Ch 7. Some Fundamental Concepts and Specialized Equations in Fluid Dynamics

Chapter 7 Some Fundamental Concepts and Specialized

Equations in Fluid Dynamics

7.1 Flow Classifications
7.1.1 Various Flows
(1) Laminar flow vs. Turbulent flow
- Laminar flow ~ water moves in parallel streamline (laminas);
viscous shear predominates; low Re (Re < 2100)
- Turbulent flow ~ water moves in random, heterogeneous fashion;

inertia force predominates; high Re (Re > 4000)

3
inertia force  Ma P (T) pViE pvl v

Reynolds number = — =
viscous force 7A /JdV o ol ou v

Neither laminar nor turbulent motion would occur in the absence of viscosity.

(2) Creeping motion vs. Boundary layer flow

- Creeping motion — high viscosity — low Re

- Boundary layer flow— low viscosity — high Re
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103. Repetition of Reynolds’ dye experiment. Osborne
Reynolds' celebrated 1883 investigation of stability of flow
in a tube was documented by sketches rather than photog-
raphy. However the original apparatus has survived at the
University of Manchester. Using it a century later, N. H.
Johannesen and C. Lowe have taken this sequence of
photographs. In laminar flow a filament of colored water

introduced at a bell-shaped entry extends undisturbed the
whole length of the glass tube. Transition is seen in the sec-
ond of the photographs as the speed is increased; and the
last two photographs show fully turbulent flow. Modern
traffic in the streets of Manchester made the critical
Reynolds number lower than the value 13,000 found by
Reynolds.

Laminar
flow

Transition
flow

Turbulent
flow
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Laminar boundary layer
flow

Separation occurs at the
crest.

Turbulent boundary
layer flow: no
separation

photograph remains atrached; similar behavior is shown
below for a sharp corner. (Cf. figures 55-58 for a sphere.)
Titanium tetrachloride is painted on the forepart of the
model in a wind tunnel. Head 1982

156. Comparison of laminar and turbulent boundary
layers. The laminar boundary layer in the upper photo-
graph separates from the crest of a convex surface (cf.
figure 38), whereas the curbulent layer in the second
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External flow:
potential flow

Intermittent

s Lot

e TN T T
: nature
157. Side view of a turbulent boundary layer. Here a a vertical slice of light. The Reynolds number is 3500 based Boundary
turbulent boundary layer develops naturally on a flat plate on the momentum thickness. The intermittent nature of |ayer- flow:
3.3 m long suspended in a wind tunnel. Streaklines from a the outer pare of the layer is evident. Photograph by Thomas A :
smoke wire near the sharp leading edge are illuminated by Corke, Y. Guezennec, and Hassan Nagib. 4 rotational flow

A 7 ™ \‘ e
158. Turbulent boundary layer on a wall. A fog of tiny shows the flow patwern 5.8 m downstream, where the
oil droplets is introduced into the laminar boundary layer Reynolds number based on momentum thickness is about
on the test-section floor of a wind tunnel, and the layer 4000. Falco 1977

then tripped to become turbulent. A vertical sheet of light
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Figure 1.4 Flow behind a cylinder:
(a) Re < 1; (b) 5 < Re < 40;

() 100 < Re < 200; (d) Re ~ 10%
and (e) Re ~ 10°.

Figure 1.13  Schematic representation of
flow over a sphere at Re =2 % 10™:

(a) snapshort of the flow as illustrated by dye
injected into the boundary layer; (b) tin"Jc-
averaged flow pattern as seen in a time-lapse
photograph. See also Plate 4 for the actual
flow at Re =2 x 10" and 2 % 10°.

— Seo, I. W., and Song, C. G., "Numerical Simulation of Laminar Flow past a Circular

Cylinder with Slip Conditions,” International Journal for Numerical Methods in Fluids, Vol.
68, No. 12, 2012. 4, pp. 1538-1560.
— 34th IAHR World Congress, Brisbane, Australia, Jun. 26 - Jul. 1 2011
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7.1.2 Creeping motion

Creeping motion:
~extreme of laminar motion - viscosity is very high, and velocity is very small.

