Ch 6. Equations of Continuity and Motion

Chapter 6 Equations of Continuity and Motion

- Derivation of 3-D Eg.

{

conservation of mass — Continuity Eqg.

conservation of momentum — Eq. of motion — Navier-Strokes Eq.

6.1 Continuity Equation

Y
1 [u+MA]A Az
dx
Azl ‘ ,
pu Ay Az -E —-—
ay| =]
Ax

_Net flux through face
perpendicular to z-axis

9(pu)
Z 2o | —
[ e A.EJ Ay Az

Consider differential (infinitesimal) control volume (AXAYAz)

[Cf] Finite control volume — arbitrary CV — integral form equation

Apply principle of conservation of matter to the CV

— sum of net flux = time rate change of mass inside C.V.
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Ch 6. Equations of Continuity and Motion

1) mass flux per unit time

mass vol
time time

- net flux through face perpendicular to X -axis

= flux in —flux out

= PUAYAZ — ( LU+ %ijAyAz = —%AxAyAz
X X

- net flux through face perpendicular to Y -axis
o(pv
= —MAxAyAz
oy
- net flux through face perpendicular to z -axis

= —MAxAyAz
0z (A)

2) time rate change of mass inside C.V.
_90 (PAXAYAZ)
ot

(B)

Thus, equating (A) and (B) gives

Q( PAXAYAZ) = — o(pu) AXAYAZ — Apv) AXAYAZ — MAxAyAz
ot OX oy 0z



Ch 6. Equations of Continuity and Motion

0 0 op
LHS =—(pAXAYAZ) = p— (AXAYAZ) + AXAYAZ —
at(p yAz) pat( yAz) yAz—

O(AXAYAZ)
ot

Since C.V. is fixed — =0

LHS = AxAyAzZ—f =0

Cancelling terms makes

9p  9(pu) a(pv)  olpw) _,
o ox oy oz

a—'0+V-,0(j':0 (6.1)

ot

— Continuity Eq. for compressible fluid in unsteady flow (point form)

The 2" term of Eq. (6.1) can be expressed as

V-(pd)=04Vp+pV-q

I —/_ N ]
op-~ Op
I \Y ui +vj +wk —|+— +—k
(1): gve=( j )[ax ayJ 82}
gradient
B
OX oy 0z

divergence —\



Ch 6. Equations of Continuity and Motion

Substituting (i) into Eq (6.1) yields

a—’O+ua—’o+va—’0+Wa—’0+ 6_u+@+@ =0
ot OX oy 0z ox oy oz
¥
dp
dt

dp _
=L 1 p(V-G)=0
" +p(V-0)

[Re] Total derivative (total rate of density change)

dp_0p Op0x Opdy Opdz
dt ot oxdt oy dt oz dt

Then (6.1) becomes

d(pu)  A(pv)  olpW) o ,
x oy e ) PR=0

2) For incompressible fluid (whether or not flow is steady)

dp

e —:O

dt

(6.2a)

(6.2b)

(6.3)



Ch 6. Equations of Continuity and Motion

Then (6.2) becomes

ou ov ow

— Yt —4+—=V-0=0 6.5
oX oy oz | (65)

[Re] Continuity equation derived using a finite CV method

Eq. (4.5a):

op .
ICV Edv + CJSCS yolo i dA=0 (4.5)

— volume-averaged (integrated) form

e Gauss' theorem:
volume integral < surface integral

—reduce dimensions by 1 (3D — 2D)
[(v-X)dv =] X-dA
Thus,

§o pAdA= V- (pd)dV

Eq. (4.5) becomes

op _ B op ~ B
jcv—dv +jcvv-(pq)dv —LV (Ew-(pq)jdv =0

Since integrands must be equal.
op _
—+V. =0
p (pA)

— same as Eq. (6.1) — point form
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Ch 6. Equations of Continuity and Motion

[Cf] 1D Continuity equation in 1-D

op opu .
J'EdA+J'EdA—O

o G
ajpo|A+&jpuolA:o

For incompressible fluid flow

e

-/ N

A VA

where V = cross-sectional average velocity

OA OVA
So—+——=0
ot OX

Consider lateral inflow/outflow

oA OVA
A LNVA_T o
ot ox J ado

where ( = flow through o

For steady flow; 8—A =0
ot

oVA

—=0
OX

VA=const.=Q
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Ch 6. Equations of Continuity and Motion

[Re] Continuity equation in polar (cylindrical) coordinates
u,r - radial
V,0 - azimuthal
W,z - axial

For compressible fluid of unsteady flow

9p  1o(pur) 10(pv) o(pw) _,
ot r or r 06 0z

For incompressible fluid

10(ur) 1ov ow
— +—+—=0
r or rofd oz

For incompressible fluid and flow of axial symmetry

P _g P _0p_0p_, ApY)_,
ot  or 00 oz 00

JLon  ow_
r or oz

0 — 2-D boundary layer flow

Example: submerged jet




Ch 6. Equations of Continuity and Motion

[Re] Green's Theorem

1) Transformation of double integrals into line integrals

ﬂ[ jd dy =¢_(Fdx+F,dy)
”(curl If) -kdxdy = <j>c F.dr
R
F=Fi+F,j
2) 1st form of Green's theorem

0
J.ﬂ(fvzg+grad f-grad g)dv :J;J'fa—adA

3) 2nd form of Green's theorem

(v +0v1) av - jj( X anA

[Re] Divergence theorem of Gauss

— transformation between volume integrals and surface integrals

”jdivﬁ dv :”ﬁ i dA
T S
Where n = outer unit normal vector of S
F=Fi+F,j+Fk

A =cosai +cos 8] +cosyk
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Ch 6. Equations of Continuity and Motion

m(éF ur i jd dydz

:”(Flcosa+ F,cos B+ F,cosy)dA

By the way

([ ¥ -nidA= [[(Fidydz + F,dzdx + F,dxdy)
S S

B[ty

= [[ (Fdydz + F,dzdx + F,dxdy)
S
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Ch 6. Equations of Continuity and Motion

6.2 Stream Function in 2-D, Incompressible Flows

2-D incompressible continuity eq. is

o + Ll =0 (6.7)

ox oy

Now, define stream function w (X, y)as

u:_a_l// W:J._Udy
% / z//:jvdx

v=2v (6.8)

Then LHS of Eq. (6.7) becomes

ou ov O oOy) 0O (az//j 0° o
— = - |+ = |== + =0
oXx oy oOx\ oy ) oy\ ox oy Oxoy

— Thus, continuity equation is satisfied.

