Chap 3. Generation, Transformation and Deformation of Random
Sea Waves

3.1 Simplified Forecasting Method of Wind Waves and Swell

Numerical model for directional wave spectrum: WAM or SWAN (including shallow

water effects) <— good for both tropical (e.g. typhoon) and extratropical storms

SMB method: Assume a constant wind speed U over a fixed fetch length F for a
certain duration t. Good for extratropical storms (e.g. Northwesters on the west coast

of Korea during winter) or wind wave generation in an enclosed basin.

Wilson’s formulas (Egs. 3.1 and 3.2): Based on SMB method, but modified to be

applicable to tropical cyclones of large temporal and spatial variation of wind.

Fully-developed condition: both F and t are long enough
Fetch-limited condition: t is long enough, but F is limited

Duration-limited condition: F is long enough, but t is limited

Minimum duration for fetch-limited condition= t_. < Eqgs. (3.3) or (3.4)

Minimum fetch length for fully-developed waves for given t = F

min

— Eq. (3.5)

If t>t_ , fetch-limited — Use Egs. (3.1) and (3.2)

‘min ?

If t<t duration-limited — Calculate F

min

using Eq. (3.5). Then use Egs. (3.1)

min >

and (3.2) with F=F__

Relationship between H,, and T,,: T,,=3.3(H,)"" (3.6) < good for large waves

comparable to design waves but gives lower limit of T,, for smaller waves (see Suh et
al. 2010, Coastal Engineering 57, 375-384)

Swell height and period: Egs. (3.7) and (3.8) as a function of swell travel distance D

Relationship between wave height and period of wind waves and swell: Fig. 3.4



3.2 Wave Refraction (+Shoaling)
3.2.1 Introduction

Ray theory for regular waves

gl _t,

Conservation of energy:
gng CgbzgngOCgobO

which gives

H=H KK,
C -1/2
shoaling coefficient, K = |—2 =| tanh kh(l +— 2kn ] =K,(f,h)
C, sinh 2kh
refraction coefficient, K = b, =K., (f.,0,h); 6=06(f,h6,))
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3.2.2 Refraction Coefficient of Random Sea Waves
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S(fﬁ)=[Ks(f,h)Kr(f,h,e)]ZSO(f,eo)%
s(f)zj_’;S(f,e)dez[Ks(f,h)]zj_’;so(f,90)[Kr(f,h,90)]2d90

m, = ["S(H)df =["[" 8,(F.6)[K,(F,WK,(f,h,6,)F d6,df

=[] 5, (£.0)[K (£ K, (1,06, dodf

Goda’s book uses

© emax
My, = |, L S,(f,0)[K (f,mdg,df

1/2
Define (Kr)eff =[rr:—°j
s0

For example, H,, =4./m, = significant wave height after shoaling and refraction

H,, =4JMm,, = significant wave height due to shoaling only

then, H,,=(K,),H

ms0

In actual calculations, the integration is performed by a summation of frequency and
direction.

(K.), =[ii(AE)u<Kr>§j

=1 j=I



Goda's book explains how to discretize f and @.
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S(f) can be integrated analytically (e.g. B-M or P-M spectra), say

S(f)=af ~exp(-bf )

0

ks a _ a
m, = [ "S(f)df :[4—bexp(—bf 4)1) =

Similarly,
f~i +Af;

fi

[ : NS (f)df = {%exp(—bf -4)}

Hence,
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(i=
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Now we can find Af, (i=1,2,---,M) starting from fNl =0.

Representative frequency f, for the band (f, to f, + Af,)?