— Inertia force can be neglected (Re — 0).

— Convective acceleration and unsteadiness may also be neglected.

For incompressible fluid,

Continuity Eq.: V-g=0

Navier-Stokes Eq.: pgt +p(G V)G =pGd—Vp+uvig +%V(V ‘q)

[Ex] - fall of light-weight objects through a mass of molasses — Stoke’s motion Re <1

- filtration of a liquid through a densely packed bed of fine solid particles (porous media)

I Streamlines

FIG. 8-3. Deformation flow around a falling sphere.
(Streamlines and velocity profiles are shown for
observer at rest.)
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7.1.3 The boundary layer concept
For continuum fluid, there is no slip at the rigid boundary. [Cf] partial slip

— Fluid velocity relative to the boundary is zero.

du .
— Velocity gradient Ld_ and shear stress have maximum values at the boundary.

y

| Nonviscous
fluid

Flow
caused by a
moving
cylinder

Boundary layer | o
PR velocity
du veloecity profile profile
—_— > O Boundary \
dy layer flow g
streulmlinu l \I'
U o U dret—— 8
_— Aﬂ_—-—-—-:“”‘”“"ﬂ —
G e :|
5 [
0 |
[] T v
| Nonviscous
) \flow streamline/

(a) (b)

FIG. 8-4. Boundary layer versus slip flow: (a) flat plate; (b) cylinder.

For very low viscosity and high acceleration of the fluid motion
— Significant viscous shear occurs only within a relatively thin layer next to the boundary.

— boundary layer flow (Prandtl, 1904)

* Boundary layer flow:

~ inside the boundary layer, viscous effects override inertia effects.

 Quter flow:

~outside the layer, the flow will suffer only a minor influence of the viscous forces.
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~Flow will be determined primarily by the relation among inertia, pressure gradient, and

body forces.

— potential flow (irrotational flow)

1) Flow past a thin plate and flow past a circular cylinder

— Due to flow retardation within boundary-layer thickness ¢, displacement of streamlines is

necessary to satisfy continuity.

2) Boundary layers in pipes
- uniform laminar flow between parallel walls

- Poiseuille flow (Sec. 6.5)

Potential
core

Boundary
layer

bt e Rttt

Entrance length oA —
Region of flow establishmen! with ' Region of
% nonuniform boundary layers Sully developed
flow with uniform
boundary layers

FIG. B-5. Boundary layers in ducts,

[Re]
Creeping flow: very viscous fluids — only laminar flow

Boundary-layer flow: slightly viscous fluids — both laminar and turbulent flows
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7.2 Equations for Creeping Motion and 2-D Boundary Layers
7.2.1 Creeping motion
Assumptions:

— incompressible fluid

— very slow motion — inertia terms can be neglected.

ou ou 0 ou oh 1 op ul o°u o°u o°u

—HU—+V At 0—= - 0— - ——— + |t t—

ot ox oy 0z OX P OX p|lox: oy° oz
body force normal force shear force

\ O h o’u ou o°
(p+yh) _ ), u,ou, ou
OX ox® oy° oz

N\ o(p + yh) o°v N o°v N o’V
oy o o o

0 h o’w  d*w o
(pryh)_ (oW, ow, ow
OX oy oz

V(p+yh)=uv?iq

— pressure change = combination of viscous effects and gravity

1) For incompressible fluids in an enclosed system (fluid within fixed boundaries)
P=Pg P

where p, = pressure responding to the dynamic effects by acceleration

(7.1)

(7.1a)
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p, =const. — y¥h (hydrostatic relation)

where const. depends only on the datum selected.

p=py+const—yh
Eq. (7.1a) becomes

V(p, +const — yh+ yh) = uV?q

Vp, = uV3q (7.2)