1) Apply stream function to the equation for a stream line in 2-D flow

Eq. (2.10): vdx—udy =0 (6.11)

Substitute (6.8) into (6.11)

W ax + 2 dy=dy=0 (6.12)
OX oy
¥ = constant (6.13)

— The stream function is constant along a streamline.
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Ch 6. Equations of Continuity and Motion

2) Apply stream function to the law of conservation of mass

—qdn = —udy + vdx (6.14)

Substitute (6.8) into (6.14)

_qdn=2Ydy+ Wax = dy
oy OX (6.15)

— Change iny (dy) between adjacent streamlines is equal to the volume rate of flow per

unit width.

3) Stream function in cylindrical coordinates

P = _G_W radial
roé
V, = 88_1// azimuthal
r
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Ch 6. Equations of Continuity and Motion

6.3 Rotational and Irrotational Motion

6.3.1 Rotation and vorticity

o4 sh
“Togdd o ( Flow ;

Assume the rate of rotation of fluid element AX and Ay about Z-axis is positive when it

rotates counterclockwise.

- time rate of rotation of AX -face about Z-axis

AH(?)A}}M B

At AX X

- time rate of rotation of Ay -face about Z -axis

{u +[6uAy]—u}At
1l % __

At Ay oy

net rate of rotation = average of sum of rotation of AX-and Ay -face

1(ov ou
w,=—|———
Z(ax 8yj
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Ch 6. Equations of Continuity and Motion

Doing the same way for X-, and Y -axis

1{ow ov
o, == ———
2\ oy oz
1( ou 8W)
o,=————
Y2z ox

1) Rotation

Magnitude:

|cT)|:\/a)X2 + ) + o]

a) Ideal fluid — irrotational flow
Vx(@G=0
w,=w,=w»,=0

X y z

w v au_ow @
oy 01 01 oOx ox oy

b) Viscous fluid — rotational flow

Vxg=0

(6.16a)

(6.16h)

(6.17)
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Ch 6. Equations of Continuity and Motion

irrotational flow

Fluid particles not rotating

rotational flow

FIGURE 4-24
he difference between rotational and
irrotational flow: fluid elements in a

rotational region of the flow rotate, but
R —— those in an irrotational region of the
Fluid particles rotating flow do not.

2) Vorticity

—

=curl G=Vx{=20

[Re] Rotation in cylindrical coordinates

6-14



Ch 6. Equations of Continuity and Motion

6.3.2 Circulation

I" = line integral of the tangential velocity component about any closed contour S

r:@qd§

(6.19)

udy

ds

_oudy
oy 2

— take line integral from Ato B, C, D, A ~ infinitesimal CV

u—a—uﬂ [v+@%}dy— u+6u dy dx —[ —@%}dy
oX 2 oy 2 oX 2

[@ — a—uj dxdy
ox oy

dr’

R

A A (6.20)

For irrotational flow,
circulation I"=0 (if there is no singularity vorticity source).
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Ch 6. Equations of Continuity and Motion

[Re] Fluid motion and deformation of fluid element
translation

Motion

rotation

linear deformation

Deformation

angular deformation

(1) Motion

1) Translation: &,n

e

wdt M
Lm,.l 1 &=udt, u=d—95
5‘ | f dt
.
v 4
dg u vdt 77=th, V=dd—17
dz )\ 7
2) Rotation < Shear flow
L7
e i
Y/\!/\—ML’_&,VilJb ©o2lox oy
\ ——é{l - w2
\// '\\ e
\N
\ 7
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Ch 6. Equations of Continuity and Motion

(2) Deformation

1) Linear deformation — normal strain

4|

I J,M'\la%dx Jt'

_ 8%
- %zdx
OX
. _9on
y ay

1) For compressible fluid, changes in temperature or pressure cause change in volume.

i1) For incompressible fluid, if length in 2-D increases, then length in another 1-D decreases in

order to make total volume unchanged.

2) Angular deformation- shear strain

{kﬁ“a < %%
aga

/

i ardey, e
Lot EEe-gt
/7 [ T
[~

0 0
g/
oX  OX
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Ch 6. Equations of Continuity and Motion

6.4 Equations of Motion

STRESS-STRAIN RELATIONS

* Apply Newton's 2nd law of motion
> F=ma (A)

AF, = Ama,

« External forces = surface force + body force

* Surface force:

~ normal force + tangential force
* Body forces:
~ due to gravitational or electromagnetic fields, no contact

~ act at the centroid of the element — centroidal force

Consider only gravitational force
g=ig, + jg, +kg,
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Ch 6. Equations of Continuity and Motion

LHS of (A):

AF, =(pAXAyAz) g,

—0,AYAZ + (ax + a;* ijAyAz
X

0T,

—7, AXAZ + [ryx + AyJAxAz

—7, AXAY + (z‘zx + %AszxAy
z

Divide (B) by volume of element

X — X + + ZX
AXAYAzZ P9 ox oy oz
RHS of (A):
Ama,
AXAYAZ "

Combine (C) and (D)

. +60X +5Tyx +872X _ 3
POy T

+61Xy+80'y+8rzy_ q
PO Ty T P
g,+ Oty + o7y + 90, _ a
P97 7o oy 0z P

6-19

body force (B)

normal force

tangential force

tangential force

(©)

(D)

(6.21)



Ch 6. Equations of Continuity and Motion

6.4.1 Navier-Stokes equations
— Eq (6.21) ~ general equation of motion

— For Newtonian fluids (with single viscosity coeff.), use stress-strain relation given in

(5.29) and (5.30)