Goda suggests on the basis of T =./m,/m, and m, = J-: f2S(f)df

m
f = 2/
(m, )
_m_al
(m,) M 4b M

m) = [ 25 (fydf = [*" af  exp(—bf *)df
! fi fi

. ) ) de
Putting /b f 2:i—>f3df=—,
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Goda defines error function, ®(t)=1/+/2x _[ ;exp(—xz /2)dx, though usual definition is

erf (t) = 2/\/;J.;exp(—xz)dx so that erf(w)=1. Thus,
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which should correspond to Eq. (3.15) in Goda’s book if b=1.03T,* (B-M spectrum):
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It is required

21n_M—1 V(7" (i=12M)

On the other hand, exp[— b(1‘~I + Af, )4} - exp[— b(f~)4} = ﬁ

Take bei“‘ = ln_M—l. Then [MLJ - [IM;IJ = ﬁ satisfied.
I —

As for the discretization of wave angle 6 (16-point bearing, see Table 3.2),

7 directiens
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3.2.3 Computation of Random Wave Refraction by Means of the Energy Balance

Equation
General transport equation for S (any scalar quantity):

a@_?+v (SV)=Q (sink or source of S)

—

where V = transport velocity of S.For S(t,x,y, f,0) = directional random waves,



—

V = velocity following waves

- _(dx dy do df
V = V,,V,,V,,V
(dt dt’dt’ dt} b v )

with

v, =C,cos0, v, =C;sinéd

_C (ac .

p né— £cos6’ to account for refraction
C { ox oy

v, =0 assuming f does not change following the wave.

Then

a5(f,0) 0)

- [S(f oV, ] +—[S(f o, ]+— [s(f.0)v,]=Q

For steady state (0S /ot = 0) with no sink or source (Q =0),

;((SV )+%(Svy)+ %(SVH): 0 for S(xy,f,0)

Assuming 8 #6(X,y),or X, Yy, € areindependent variables,

o|SCC o|SCC
osﬁ(—g)+sin0(—g)+c oS 49%— sHaC =0
OX oy 9000 ox

where C and C; using linear wave theory depend on h(X,y) and frequency f. &

is computed by ray theory. We need boundary conditions for S.

Example in Goda’s book Fig. 3.7: Waves over a circular shoal

e T, aswellas H, changes depending on locations (Fig. 3.8).

S

* Fig. 3.9 for regular waves shows larger spatial variations of wave heights.



Ref. Vincent and Briggs (1989). Refraction-diffraction of irregular waves over a mound,
JWPCOE, 115(2), 269-284: Performed laboratory experiments on transformation of
monochromatic and random directional waves over an elliptic shoal. They concluded
that monochromatic waves using representative wave height and period (e.g. H, and

T,) provide a poor approximation of irregular wave conditions if there is directional

spread or high wave steepness.

Ref. Kweon, H.-M. (1998). A 3-D random breaking model for directional spectral
waves, Jpornal of the Korean Society of Civil Engineers, 18(I1-6), 591-599 (in Korean):

Include sink term due to wave breaking.

Ref. Mase, H. (2001). Multi-directional random wave transformation model based on
energy balance equation, Coastal Engineering Journal, 43(4), 317-337: Include wave

diffraction.
3.2.4 Wave Refraction on a Coast with Straight, Parallel Depth Contours

s1n6’:sm6’0 — can find 6(f,h,0,) — 9
C, o0,

Snell’s law:

cos0,
cosd

: : Cyo
Shoaling coefficient K, = C—g =K,(f,h)
9

Directional spectrum S(f,#) in water depth h:

Refraction coefficient K, (f,h,8))=

S(f,e>=[Ks<f,h>l<r<f,h,eo>]2(%} S,(f.6,)

0

Need to specify S,(f,f,) in deep water. For example, S,(f.6,)=S,(f)G(f,d,)

with S (f) =B-M spectrum with given H,=H , and T =T /1.05,

G(f,6,) =Mitsuyasu-type with given s, and (ap )O ,



(ap )0 = predominant wave direction in deep water,
0y — (a )
G(f,0,)=G,cos™ T”O ; -7 < [6?0 —(ap)O]S T,

G =G, ismaximumat 6, = (ap)o .
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Fig. 3.10 shows (Kr)eﬁ given by Eq. (3.10) as a function of h/L, with
L, =qT. /27, (ap)o and S, .

Note: (Kr)eff #1 even for (ap)o =0 (- directional spreading).