— Equation of motion for creeping flow

2) Continuity eq. for constant density

—

V-q=0 (A)

Solve (7.2) and (A) together with BC's

Unknowns =u,v,w, p
Egs.=3+1

[Ex] Stoke's motion: Re<1
~ very slow flow past a fixed sphere — Figs. 9.1-9.3 (D&H)

~ solid sphere falling through a very viscous infinite fluid
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« Solution:

—V[Sw‘e——>———@ o+ }

V=V, 3axy

(9.4)

3axz a’
W=V, 2 (1)

P4 :_EIU V

* Pressure distribution: Eg. (9.4) — Fig 9.4

3 X 3V
= U=V, :———Ocos¢9 s X=acosd
p | r=a 2 ,Ll a2 0 2 ( )
" Pruax | xa= gﬁ ~ upstream stagnation point
a
Prnin | x.a= —gﬂ ~ downstream stagnation point
a
* Shear stress:
1ov, avg
Tro = — 9.12
o =1 G o) 612
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where v, =V, 0086’(1—EE la—)
2r
vV, =-V, sm@(l—éi—iag)
4r 4r
S Tro| rea= ’UVO sin@

* Drag on the sphere

Eq. (8.22):

D= +I0”rrgsin fds — Ioﬁ pcoséads

D, = frictional drag pressure drag =

where ds=27za’sinodd

D= 4rawV, + 2mauV, =6rauV,

frictional drag pressure drag
Eq. (8.27):

2 2
D= CDpV?A CD,OV?ﬂ'a

2

sbrauN, = CDpV7°7ra2

o _lew _ 24 24
P pv,a pV,D/u Re

— Fig. 9.5: valid if Re < 1;

for Re > 1 we cannot neglect inertia effect.
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7.2.2 Equations for 2-D boundary layers
(1) Two-dimensional boundary layer equations: Prandtl

— simplification of the N-S Eq. using order-of-magnitude arguments

— 2D dimensionless N-S eq. for incompressible fluid (omit gravity)

x:au +u08u +voau __op + = /dz > (7.3)
ot° OX° oy° ox° Re {(ox° ayo
1 1x1 5°x1/5° 5°%(1+1/65°%) —1
o X [¢] y [0} u o V (o] p
where X°=—; ==: U=—: V°=—: =
L y L V, V, P oV

L,V, - constant reference values

B B | e )

5° 1x 5° 5°x1 5°%(5°+118°) — &°
.. ou®  ov°
Continuity : + =0
X° oy°
1 1
V, .

— ~u
3‘5/// 777

ha _/ >
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Within thin and small curvature boundary layer
u>v, X>y
ou__ou
_
oy OX

P Is small ~may be neglected

dimensionless boundary-layer thickness &°

502%%» o° <« 1

.". scale for decreasing order

1
5°?

>i>1>5°>5°2
50

Order of magnitude

x°~0 (@)
y° ~ 0 ()
ue ~ 0 (1)
ve ~ 0 (0°)
ou°
~0(1
e @)
v ~ 0 (1) <« continuity [av = —Zu j
(o] XO
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ou® 1
-~0 (%)
oy o
8VO
~0 (6°
ox° (9%
o*u° 0 (ou°

0(x°)? “ e\ oxe

ove 0 [ov° 0 1
o(ye)” oyeloye) o°
ou°® _ou°ox°  ou°

= =u° ~0(@)
ot°®  ox° ot° OX°

ov :av OX :uoﬁv ~0(5°)
ot°  ox° ot° ox°

Re=2Y - 0(5°?)
y7,

Therefore, eliminate all terms of order less than unity in Eq. (7.3) and revert to dimensional terms

ou ou ou  10p wou
—+U—+V—= + .
ot ox oy pOX poy

ou ov
=+ =

—+—=0 7.7
ox oy (77)

— Prandtl's 2-D boundary-layer equation
BC:1) y=0;u=0,v=0

2) y=oo;u=U(X) (7.8)

Unknowns: U, V, P; Egs. =2 — needs assumptions for p
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7.2.3 Boundary - layer thickness definitions

!