— Navier-Stokes equations
Eq. (5.29):

ou 2
o, =—p+ 2u— — | = |u(V-§
=P+ 2u— (3)/1( q)
pressure normal stress due to fluid deformation and viscosity

oV
= p+2uZ | Zu(v-qg
o, P+ ,uay ( jy( q)

ow (2 "
o, :—p+2ﬂ§—(—jﬂ(v’Q)

Eq. (5.30):

(o
w = Ty T H oy oy

Substitute Egs. (5.29) & (5.30) into (6.21)

Jols| _@+i|:2 a_u_g (V"):|+i ﬂ[@+a_u] +i|:lu(a_u+@j:|:pa
Tk ax| Hax 3Mv oyl \ox oy oz|" \ oz ox "
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Ch 6. Equations of Continuity and Motion

Assume constant viscosity (neglect effect of pressure and temperature on viscosity variation)

ov 0
@+ﬂi{26—u—g(v : Q)} +ﬂi{[&+guﬂ +ﬂ§[(g—s+%\lﬂ = Pa,

Cox ToxTex 3v . oy

PYx

ou ov ow
oX oy oz

Expand and simplify

op o'u 2 (o°u o  o'w o  ou ou  o’w
2 U —+ + + 1 t—t—t
OX~ OXoy oOxoz oxoy oy® 01° oxoz

g P o’u +62u o’u W1 o’u N o’V s o°w
A P oy o2 | 3% o axay  oxex
ofou ov ow
] _8_p+ 2u o 8 +E Q(V-*) GX((?X oy 82]
PO o ox>  oy* oz’ 3o
g P, o’u 82u+82u 1 i( 4)= pa
PO T o Ty e | T3 ek VTP
op  |[ov o o] 1 @ _
-——+ + + —u—(V-q4)=pa
pgy ay 8X2 ayZ aZZ Sﬂay( ) p y
op o’'w o*'w ow| 1 0 _
P9, " PYe + o o +§ﬂE(V'Q):Paz (6.24)

— Navier-Stokes equation for compressible fluids with constant viscosity
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Ch 6. Equations of Continuity and Motion

+ Vector form

3 3 I B
pg—Vp+ﬂV2q+§V(V-q)=qu+p(q-V)q

aq_aq
dt ot

where a =

+(G-V)§ --Eq. (25)

1) For inviscid (ideal) fluid flow, (= 0) — viscous forces are neglected.

—

) o N
pg—Vp=qu+p(qV)q

— Euler equations for ideal fluid

2) For incompressible fluids, V-G =0 (Continuity Eq.)

) Y P
PI-Vp+uv'a=p =+ p(4-V)g (6.25)

Define acceleration due to gravity as

9 ——ga—h 3
" OX
oh
9,=-9— g=-gVh
y ay >
g ——9@
: o

where h = vertical direction measured positive upward

For Cartesian axes oriented so that h and z coincide
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Ch 6. Equations of Continuity and Motion

9,=-9

— minus sign indicates that acceleration due to gravity is in the negative h direction

Then, N-S equation for incompressible fluids and isothermal flows are

éu du_  ou - 0u oh 1 6p M| 0%u  du du
+U—+V—+W—=—-0———— +t—+
ot ox oy 0z oX p 8x ploxt oy oz
ov N oV oh 1dp u|d*v 0% 82
—+U—+V—F+W—=-0g— 4+ +—+
o4 ox oy 0z oy poy p|oxt oy* orf
2 2
W W g 1o s aw+av2v+a : (6.28)
ot ox oy 0z oz poz ox>  oy* oz
/ / [ | |
Local Convective J
acceleration acceleration
Body force Pressure force Viscosity force

per mass per mass per mass

Eq. (6.28): unknowns

- u7V1Wl p

— We need one more equation to obtain a solution when the boundary conditions are specified.

— Eq. of continuity for incompressible fluid

ou ov ow
— —+—

=0

oXx oy o0z
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Ch 6. Equations of Continuity and Motion

¢ Boundary conditions
1) kinematic BC: velocity normal to any rigid boundary (wall) equal the boundary
velocity (velocity = 0 for stationary boundary)

2) physical BC: no slip condition (continuum stick to a rigid boundary)

— tangential velocity relative to the wall vanish at the wall surface

¢ General solutions for Navier-Stocks equations are not available because of the nonlinear,

2nd-order nature of the partial differential equations.

— Only particular solutions may be obtained by simplifications.

— Numerical solutions are usually sought.

¢ Navier-Stocks equations in cylindrical coordinates for constant density and viscosity

I' - component:

(avr NV, v V7 avrj
P +V, +—F—L———1vV,
ot or roe r oz

op 010 10%, 20v, 0V
— r__+ R r +_ r ___+ r
PO ‘{ar{r or Vf)} 200 1?00 o

@ - component:

p(%_FV %+V_98V9_Vrva +V av&j
ot  "or r oo r ‘oz

10p d(1o 10%, 2ov, 0%,
= —— ot U ==V, )+ +—=—=+
P07 50 ’{ar{r ar( ")} r’ 00> r*00 oz’

6-24



Ch 6. Equations of Continuity and Motion

Z - component:

(avZ ov, V,0v, ov, j
yo, +V —+ L4V,
ot or r 06 0z

=PY —@+ﬂ Ei(ravzj+iazvz +82VZ
'ooz ror\' or ) r*>o060> o1°

Continuity eq. for incompressible fluid

Normal & shear stresses for constant density and viscosity

o =—p+2 oV,
' Hor
lov, v
o,=—p+2u| =—% 4+
o="F ﬂ(r 00 r)
ov
o,=—p+2u—
,=—P H
o =M o\ ) Y o6
. :ﬂ‘%g%}
“ "léoz roe

T :/J|:6Vr +%:|
i oz or
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6.5 Examples of Laminar Motion

- N-S equations are important in viscous flow problems.