3.3 Wave Diffraction
3.3.1 Principle of Random Wave Diffraction Analysis

For linear monochromatic waves in constant water depth, Sommerfeld solution for a

semi-infinite thin breakwater:



e H(%,Y)

approx. circudan wane S from (0,0)

e dent wave reflecte
W4 He waye
anel f= %

Diffraction coefficient K, =H(x,y)/H, dependson f, &, and h=constant.

H(x,y) = Ky (f,8;%,y,h)H;
. \
S(f) Si(1.6)

Frequency spectrum
S(f) at given (. y) = [ [K,(F,0)FS(.6,)d6,
Since
j:S(f)df ='|‘0°O'[;S(f,¢9)dédf :j:j_””[Kd(f,a)]zsi(f,a)deidf
therefore
S(£.0)=[K,(F.0) 5,(£.0) 5
Then
S(f):j_’;S(f,H)de:j_’;[Kd(f,ei)]ZSi(f,Q)dﬂ

In terms of zeroth moment,



(m, )i = J-: J._” S.(f,6)dedf —(H,,) =4y ( m, ), : incident significant wave height
m=[ [ S(f,0)dadf — H,,, =4,m, : significant wave height at (X,Y)
0 0 J-7

m, = ["[" [Ky(f.0)F 8,(f.0)dodf

Define effective diffraction coefficient:

172
(Ky)y = AR [( mO) } = (3.22) in Goda's book where i added

(HmO)i 0 /i

:[Lj:j_””si(f,@)[Kd(f,ei)]zd@idf

(my),

Read Goda’s book for field measurement (Figs. 3.13 and 3.14). (K, )eﬁ > K, based on

regular waves with H=H,, and T=T,, = 0.07, which is significantly

underestimated in this case.

3.3.2 Diffraction Diagrams of Random Sea Waves

S(fxy,h =" [K(f,0:%y,mS,(f,6)d6

m, (%, y,h) = [ " S(f)df ; (my), = [ "S,(F)df
mz(x,y,h)zj:f%(f)df; (mz)i:I:fZSi(f)df
peak T,(x,y,h) from S(f);  peak (T,) from S,(f)

Hpo =44ymy, T =ym,/m,; (HmO)i:4 0y (-I_—): mO)i/mZi

T,=T,/1.05; (H) =(H,,), (1) =(T,)/1.05



Wave height ratio = (Kd )ef‘f = (H )
mo /i

p

.I__
Period ratio ==y or =~
T W)

It is not specified in Goda’s book which relation is used for period ratio. It is likely to

use 'I_'/(f) since T, may be difficult to find. But Goda uses (T )i tofind L (p.82).

1 S

Goda assumed S,(f,0,)=S,(f)G(f,6) with B-M frequency spectrum and

Mitsuyasu-type directional spreading.

Need to specify (H,) =(H,,), (T,) = (Tp)i /1.05, S,..> (ap)i , constant depth h, and

S/l

breakwater geometry.

height ratio = (K ),

eff

Plotted period ratio = T, (probably) for normal incidence only, (ap)i =0°.

(T,)

Fig. 3.15 for a semi-infinite breakwater, for s_._ =10 (wind waves) and s __ =75

(swell, more unidirectional).

Monochromatic versus directional random waves:
1) In general, monochromatic wave underestimates wave heights in sheltered area,
and overestimates in open area.
2) The wave height ratio along the boundary of the geometric shadow (or the
straight line from the tip of the breakwater to the wave direction) is 0.7 for

directional random waves, while it is 0.5 for monochromatic waves.

Figs. 3.16~3.19 for breakwater gap (B/L =1,2,4,8)
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3.3.3 Random Wave Diffraction of Oblique Incidence

Construct your own computer program if exact solution is needed. Otherwise, use an

approximate method suggested in the book.




3.3.4 Approximate Estimation of Diffracted Height by the Angular Spreading Method

For large barriers (e.g. headlands and islands),

K4 = 01in geometric shadow

roughly o .
K, = 1in illuminated region

Neglect wave refraction.

