or po-
tential) of a load, it is apparent that the load feses potential energy in an amount
equal to the work it does as it is displaced. Therefore, the variation of the
potential encrgy 8, %" as the displacement varies is equal to the negative of the
variation of the work 8,%", or

8% = =8, W = —PdA (11.10)
But in an analogous manner, if the Inads instead of the displacements are varied,
the variation of the complementary potential energy 8% 7* is equal to the negative
of the variation of the complementary work 8.%7*, or '

Sy * = =& %™ = —AdP (1L.11)

Equation (11.7), the mathematical expression of the principle of stationary total
complementary potential encrgy, follows directly from an application of the theo-
rem of virtual forces. Referring to Eq. (11.5) and the statement of this theorem,
if the Q-force system mentioned there is considered to be the actual P-force system
causing deformation of the structure, then the external work done is equal to the
variation of the complementary work 8, #°* and the internal virtual work is equal
to the variation of the complementary strain energy 8, #*, or

S > =&, U*
From which,

b, (U* — #*) =0
Substituting in this from Eq. (11.11) leads ta
Se(* +¥v* =0

which confirms the relationship expressed in Eq. (11.7).

1L6 Complementary-Strain-Energy Theorem. In 1889, ten years . after
Castiglianc published his well-known first and second theorems, Engesser pub-
lished a paper on statically indeterminate structures in which he stated what we
shall call the complementary-strain-energy-theorem.
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Complementary-strain-cnergy theorem:

It any striectire the material of which is linearly or nonlinearly elastic, the first
) - : * o 5

partial derivative of the complementary strain energy a* with respe"c! r‘o any par

ticular force P, is vqual to the displacement 8, of the point of application of that

Sforce in the direction of its line of action.

-

Mathematically. this theorem may be expressed as follows:

pa*
P,

= (1112 3

Part 11

Introduction to
Systematic Structural
: | Analysis

This theorem is closely related to Castigliano’s secor.ld theorem,.whzch, ?flccurse;;
involves ordinary strain energy and is testricted to linearly elastic materials.
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Oncﬁobjective of Part 11 is to familiarize the reader with the inputs and outputs

. of automated structural-analysis procedures, The other is to explain how the

L]

transformed into the quantities describing the structural response.

- Chapter 12 is designed to accomplish the first objective. Article 12.1 is a
review of the basics of matrix algebra. Articles 12.2 to 12.6 deal with the quantita-
tive descriptions of the geometry, the material, the deflection boundary conditions,
and the force boundary conditions of structures. Then follows a discussion of the
quantities describing the structural response and the methods of transforming the
basic data into the description of structural response.

Chapters 13 to 16 deal with the second objective. In Chap. 13, the transforma-
tion of the description of a vector (such as position, deflection, and force vectors)
from one cartesian coordinate system to another is first established. Then the
relationships between kinematically equivalent deflections and between statically
£quivalent forces are developed. . - - : - - oo
Chapter 14 develops flexibility and stiffness relationships between the vertex
forces and the vertex deflections of a structural element with two or more vertices.
The relationships between the descriptions of element flexibility and element
stiffness relations in more than one cartesian coordinate system are also established.
In Chap. I5, the systematic analysis by the displacement method is detailed.
Economical generation of the matrices involved is discussed, and methads of
solving the equations for the unknown deflection components are given.

. deseriptive data of a linear structural-analysis problem can be systematically

#