A2 (red hatched area)

g
Al/

(1) Boundary-layer thickness, o

~ The point separating the boundary layer from the zone of negligible viscous influence is not

a sharp one. — very intermittent

0 = distance to the point where the velocity is within 1% of the free-stream velocity, U

@y= & —u,=0.99U

(2) Mass displacement thickness, & (5;,)

~ " is the thickness of an imaginary layer of fluid of velocity U.
~ " is the thickness of mass flux rate equal to the amount of defect
A=A

S =p[U-udy  h2s
mass defect

s = Joh(l—g)dy (7.9)
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[Re] mass flux = mass/time

:pQ:pUA:pU5*><1

(3) Momentum thickness, 6(0,)

— Velocity retardation within 6 causes a reduction in the rate of momentum flux.

— @ is the thickness of an imaginary layer of fluid of velocity U for which the momentum

flux rate equals the reduction caused by the velocity profile.

h h
pou* = p[ (U —u)udy = p[  (Uu-u)dy

o= joh5(1—5)dy (7.10)

[Relmomentum in & = mass x velocity = pU xU = pOU*?

momentum in shaded area = I[p(U —u)xu]dy

o0>0 >0

(4) Energy thickness, o,

1 1ch
E'DU °5, :EJO pu(U?—u?)dy

hu u’
46, =], TR
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[Re]
1) Batchelor (1985):
displacement thickness = distance through which streamlines just outside the boundary layer

are displaced laterally by the retardation of fluid in the boundary layer.

2) Schlichting (1979):

displacement thickness = distance by which the external streamlines are shifted owing to the

formation of the boundary layer.
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7.2.4 Integral momentum equation for 2-D boundary layers

Integrate Prandtl's 2-D boundary-layer equations

Assumptions:

constant density dpo=0
o

steady motion Q =
ot
o

pressure gradient =0 P =
OX

BCs: @y=h; r=0, u=U

@y=0; =7, u=0

Prandtl's 2-D boundary-layer equations become as follows:

2
ua—u+vau:ﬁa—L2J A)
ox oy poy
8_u+@20 (B)
ox oy

Integrate Eq. (A) w.r.t.y

—hss§ n A2
Jyhé(ua—u+vé—u]dy=ﬁjy h a—lj
=0 | _ox oy p v=0 oy (©)
O © €)
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L

=Z’| yoh— T| yoo = 0-7,=-1,

h ou hauv
@=| v—dy=| —dy- —d
.[0 ay 0 ay .[ y (D)
@ @

[Re] Integration by parts: jvu'dy =Vu - J.V'udy

J‘@dy [uv]) =Uv, —0=Uv

Continuity Eq.: ol = _u ()
oy OX

h ou .

— V=-— 0 o —dy (i)

Substitute (i) into ®

Substitute (ii) into @

@=Uv=-U johg—id
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Eq. (D) becomes

jhva—;dy dy _[ u—dy (E)

Then, (C) becomes

h ou hou h
u—dy-U| —dy+| u—dy=—— F
IO 6xy Oany-O axy yo, )

For steady motion with 0p / 0x = 0, and U=const., (F) becomes

h oUu
d -2 —d =| —dy-— —d
°8x I 0 OX y 0 OX y

h O 0 ¢h 0 2
= J, 20U —u)ldy =— [ 'uU —u)dy =—(aU")

where 8 = momentum thickness \
W 2
o9 )=yl (7.18)
o OX OX

Introduce local surface (frictional) resistance coefficient C,

[
D 7, D, =2¢c. Au?

