Numerical Approximation of Derivatives

Hoonyoung Jeong Department of Energy Resources Engineering Seoul National University

Key Questions

- Explain how a 1st derivative is approximated numerically when you know only function values
- Explain how a 2nd derivative is approximated numerically when you know only function values

Forward Approximation of 1st Derivative

•
$$f(x + \Delta x) = f(x) + f'(x)\Delta x + \frac{f''(x)}{2!}\Delta x^2 + \cdots$$

• $f'(x)\Delta x = f(x + \Delta x) - f(x) - \frac{f''(x)}{2!}\Delta x^2 + \cdots$
• $f'(x) = \frac{f(x + \Delta x) - f(x)}{\Delta x} - \frac{f''(x)}{2!}\Delta x + \cdots$
• $f'(x) = \frac{f(x + \Delta x) - f(x)}{\Delta x} + O(\Delta x)$

Backward Approximation of 1st Derivative

•
$$f(x - \Delta x) = f(x) - f'(x)\Delta x + \frac{f''(x)}{2!}\Delta x^2 + \cdots$$

• $-f'(x)\Delta x = f(x - \Delta x) - f(x) - \frac{f''(x)}{2!}\Delta x^2 + \cdots$
• $f'(x) = \frac{f(x) - f(x - \Delta x)}{-\Delta x} + \frac{f''(x)}{2!}\Delta x + \cdots$
• $f'(x) = \frac{f(x) - f(x - \Delta x)}{-\Delta x} + O(\Delta x)$

Central Approximation of 1st Derivative

•
$$f(x + \Delta x) = f(x) + f'(x)\Delta x + \frac{f''(x)}{2!}\Delta x^2 + \cdots$$

• $f(x - \Delta x) = f(x) - f'(x)\Delta x + \frac{f''(x)}{2!}\Delta x^2 + \cdots$
• $f(x + \Delta x) - f(x - \Delta x) = 2f'(x)\Delta x + O(\Delta x^3)$
• $f'(x) = \frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x} + O(\Delta x^2)$

Approximation of 2nd Derivative

•
$$f(x + \Delta x) = f(x) + f'(x)\Delta x + \frac{f''(x)}{2!}\Delta x^2 + \cdots$$

• $f(x - \Delta x) = f(x) - f'(x)\Delta x + \frac{f''(x)}{2!}\Delta x^2 + \cdots$
• $f(x + \Delta x) + f(x - \Delta x) = 2f(x) + f''(x)\Delta x^2 + O(\Delta x^4)$
• $f''(x) = \frac{f(x + \Delta x) - 2f(x) + f(x - \Delta x)}{\Delta x^2} + O(\Delta x^2)$
• $f''(x) = \frac{\frac{f(x + \Delta x) - 2f(x) + f(x - \Delta x)}{\Delta x}}{\Delta x} + O(\Delta x^2)$

Smaller Δx is Better?

- No
- Smaller Δx makes $\partial f / \partial x$ more accurate, but if Δx is too small, $f(x + \Delta x) f(x)$ may be zero
- How to decide Δx ?
 - ✓Not too large, not too small
 - ✓1%, 0.1%, 0.01%, ... of x
 - ✓ Depends on your problem
 - ✓ Central approximation is less sensitive to a perturbation size (Δx) than forward and backward approximations

Central Approximation is Always Better?

- No
- Higher computation cost
- Not appropriate in some cases