(my) =[] si(f.)dodf

Pf‘;n (<] /M
wave ofirection

Assume S; =0 for |6?i|>7r/2.

() =["["" si(f.6)dadf

o e/
m, = [ [ [Ke(F.0)]S,(.6)dodf

Ky=1 for —7/2<6, <6,
Ky=0 for <6, <x/2

Assume {

Then

m,=["[" s.(f.6)d0df

m,

(m,),

= P. (6,) = cumulative relative energy from —x/2 to 6,

=Eq. (2.28) or Fig. 2.15 (B-M spectrum + Mitsuyasu spreading)

o )i

Ky = ernn—)} ~[P.o)]"



6, <0 and 6, >0 for this problem

m,=["[" s.(f.0)d0df
+[ [ s, (£.6)d0f

M,

=P.(6) +|[P.(7/2) - P.(8,)]

—_
3

S

>

(Ko Ky = = P.(0)+ [1- P.(6))]

T (my)

=(K, ) +(K, )j in the text

1

3.3.5 Applicability of Regular Wave Diffraction Diagrams
T

Only for very narrow directional spreading



3.4 Equivalent Deepwater Wave

In real situation,

different depencing en bycotiom
For the smme decprmter woves

P (Be By 258 refrmctiom
desyn Mnciderrt waver MY)
‘n front off a Structure

7%——%‘_&%» 3
‘f‘r. re. Mdm’ A ) - -
directional bottom fr:eéran,‘;

random waves ete.

Hydraulic model test in 2D wave flume,

empiricad formula for

breaking, rum-up,

over-topp;
HLT, ve Pring, efc
Unsform J»:J.‘oﬂ% of flume == Zﬁfxfgr waves
S‘Aoa-al\'”} m@ X (Ho,)
{
/'_yot"e'b‘c

In real situation, H, = K,K K.K; (HS)0
In 2D wave flume, H,=K.H,'
Thus, H,'= KKK, (H,),

0

(unrefracted) equivalent deepwater wave height

For wave period, usually assumes T, =(T,), < error if diffraction is dominant.



3.5 Wave Shoaling

Linear wave shoaling coeff. K, = X = s = function of % (3.25)

9

H Cyo
0'
For shoaling of normally-incident linear random waves,
S(f;h)= [KS( f ;h)]2 So(f) <« can write a computer program easily.

For shoaling of nonlinear monochromatic waves, use Shuto (1974) model (read text).
Or you can use Eq. (3.31) with H,; and T, (see Ex.3.7).

3.6 Wave Deformation Due to Random Breaking

3.6.1 Breaker Index of Regular Waves

breaking point (Aard 4o measure)
H(x) max, at 4= 2,

Breaker index: & = % =f (tan @%J

b 0

Goda’s empirical formula (1970) for regular waves:

H, _ AL {l—exp[—l.SﬂL—hb(l+15tan4/39)}}; A=0.17 (3.32)

0



with L, =gT?/27, which somewhat over-predicts over a steep slope. Rattanapikiton

and Shibayama (2000) modified it to

B o A ) exp —1.5”—hb(1+11tan4/3<9) . A=017  (3.33)
h h/L L,

3.6.2 Hydrodynamics of Surf Zone

Regular waves break at a fixed location, but random waves break in a wide zone of

variable water depth — surf zone

Incipient wave breaking of random waves:

h).
s 012 1—exp —1.5M(1+11tan4/30)
L, L

0

Define (h,;),., = water depth at which H,,, becomes the maximum inside surf zone,

peak

(H,/3) e = maximum value of H,; inside surf zone

(N3)peac @and (H, ;). can be calculated by Figs. 3.28 and 3.29 and Egs. (3.35)-(3.38).