¢ Laminar motion

~ orderly state of flow in which macroscopic fluid particles move in layers

~ viscosity effect is dominant

¢ Laminar flow through a tube (pipe) of constant diameter
~ instantaneous velocity at any point is always unidirectional (along the axis of the tube)
~ no-slip condition @ boundary wall
~ apply concept of the Newtonian viscosity
~ velocity gradient gives rise to viscous force within the fluid
~ low Re

[Re] Reynolds number = inertial force / viscous force = destabilizing force / stabilizing force

¢+ Viscous force
~ dissipative
~ have a stabilizing or damping effect on the motion

~ use Reynolds number

[Cf] Turbulent flow
~ unstable flow
~ instantaneous velocity is no longer unidirectional
~ destabilizing force > stabilizing force

~ high Re
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Ch 6. Equations of Continuity and Motion

6.5.1 Laminar flow between parallel plates

Consider the two-dimensional, steady, laminar flow between parallel plates in which either

of two surfaces is moving at constant velocity and there is also an external pressure gradient.

P

da
\ Pl L PZ
¢ Assumptions:
2-D flow — V:0;&=O
oy
steady flow - @ =0
ot
parallel flow — w=0; ﬂ:O
o( )
z-axis coincides with h — 6—h = 8_h =0; @ =1
oX oy 0z

¢ External pressure gradient

s P> P,

.0 : : : : :
)] D <0 — pressure gradient assists the viscously induced motion to overcome the

shear force at the lower surface

0
i) L >0 — pressure gradient resists the motion which is induced by the motion of

X
/ the upper surface

pl < p2 6_27




Ch 6. Equations of Continuity and Motion

Continuity eq. for two-dimensional, parallel flow:

8_u+ =0
ox Joz

2
u_,
—> 10X
u=f(z) only

Steady flow

Continuity eq. for incompressible fluid

parallel flow
(6.31a)
z—dir. : %+u%ﬂ+v%+wg%
X z
g 1 u 8)” oW, oM
oz p oz /é(y ﬁz
0=-g- 1o (6.31b)
p 0L

6.3lb): —=-pg=-
(6.31b) 5 PI=T7
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Ch 6. Equations of Continuity and Motion

p=-rz+f(x) (6.32)

— hydrostatic pressure distribution normal to flow

— For any orientation of Z -axis. in case of a parallel flow, pressure is distributed

hydrostatically in a direction normal to the flow.

0 d
(6.31a): _p_)_p ~ independent of Z

ox  dx
dp  d%
= A
ax ez *)
¥
Pressure | —— Energy loss due to
drop viscosity

Integrate (A) twice w.r.t. Z

T2 dag = [[ Y

dp ou

j&ZdZ:JﬂEdZ+IC1dZ

d_pz_z_ u+Cz+C (6.33)
dx 2 H 1 2 :

Use the boundary conditions,

i) 2=0, u:0—>3—p><0:y(0)+C2 -~ C,=0
X
i) z=h, u=U —>d—pa—2—,uU+Ca
’ dx 2 .

1( dp a? j
SO B Y
' a(dx 2 #
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Ch 6. Equations of Continuity and Motion

.. (6.33) becomes

2 2
d—pz——yu -I-é(d—pa——luUjZ

dx 2 dx 2
2
=l %(E_z_)
a dx\2 2
u(z):u:gz—id—%l—ijz (6.34)
a 2udx a
Velocity Pr_essure
driven driven
. dp
i) |If d— =0 — Couette flow (plane Couette flow)
X
U
Uu=—12
a

— driving mechanism = U (velocity)

U

/ ,

ap

oic =0

i)If U=0—  2-D Poiseuille flow (plane Poiseuille flow)

u=—-——(z—a)z ~ parabolic
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Ch 6. Equations of Continuity and Motion

— driving mechanism = external pressure gradient, —

a’ dp

8 dx

max

V = average velocity

Q_2, _ adp
A 3™ 124 dx
[Re] detail

a a 1l dp 2 1 dp 3
=| udz=| ———(z"-az)dz=———"a
Q '[0 0 2u dX( ) 121 dx

2
A=axl .'.V:Q:—a d_ngumax
A 12 dx 3
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Ch 6. Equations of Continuity and Motion

6.5.2 Laminar flow in a circular tube of constant diameter
op
.. —<0
— Hagen-Poiseuille flow OX

— Poiseuille flow: steady laminar flow due to pressure drop along a tube

Assumptions:

— use cylindrical coordinates
;
AT :

v. =0
parallel flow —
v,=0
0
1 ov
| Continuity eq. — £=0
0z
. - >3
0
; paraboloid  — N, =0
00
steady flow — , =0
ot
Eq. (6.29c) becomes
op 10 ( ov j
O=—7—+ +p——| r—= A
0z P9 “rarar »
By the way, r—comp. Eq. >
op 0 d 0——£a—p+9
——+pg,=——(p+yh)=——(p+yh -~ opor T
5, P9 s (prrh)=——(p+rh) p
0
/ \ ——(p+yr)=0
oh _ or
[,092:—,095} independent of I
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Ch 6. Equations of Continuity and Motion

Then (A) becomes

%(p+7h)=u%§(rz\f)

-5
Integrate (B) twice w.r.t. I

;%(er;/h)r—Z:r%Vrz +C, ©)

i%(p+7/h)r:%+%

1d r?

ZE(DJr?/h)?:VﬁCl'”rJFCz (D)

Using BCs

r=r,,v,=0 - (O): C _ii( n h)iz (D1)
0! Vs . 2 2[11 dz p }/ 2
Then, substitute (D1) into (D) to obtain V,
1 d
Vz = | +vh rz—rz
4/1{ dz(p 7)](0 )
d r.2 r 2
V== (pryh) 1| — 6.39
— equation of a paraboloid of revolution piezometric
pressure
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Ch 6. Equations of Continuity and Motion

(1) maximum velocity, v,

_ _[_%( D+ yh)}(ro2 —r?)2zrdr

n 1 d 2 2
Q=IO E{—E(pﬂ/h)}(ro —r?)2zrdr

= 1[—%( D+ 7h)}{r02§—ﬁ}ro o {—%( p+ 7h)}

2u 4] 8u

2
R e ®

. 2
[Cf] For 2 - D Poiseuille flow V = Eu

max
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Ch 6. Equations of Continuity and Motion

(3) Head loss per unit length of pipe
Total head = piezometric head + velocity head
Here, velocity head is constant.