Cf = f = f 2 fou (719)
Pua, Py
2 2
. . —BC U?
Combine (7.18) with (7.19) T = 'l
C, _00 (7.20)
OX
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[Re] Integral momentum equation for unsteady motion

o
— unsteady motion: Q =0
ot

op

— pressure gradient, 8_ #0
X

First, simplify Eq. (7.7) for external flow where viscous influence is negligible.

v oY __1ap, ﬂ%
/§y pox p oy

ouU ouU op
+pU—=—— A
P ot P OX OX *)

Substitute (A) into (7.7)

ou, , ou  ou_ou U  udu
ot ox ey ot ax poy?

¥

1 op
0 OX

Integrate

[adug plaa ol
0 p oy’ ot ot ox OX ﬂ

@ @ €) @

(B)

Cehfou U, hd o 0,
@: J(———jdy— —(u-U )dy_ajo(u—U)dy_—aU5

\

-Us”
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h( ou ouU ouU ouU
@ = .[O (U&—Ua—xjdy'i‘." (Ug—u &]dy

3-1 -2

P oJ _&h B _Q_ .
@2 [ {(u—ma—x}dy— — [, (1-U)dy =—(-U5")

ou h ou
@= jov—d =-U —dy+_[u&dy:jo(u—U)a—Xdy

\

Eq.(E)

Combine 3-1 and @

Iu—(u—U)dy+I (u- U) dy j[u—(u U)+(u-— U)—}

:.[oha {fu(u-U)}d =—I u(u- U)dy——( ou*)

Substituting all these into (B) yields

—T—O:——(Ué) v s ——(eu )
Yo, OX

T—:—(U 0) + U‘Z—Ua —(U5*)

(7.21)
yo,

— Karman's integral momentum eq.
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7.3 The notion of resistance, drag, and lift
— D&H Ch.15

Resistance to motion = drag of a fluid on an immersed body in the direction of flow

¢ Dynamic (surface) force exerted on the rigid boundary by moving fluid

1) tangential force caused by shear stresses due to viscosity and velocity gradients at the

boundary surfaces

2) normal force caused by pressure intensities which vary along the surface due to

dynamic effects

Vo latgrl:ii (f)(l;rce Resultant force
—_—
S d,\#
—_— A
S N N
— ds

0 & Drag

e
—_—

FIG. B-7. Definition diagram for flow-induced forces.

¢ Resultant force = vector sum of the normal and tangential surface forces integrated over

the complete surface

~ resultant force is divided into two forces:

1) drag force = component of the resultant force in the direction of relative velocity V,
2) lift force = component of the resultant force normal to the relative velocity V,

~ Both drag and lift include frictional and pressure components.
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7.3.1 Drag force

¢ Total drag, D

D=D; +D,
where D, = frictional dragzj 7, Sin ¢gds

D, = pressure drag :—L p cos ¢ds

sing =sin(90° + ) =cos«

cos¢ =c0s(90°+ ) =—sina

(@D Frictional drag = surface resistance = skin drag

@ Pressure drag = form drag

~ depends largely on shape or form of the body

For airfoil, hydrofoil, and slim ships: surface drag > form drag

For bluff objects like spheres, bridge piers: surface drag < form drag
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+ Drag coefficients, C, , Cp

V2
Dy :CDfIO7OAf

VZ
Dp :CDpp?OAP

where A, = actual area over which shear stresses act to produce D,

A, = frontal area normal to the velocity V,

Total drag coefficient C,

2
D =CDpV7°A

where A = frontal area normal to V,

Cp =Cp, +Cp,

C, =C,(geometry,Re) — Ch.15

[Re] Dimensional Analysis

D= f,(p, iV L)

- t[#1)- o,
Y7,

plV?

.'.D=CD§AV2
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7.3.2 Lift force

For lift forces, it is not customary to separate the frictional and pressure components.

L R =resultant, force

a=angle
of attack

+ Total lift, L

2
L=CLpV7°A

where C, = lift coefficient; A = largest projected area of the body
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