Incipient breaker index of random waves: (H, ;) / (N3) 0 in Fig. 3.30

Distribution of individual wave heights inside surf zone (see Fig. 3.31):
- Rayleigh distribution in relatively deep water
- Enhancement of large waves due to nonlinear shoaling near breaking point —
longer right tail
- Breaking of large waves inside surf zone — upper tail truncated
- Regeneration of nonbreaking waves in much shallow area near shoreline —

widening toward Rayleigh distribution (not shown in Fig. 3.31)



- Upper curves of Fig. 3.32 (lab, H,, /H, ;=14 for Rayleigh) and Fig. 3.33
(field, H,,,/H,,; =1.27 for Rayleigh) prove these changes.

Water level change:

Wave setup (5) was computed using the results of monochromatic waves with T, and

H® = mean square of random waves, the latter of which is affected by 5 Therefore,

we need iteration to solve 5 and H? simultaneously. See Eq. (3.40) and Fig. 3.34.

¢ (=np at z=0)=wave setup at still-water shoreline: Eq. (3.41) and Fig. 3.35
¢, (maximum 7 ) = maximum wave setup on swash zone: Eq. (3.45)

Surf beat, £(t): slow (30~300 s) fluctuation of free surface mainly inside surf zone

T
from Gaussian distribution with £, given by Eq. (3.46)

Thus, h=d +7+{(t)

3.6.3 Wave Height Variations on Planar Beaches

Before wave breaking, Rayleigh distribution may be assumed
V4 T, H
X)=—Xexp| ——X |, X=—=— 2.1
Po(X¥) =2 p( 2 j o 2.1)

After breaking, p,(X) — p(X)
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1 — p, = probability of non — breaking

0 for x = X,
X, — X
1-p,=1— for x, < X < X,
X =%
1 for x <X,

Let A= IOXI (1- p,)p,dx <1 since Iow pdx =1

Assume p.d.f. adjusted for wave breaking:

P00 = (1= P,)P,(X) sothat [Py =1

X, = upper limit

Need to estimate o
X, = lower limit

} of wave breaking.

Use %= A{l—exp[—l.S%(l+15tan4/39)}} (3.32)

0

2
with L, :gzi and tan@ = beach slope
7

A 0.18 for X =x,
~10.12 forx=x,



Eq. (3.32) was developed for breaking point (h=h,) of regular waves. But it may be

used inside the surf zone if H, =broken wave height, h =local depth.

Verification of the model with laboratory (Fig. 3.37) and field (Fig. 3.38) data

Diagrams (Figs. 3.39 — 3.42) and formulas (Eqgs. 3.47 — 3.48 and Table 3.6)

Improved and extended (H,, and H_ — H, H H.,, Hys Hy, and H_ )

max rms mo /32 1/10

equations are given by Rattanapitikon and Shibayama (2013, Coastal Engineering
Journal 55(3), 1350009-1~1350009-23)



3.7 Reflection of Waves and Their Propagation and Dissipation

3.7.1 Coefficient of Wave Reflection

Typical reflection coefficients are given in Table 3.8.
Reflection coefficient for sloping structure can be calculated by Eq. (3.50).

For perforated wall caissons, K; becomes minimum (0.3~0.4) at B/L=0.15~0.2
(see Fig. 3.44). Under a standing wave system, maximum U at node — maximum
energy dissipation & minimum reflection at B=L/4 — B/L=0.25. However, in

reality, minimum reflection occurs at B/L =0.15~ 0.2, due to inertia effect.

nodle amti-node
v v
5 =1 _ | =17
T=TT=77 L—r—)—r'J /// — ',,I,//
ET,] n=/r=07 - |

/\)CJ '\'ﬂef"tl\K e{kci— IMC/MO’I\Ptg /\ﬂerf;ﬂ eﬁ[ec,t



3.7.2 Propagation of Reflected Waves
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6. (geometrical optics theory)
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(e) Test 5: Nonlinear model, k, A,

Figure 5.2: Continued



For long-period waves incident at large angle, Mach stem is formed.

SRS ~TI__ \L
’:)ca'u/e-t 616 - - \' \"'—’ amplitude dispersion

——

— (Higher waves go faster.)