Thus, total head = piezometric head

h 1| d 8uV, 32NV
—fz—[——(p+yh)}= £ =T (6.42)
L yL dz yr \ yD
(E)
where D = 2r, = diameter
[Re] Consider Darcy-Weisbhach Eq.

h 2

L 1V (F)

L D 29

h, = head loss due to friction

f =friction factor

Combine (6.42) and (F)

R, _ 1V

yD?  D2g
_bAv 64 64
V,D V,D/v Re

z

— For laminar flow
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Ch 6. Equations of Continuity and Motion

(4) Shear stress
oy ov ov
T, = L +—L|= 2 (G)
ﬂ[ %ZZ or j “ or

Differentiate (6.39) w.r.t. r

ov, d 1
L=— h)—r H
or dz(p+7)2,u )
Linear profile
Combine (G) and (H) /
1d
=——(p+vh)r 6.45
TZI’ 2 dZ ( p 7/ ) ( )
At center and walls
r=0, 7, =0
r=r, r :_i(p-i-;/h)rozr
r dZ Zl'hax
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6.6 Equations for Irrotational Motion

o Newton's 2nd law — Momentum eq. — Eq. of motion

o In Ch. 4, 1st law of thermodynamics — 1D Energy eq.

= Bernoulli eq. for steady flow of an incompressible fluid with zero friction (ideal fluid)

o In Ch. 6, Eq. of motion — Bernoulli eq.

Integration assuming irrotational flow

o Irrotational flow = Potential flow
6.6.1 Velocity potential and stream function

If @(X,Y,z,t)is any scalar quantity having continuous first and second derivatives, then by a

fundamental vector identity

—curl(grad ¢)=Vx(Vg)=0 (6.46)

[Detail] vector identity

grad ¢ = —fl +E¢j +—¢

0z

i ] Kk

0o 0 0O

curl(grad ¢)=|— — —
(grad ¢) x o a
op 0¢ 09

ox oy o0z

(A0 (2 2 )
0zoxX  0z0X OXoy / OXoy
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Ch 6. Equations of Continuity and Motion

By the way, for irrotational flow

Eq.(6.17): Vx§=0 (A)

Thus, from (6.46) and (A), we can say that for irrotational flow there must exist a scalar

function ¢ whose gradient is equal to the velocity vector a .

grad ¢ =q (B)

Now, let's define the positive direction of flow is the direction in which ¢ is decreasing,

then

g=—grad ¢(x,y,z,t)=-V¢ (6.47)

where ¢ = velocity potential

0, 2, 3

u= ,

— Velocity potential exists only for irrotational flows; however stream function is not subject

to this restriction.

— irrotational flow = potential flow for both compressible and incompressible fluids

(1) Continuity equation for incompressible fluid

Eq. (6.5): V-4=0 ©

Substitute (6.47) into (C)
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SV (-Vg)=-V’p=0

2 2 2
:a¢+a¢+a¢:0

— Laplace Eq.

& < Cartesian coordinates
/ ox*  oy* o1’
2 2
V2¢ = li(r%j + iz g ¢; + % =0 <« Cylindrical coordinates
ror\_ or r-oe° oz

[Detail] velocity potential in cylindrical coordinates

o¢
V =——, =
r ar 1

_w
roo 0z

__9¢

(2) For 2-D incompressible irrotational motion

* \elocity potential

u=_9¢
OX
y=_99
oy
» Stream function: Eqg. (6.8)
yo v
oy
-l
OX
oy _0p |
oy OX
oy __99
OX oy

— Cauchy-Riemann equation (6.51)
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Now, substitute stream function, (6.8) into irrotational flow, (6.17)

Eq. (6.17) : nu_v «[rotation=0 Vxg=0]
oy OX

o’y _ o’y N o’y N o’y

5 ok o oy =0 — Laplaceeq. (D)

Also, for 2-D flow, velocity potential satisfies the Laplace eq.

2 2
79,99 _

ox>  oy? - €

— Both ¢and  satisfy the Laplace eq. for 2-D incompressible irrotational motion.

— ¢@and w may be interchanged.
— Lines of constant ¢and t must form an orthogonal mesh system

— Flow Net

v,
Equiprtential Les , G =const.

Streamlines
Y=const,

4
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(3) Flow net analysis

Along a streamline, 7 =constant.

Eq. for a streamline, Eq. (2.10)

dy
dx

\'
u

w=const.

Along lines of constant velocity potential

~ dg=0

dp="Lax+ P ay=0 _
OX oy Substitute Eq. (6.47a)

_ a¢%x__u

oo OO Y

From Egs. (6.54) and (6.55)

dy
dx

dy
dx

_ U
dy

w=const. g=const.

— Slopes are the negative reciprocal of each other.

(6.54)

(F)

(6.55)

(6.56)

— Flow net analysis (graphical method) can be used when a solution of the Laplace equation

is difficult for complex boundaries.
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[Appendix 1] Typical potential flow systems

1. Uniform flow

_)
u — u:%:u
OX
_)

.. ¢ =Ux+const. 1-D
¢ =U (IX+ my + nz) 3-D

where I, m, n = directional unit vectors

2. Source or Sink

M
let ¢ = _E (spherical source)

M = strength of sink or source (m* / s)

u= % (spherical coordinates) = MZ
oR R

v=w=0
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3. Doublet

— sink plus source with the distance between, d — 0

ik souice
e M
A
4. \ortex

In cylindrical coordinate: let ¢ =k&

u=0
_log Kk
T roe v
w=0
vo_9¥
By the way or

t//:—J' Edr:—klnr+C
r

I'= Cﬁvds = J.OZKVrdQ = 27k (. singularity at the origin)

[Appendix 1] Potential flow problem

Find y — Find flow pattern

Find velocity potential ¢ Find velocity
Find pressure, force
Find kinetic energy

Bernoulli eq.
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6.6.2 The Bernoulli equation for irrotational incompressible fluids

(1) For irrotational incompressible fluids

Substitute Eq. (6.17) into Eq. (6.28)

w_w
oy oz
Eq. (6.17) : Vx({G=0 8_u = @ irrotational flow
0z OX
N_u
X oy |

Eq. (6.28): Navier-Stokes eq. ( X -comp.) for incompressible fluid

1ov 1ow’
2 0X 2 0X
ou ou  du ou oh 1op u|ldu ou o
—tU—+V—fW—=fg— -+ | —+ —
ot OX oy 0z X pox plox® oy oz
lou® o oW o’v  o°w

V— W—
2 ox OX OX OyOX 010X

ou o(u® v: w ch 10p L HOfou v ow
—+— — |=—g——-= —+—+—1| (657)
ot oOx oX p 8x P ox | ox oy oz

2 2 2

Substitute q2 =u?+Vv? +wand continuity eq. for incompressible fluid into Eq. (6.57)

ou ou 8u

Continuity eq., Eq. (6.5): V-Q:a— 8y = =0
X Z

Then, viscous force term can be dropped.
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oh

u, ofa)__oh_1dp
ot ox\ 2 OX p OX

2
a—u+i q—+gh+£ =0 — X-—Eq.
ot ox| 2 o,
v ol p |
-Bq. —+—|—+gh+—|=0
y-Ba Sty g o
-, -
z—Eq. @+i q—+gh+B =0 (6.59)
ot oz| 2 P |
i 0P 0 0
Introduce velocity potential ¢ OX oy Oz
u__ 0 n_ ¢ ow__ ¢ A)
ot otoxT ot oty ot otoz
Substituting (A) into (6.59) yields
_ , _
9 —%+q—+gh+£ =0 X — Eq.
OX | 2 el
_ , _
9 —%+q—+gh+£ =0 y — Eq.
oy| ot 2 el
_ , _
9 —%+q—+gh+£ =0 z - Eq. (B)
oz| ot 2 o
Integrating (B) leads to Bernoulli eq.
2
_%+Q_+gh+£:|:(t) (6.60)
o 2 Yo,
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~ valid throughout the entire field of irrotational motion

For a steady flow; % =0

= const. (6.61)

— Bernoulli eq. for a steady, irrotational flow of an incompressible fluid

Dividing (6.61) by g (acceleration of gravity) gives the head terms

2

9 P

——+h+-==const.
29 /4
2 2
q—1+h1+&:q—2+h2+&:H (6.62)
29 y 29 /4

H = total head at a point; constant for entire flow field of irrotational motion

(for both along and normal to any streamline)

— point form of 1- D Bernoulli Eq. for negligible friction

p, H, g = values at particular point — point values in flow field

[Cf] Eq. (4.26)

2 2
&+hl+VL:&+h2+V—2= H
4 29 7y 24

H = constant along a stream tube

— 1-D form of 1-D Bernoulli eq.

p, h, V = cross-sectional average values at each section — average values
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«Assumptions made in deriving Eq. (6.62)

— incompressibility + steadiness + irrotational motion+ constant viscosity (Newtonian fluid)

In Eq. (6.57), viscosity term dropped out because V - =0 (continuity Eq.).

— Thus, Eq. (6.62) can be applied to either a viscous or inviscid fluid.

 Viscous flow

\elocity gradients result in viscous shear.

— Viscosity causes a spread of vorticity (forced vortex).
— Flow becomes rotational.

— Hin Eq. (6.62) varies throughout the fluid field.

— Irrotational motion takes place only in a few special cases (irrotational vortex).

potential flow

Fluid particles not rotating

YVYVY HJ

Velocity profile

FIGURE 4-24
The difference between rotational and
irrotational flow: fluid elements in a
tational region of the flow rotate, but
those in an irrotational region of the
flow do not.

Wall Fluid particles rotating

rotational flow

eIrrotational motion can never become rotational as long as only gravitational and pressure

force acts on the fluid particles (without shear forces).

— In real fluids, nearly irrotational flows may be generated if the motion is primarily a
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result of pressure and gravity forces.
[EX] free surface wave motion generated by pressure forces (Fig. 6.8)

flow over a weir under gravity forces (Fig. 6.9)

W

FIG. 6-B. Wave generation by pressure forces. FIG. 6-9. Flow over a weir under gravity
forces,

*\/ortex motion

i) Forced vortex - rotational flow

~ generated by the transmission of tangential shear stresses

— rotating cylinder

ii) Free vortex - irrotational flow

~ generated by the gravity and pressure

— drain in the tank bottom, tornado, hurricane

Figure 52 Constant pressure surfaces in a solid-body rotation generated in a rotating tank containing

liquid
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«Boundary layer flow (Ch. 8)

i) Flow within thin boundary layer - viscous flow- rotational flow

— use boundary layer theory

ii) Flow outside the boundary layer - irrotational (potential) flow

— use potential flow theory
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6.7 Equations for Frictionless Flow
6.7.1 The Bernoulli equation for flow along a streamline

For inviscid flow (= 0)
— Assume no frictional (viscous) effects but compressible fluid flows

— Bernoulli eq. can be obtained by integrating Navier-Stokes equation along a streamline.

Eq. (6.24a): N-S eq. for compressible fluid (z =0)

Py - Vp+W/+§}é/— S i p(a-v)g

_ Vp o9 . ~
_r_A .V 6.63
g ot +(G-V)d (6.63)

— Euler’s equation of motion for inviscid (ideal) fluid flow

g =-gVh
Substituting (6.26a) into (6.63) leads to
Vp aq _
—gVh-— -V 6.64
VR =% +(4-V)4 (6.64)

- idx + jdy + kdz

Multiply dr (element of streamline length) and integrate along the streamline

~gf vh-dr - %Vp-drzj (?j-dﬂf [(6-V)d]-dr+C(t)

—gh—j d—pzj (%)dfﬂ' [(G-V)q]-dr+C(t) (6.66)
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By the way,

Thus, Eq. (6.66) becomes

dp 0" (%) 4o
J.;+gh+7+j (Ej-dr——C(t)

For steady motion, 2—? =0:C (t) —C

2
d_p +gh+ 9 _ const. along a streamline
2

o,

For incompressible fluids, o =const.

2

+gh+ q7 =Cconst.