(c) Test 3: Nonlinear model, k,4, = 0.1954, 6, = 10°

Figure 5.2: Continued



Reflection from finite length of seawall <— diffraction by breakwater gap

’ef/ec-&e,( I\-ne,\O/en'&
waves waves (H:)

4%43?7)4'—5 brea kwater

<mag mar
meldent waves
H= Ko He

{
reflection Coeff. at seawaltl

Reflection from very long seawall <— diffraction by semi-infinite breakwater
(or angular spreading method for headland)

reflectedd rmerdent

waves | waves

|
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\
____________ - |
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breakwater ! \\
imagﬁnarj

me)dent waves

Effect of opposing wind (sea — land): attenuates waves of large steepness, but its effect

is minor for swell of low steepness.



3.7.3 Superposition of Incident and Reflected Waves

For linear waves, we can superpose the free surface displacement:

N
77(1:: X, Y) =17 (t9 X, Y) + 2772 (t: X, Y)

n=l

total incident reflected waves

Time-averaged energy per unit surface area:
pg?at given(X,y) = pgmg; m, = .[:S(f)df

If the distance from the reflective structure is more than one wavelength, we may
assume

=0 (n=12,---,N), 757s =0 (n#m) uncorrelated.

Fig. 3.48 indicates H,, = \/(Hmo).z + (Hmo); at x/L=0.7



3.8 Spatial Variation of Wave Height along Reflective Structures

3.8.1 Wave Height Variation near the Tip of a Semi-Infinite Structure

wewe o, Lfoctionn
behimol breakwater

A scussed im cectiom 3.2
> X

Lneldent waves ref/ecteo
W;'é'A Ae 1}4 + HI Wwawves

Wave height (crest elevation — trough elevation) along vertical wall (y =0):

%z\/(C+S+1)2+(C—S)2

where

Note:at x=0, u=0 - C=S=0 —» H /H, =1

As X—> o, U— o0, then C—>l, S—>l i:2
2 2 H,
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Fig. 3.42. Variation of wave height in front of a semi-infinite breakwater.

. H
For irregular waves, (K,), was calculated by Eq. (3.22) with K, = H—S

T

for component waves
(f>L—>u)

Explains meandering damage of concrete caissons.



3.8.2 Wave Height Variation at an Inward Corner of Reflective Structures

nelolent waves H 2
with H | —S =" (3.54)
00 | P e H B
H
for f=x, —2=2
H|
0");’7"
acts Lke v ﬂzf, $:4
a m;rvor 2 H,

Same as sum of 4 waves
propagating in 4 different directions

A ‘amm;ﬁtj’t \Bajaks)
A Bl Wl s
o) WA Y

(22B2>AM)

If the length is finite, use a computer program or an approximate method given in

Goda’s book.

merdent

/ waves



3.8.3 Wave Height Variation along an Island Breakwater

waves:
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cause undulation along wall (Fig. 3.54 and 3.55)

If B>>L,mayadd two waves diffracted from each tip:
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3.9 Wave Transmission at Breakwaters and Low-Crested Structures

3.9.1 Wave Transmission Coefficient of Composite Breakwaters
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Wave transmission through rubble mound may be negligible.

Expect K; = function{%,%, B,T,mound material, - j
|

Fig. 3.56 for regular wave tests — may be applicable to irregular waves with
H,=(H,,), and H, =(H, ), (seeFig.3.57)

Eq. 3.57) > K; = function[ :C only] ; Effect of % 1s minor (see Fig. 3.56)
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Eq. (3.58) — horizontally composite breakwaters
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3.9.2 Wave Transmission Coefficient of Low-Crested Structures (LCS)
Low-crested breakwater is built mostly for protection of sandy beaches

Wave transmission through LCS constructed with energy dissipating blocks: Fig. 3.58
(Tetrapods), Eq. (3.59)

Wave transmission over LCS: Egs. (3.60)-(3.62)
Overall (through+over) transmission of LCS: Eq. (3.63)
3.9.3 Propagation of Transmitted Waves in a Harbor

No reliable information is available (Read text)

— 7 can be Ma%éea( and computed!
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