P
o,
Divide by g
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2

Pnid_c along a streamline (6.69)

/4 29

— Bernoulli equation for steady, frictionless, incompressible fluid flow
— Eq. (6.69) is identical to Eq. (6.22). Constant C is varying from one streamline to another in

a rotational flow, Eq. (6.69); it is invariant throughout the fluid for irrotational flow, Eq. (6.22).

6.7.2 Summary of Bernoulli equation forms

* Bernoulli equations for steady, incompressible flow

1) For irrotational flow

2

H = P +h+ g— =constant throughout the flow field (6.62)
/4 g

2) For frictionless flow (rotational)

2
H = P +h+ 2— = constant along a streamline (6.69)
/4 g

3) For 1-D frictionless flow (rotational)

2
H= P +h+ Ke\Z/_ = constant along finite pipe (4.25)
/4 g

4) For steady flow with friction
~ include head loss h,
p 4 _p a;
Lth+L="2+h+=%+h,
y 29 7 29
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6.7.3 Applications of Bernoulli's equation to flows of real fluids

(1) Efflux from a short tube

e of visoout Influee = F (L) > Zta{-iml
o/

& "““

‘(4-)
- D

(o)

Core:
irrotational flow

1) Zone of viscous action (boundary layer): frictional effects cannot be neglected.
2) Flow in the reservoir and central core of the tube: primary forces are pressure and
gravity forces. — irrotational flow

Apply Bernoulli eq. along the centerline streamline between (0) and (1)

2 2
Py, OB, O

4 2g V4 29
P, = hydrostatic pressure =yd, P, = Py — Pr... = 0

Z,=1,

0, =0 (neglect velocity at the large reservoir)

0, =+/29d, — Torricelli’s result (6.74)

If we neglect thickness of the zone of viscous influence

B zD?

Q=74
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(2) Stratified flow

Ah
= | —4
- == ‘ e
Tl'nermoc]‘in\e‘: interface | () ' T Intake channel
R e Y
v RN %._—-——'
Datum . L —_ ‘{ R AR SRR

“Reservoir: ' i

FIG. 6-11. Cold water intoke from
a stratified reservoir.

During summer months, large reservoirs and lakes become thermally stratified.

— At thermocline, temperature changes rapidly with depth.

«Selective withdrawal: ~Colder water is withdrawn into the intake channel with a velocity @,

(uniform over the height bl) in order to provide cool condenser water for thermal (nuclear)

power plant.

Apply Bernoulli eq. between points (0) and (1)

&+ao+q—°2:&+bl+q—12
/4 29 7y 24
0, =0

P, = hydrostatic pressure = (y —Ay)(d, —a,)
P :7/(do _Ah_bl)

2
| %:Ah—%(do—ao)
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1
A 2
0, _{Zg{Ah—Ty(do—ao)H (6.77)

For isothermal (unstratified) case, @, =d,

0, =+/29Ah — Torricelli’s result

(3) Velocity measurements with the Pitot tube (Henri Pitot, 1732)

— Measure velocity from stagnation or impact pressure

L3
-

|
ﬁ{

o

v LA

— | - b
30_');0) \,’%F//.JWJ:{
= \spgmation pint

%fo

2
&+h0+qL:&+hs+ g
Y 29 vy g

hy=h, q,=0
2
qO :ps_pO:Ah
24 4
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0o =+ ZgAh

*Pitot-static tube

P (A)

By the way,
p, = P, +Ah = p, = p, +y,Ah
P, — Po=Ah(y, —7) (B)

Combine (A) and (B)

. :\/2Ah(ym —7)

o,
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6.8 Vortex Motion

evortex = fluid motion in which streamlines are concentric circles

For steady flow of an incompressible fluid, apply Navier-Stokes equations in cylindrical

coordinates

Assumptions:

o) _

[
0 [

v, =0; v,=0; %:O
0z

@ _,

00

o _op

— =——(h=vertical direction)
0z

Continuity Eq.:  Eq. (6.30)

18
0
rar rae 0ZM

6-57



Ch 6. Equations of Continuity and Motion

Navier-Stokes Eq.: Eq. (6.29)

1) r-comp.

p(%{+vr%\’r£+vf2"e/—"{+vzg’z/]
~Berd AR R

2
Vo _10p (6.83a)
r por
2) 6-comp.

A H oyt vy
L | e e

_puoj1o
S por [ ror (rve)} (6830)

3) z-comp.

5

WV a\/ vy/ a\;/j
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0=———"+0g,=————0@ (6.83¢c)

Integrate @-Eq. w.rt. r

1
C,==—(rv,)

%cl +C,=rv, (A
c c need 2 BCs (6.84)
vy =Tt (B)
Z-Eq.
op _ _
o PI=-r
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6.8.1 Forced Vortex - rotational flow

f,2
Kol v=2r . .
g | Totod hod. s @ L de‘
\ ) ’ ] ( (. i
/ ‘4 f e
al AN / e pthalld ! N
1}-&- / :{‘:"‘11 3 ,\\\ / :/- W ( P= th.) 3“ %{ \\ /y' ’l ';
33 r g <l R ' ' Y ﬁ\\\" i K /
f L U %u?d / N %}
' Futickes rotate a vortici ty
’ | obout their own X% 4orer
> potatiml flow
= e, Bl

Consider cylindrical container of radius R is rotated at a constant angular velocity €2 about
a vertical axis

Substitute BCs into Eqg. (6.84)

i) r=0, v,=0 —-(A): 0+C,=0 ..C,=0
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Cl

i) r=R, v,=RQ —>(B):RQ:7R o C =20

Eq. (B) becomes

v, = 27Q r=Qr — solid-body rotation
Q’r* 1 0p op )
r—Eq =—— — =P
r p or or
op
z-Eq.: —=-
| oh

Consider total derivative

op op 2
dp =—dr + —dh = pQ°rdr — ydh
P or ch 4

Integrate once

2

r
p:p§22?—7h+c3

Incorporate B.C. to decide C;
r=0;, h=h, and p=p,

p,=0-yh,+C, .. C,=p,+rh,

QZrZ

P—Py=p _V(h_ho)
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At free surface

P =Py

2
h=h,+=—r? — paraboloid of revolution

29

*Rotation components in cylindrical coordinates

Eq. (6.18):

27
1(rQ) 1

A rm)-gev0)-0

l( 1ov./ v, avgj
==| —=—H+-L4+—2
reé r o or

vorticity =2, =2Q#0
— rotational flow

— Forced vortex is generated by the transmission of tangential shear stresses.

e Total head

2
H :£+h+vi¢const.
y 29

— increases with radius
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6.8.2 Irrotational or free vortex

Free vortex: drain hole vortex, tornado, hurricane, morning glory spillway

their owm ages™
~» [Frotationsl |\
o fow YT

o - i; . P

S

ke combired vorte.

P APPLIED HYDRAULICS IN ENGINEERING [Ch&

Fig. 6-23. Morni . H Harse Hen! 5. Buresu of
Rndv'v’mlew Rggiory spfibaay, Hungry S )
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For irrotational flow,

2
Vv
P +h+—-%=const. —throughout the fluid field
y 29

Differentiate w.rt r
Z coincides with h
1op, 0 T o, (ah_ah_ oh

+—V,—=0 == ,__j
y or r g or or 06 0z

op ov,
s Ry A
o Py A

Eq (6.83a): r-Eqg. of N-S Eq.

op Vv
Y Y B
or P r (B)

Equate (A) and (B)

oV Vv ov
—pVy—L=p-t > —8—9I’=V9

Integrate using separation of variables
1 1
[=ov, =[-=or
v, r
Inv,=—Inr+C
Inv, +Inr=In(v,r)=C

v,r =C, ~ constant angular momentum
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V_C4
,=—2
[

[Cf] Forced vortex
v, =Qr

0

«Radial pressure gradient

(B):

/ op _
«Total derivative a7

op op C/’
dp =—dr + —=dh = p—=2-dr — ydh
N

Integrate once

2

p= —p%—yh +Cs (6.93)

B.C. r=o: h=h, and p=p,
Substitute B.C. into Eq. (6.93)
Py =—7hy +Cs

Cs =Py +7h,
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p—p,=7(h—h)-p=5 (6.94)

[Cf] Forced vortex: p— p, :§erz + 7/(h0 — h)

«Locus of free surface is given when p =,

c’

h:hO_ZQrZ

— hyperboloid of revolution

QZ
[Cf] Forced vortex: h=h, + q r?
g

«Circulation f ds = rd@
2

T

r=¢g-ds=|"v,rd0=[C,0]" =22C, =0

¥

— Even though flow is irrotational, circulation for a contour enclosing the origin is not zero

v,r=C,

because of the singularity point.

«Stream function, C _ I
Yoor

oy C, T
V9:—:—:—
r r 2zr
- ﬂ—Llnr (6.97)
v 27 r  2r '
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where "= vortex strength

«\orticity component @,

loy v, ov,
®,=—— +-24 <
r 660 r or

_ C
Substitute v, =—*

-—

— Irrotational motion

At r= 0 of drain hole vortex, either fluid does not occupy the space or fluid is rotational
(forced vortex) when drain in the tank bottom is suddenly closed.
— Rankine combined vortex

— fluid motion is ultimately dissipated through viscous action
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Flow A Uy

@ Uy = wr

FIGURE 4-28

Streamlines and velocity profiles for
(a) flow A, solid-body rotation and
(b) flow B, a line vortex. Flow A is
rotational, but flow B is irrotational
everywhere except at the origin.

(a)

FIGURE 4-29

A simple analogy: (a) retational circular flow is analogous to a roundabout,
while (b) irrotational circular flow is analogous to a Ferris wheel.

© Robb Gregg/PhotoEdit
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Homework Assignment # 4

Due: 1 week from today

6-4. Consider an incompressible two-dimensional flow of a viscous fluid in the xy-plane in
which the body force is due to gravity. (a) Prove that the divergence of the vorticity vector is
zero. (This expresses the conservation of vorticity,V-¢ =0.) (b) Show that the Navier-
Stokes equation for this flow can be written in terms of the vorticity as d¢ /dt =wW?¢. (This
is a “diffusion” equation and indicates that vorticity is diffused into a fluid at a rate which
depends on the magnitude of the kinematic viscosity.) Note that d¢ /dt is the substantial

derivative defined in Section 2-1.

6-5. Consider a steady, incompressible laminar flow between parallel plates as shown in Fig. 6-

4 for the following conditions: a =0.03 m, U =0.3 m/sec, x=0.476 N-sec/m?
dp/ 6x =625 N/m® (pressure increases in + x -direction). (a) Plot the velocity distribution, u,,

in the z-direction. (b) In which direction is the net fluid motion? (c) Plot the distribution

of shear stress z,, inthe z-direction.

6-7. An incompressible liquid of density o and viscosity x flows in a thin film down glass

plate inclined at an angle « to the horizontal. The thickness, a, of the liquid film normal to
the plate is constant, the velocity is everywhere parallel to the plate, and the flow is steady.
Neglect viscous shear between the air and the moving liquid at the free surface. Determine the
variation in longitudinal velocity in the direction normal to the plate, the shear stress at the

plate, and the average velocity of flow.
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6-11. Consider steady laminar flow in the horizontal axial direction through the annular space

between two concentric circular tubes. The radii of the inner and outer tube are r, andr,,

respectively. Derive the expression for the velocity distribution in the direction as a function of

viscosity, pressure gradientop / ox, and tube dimensions.

6-15. The wvelocity potential for a steady incompressible flow is given by

® =(-a/2)(x*+2y—12%), where a is an arbitrary constant greater than zero. (a) Find the

equation for the velocity vector g=iu+ jv+kw. (b) Find the equation for the streamlines in

the xz (y=0)plane. (c) Prove that the continuity equation is satisfied.

6-21. The velocity variation across the radius of a rectangular bend (Fig.6-22) may be

approximated by a free vortex distribution v,r =const. Derive an expression for the pressure
difference between the inside and outside of the bend as a function of the discharge Q, the

fluid density o, and the geometric parameters R and b, assuming frictionless flow.

o |
-
—_
el
=\
y

|

i

| bt

Sec. A-4  FIGURE 6-22
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