
Chap 3. Generation, Transformation and Deformation of Random 
Sea Waves 

 

3.1 Simplified Forecasting Method of Wind Waves and Swell 
 

Numerical model for directional wave spectrum: WAM or SWAN (including shallow 

water effects) ← good for both tropical (e.g. typhoon) and extratropical storms 

 

SMB method: Assume a constant wind speed U over a fixed fetch length F  for a 

certain duration t . Good for extratropical storms (e.g. Northwesters on the west coast 

of Korea during winter) or wind wave generation in an enclosed basin.  

 

Wilson’s formulas (Eqs. 3.1 and 3.2): Based on SMB method, but modified to be 

applicable to tropical cyclones of large temporal and spatial variation of wind. 

 

Fully-developed condition: both F  and t  are long enough 

Fetch-limited condition: t  is long enough, but F  is limited 

Duration-limited condition: F  is long enough, but t  is limited 

 

Minimum duration for fetch-limited condition = mint  ← Eqs. (3.3) or (3.4) 

Minimum fetch length for fully-developed waves for given t  = minF  ← Eq. (3.5) 

If mint t , fetch-limited → Use Eqs. (3.1) and (3.2) 

If mint t , duration-limited → Calculate minF  using Eq. (3.5). Then use Eqs. (3.1) 

and (3.2) with minF F  

 

Relationship between 1/3H  and 1/3T : 0.63
1/3 1/33.3( )T H  (3.6) ← good for large waves 

comparable to design waves but gives lower limit of 1/3T  for smaller waves (see Suh et 

al. 2010, Coastal Engineering 57, 375-384) 

 

Swell height and period: Eqs. (3.7) and (3.8) as a function of swell travel distance D  

 

Relationship between wave height and period of wind waves and swell: Fig. 3.4 



 

3.2 Wave Refraction (+Shoaling) 
 

3.2.1 Introduction 

 

Ray theory for regular waves 

 

 
Conservation of energy: 
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3.2.2 Refraction Coefficient of Random Sea Waves 
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Goda’s book uses 
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For example, 00 4 mHm   = significant wave height after shoaling and refraction 

            00 4 sms mH   = significant wave height due to shoaling only 

then,   00 mseffrm HKH   

In actual calculations, the integration is performed by a summation of frequency and 

direction.  
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Goda’s book explains how to discretize f  and  . 
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)( fS  can be integrated analytically (e.g. B-M or P-M spectra), say 
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Similarly, 
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Goda defines error function,  
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which should correspond to Eq. (3.15) in Goda’s book if 403.1  sTb  (B-M spectrum): 
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As for the discretization of wave angle   (16-point bearing, see Table 3.2), 

 

 

3.2.3 Computation of Random Wave Refraction by Means of the Energy Balance 

Equation 

 

General transport equation for S  (any scalar quantity): 
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where V  = transport velocity of S . For ),,,,( fyxtS  = directional random waves, 
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For steady state ( 0/  tS ) with no sink or source ( 0Q ), 
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Assuming ),( yx  , or x , y ,   are independent variables, 
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where C  and gC  using linear wave theory depend on ),( yxh  and frequency f .   

is computed by ray theory. We need boundary conditions for S . 

 

Example in Goda’s book Fig. 3.7: Waves over a circular shoal 

• sT  as well as sH  changes depending on locations (Fig. 3.8). 

• Fig. 3.9 for regular waves shows larger spatial variations of wave heights. 



 

Ref. Vincent and Briggs (1989). Refraction-diffraction of irregular waves over a mound, 

JWPCOE, 115(2), 269-284: Performed laboratory experiments on transformation of 

monochromatic and random directional waves over an elliptic shoal. They concluded 

that monochromatic waves using representative wave height and period (e.g. sH  and 

sT ) provide a poor approximation of irregular wave conditions if there is directional 

spread or high wave steepness. 

 

Ref. Kweon, H.-M. (1998). A 3-D random breaking model for directional spectral 

waves, Jpornal of the Korean Society of Civil Engineers, 18(II-6), 591-599 (in Korean): 

Include sink term due to wave breaking. 

 

Ref. Mase, H. (2001). Multi-directional random wave transformation model based on 

energy balance equation, Coastal Engineering Journal, 43(4), 317-337: Include wave 

diffraction. 

 

3.2.4 Wave Refraction on a Coast with Straight, Parallel Depth Contours 

 

Snell’s law: 
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Directional spectrum ),( fS  in water depth h : 
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Need to specify ),( 00 fS  in deep water. For example, ),()(),( 0000  fGfSfS   

with )(0 fS  = B-M spectrum with given 0ms HH   and 05.1/ps TT  , 

     ),( 0fG  = Mitsuyasu-type with given maxs  and  
0p , 
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Fig. 3.10 shows  effrK  given by Eq. (3.10) as a function of 0/ Lh  with 

2/2
0 sgTL  ,  

0p  and maxs . 

Note:   1effrK  even for   0
0
p  ( directional spreading). 

 

3.3 Wave Diffraction 
 

3.3.1 Principle of Random Wave Diffraction Analysis 

 

For linear monochromatic waves in constant water depth, Sommerfeld solution for a 

semi-infinite thin breakwater: 

 



 

 

Diffraction coefficient id HyxHK /),(  depends on f , i , and h =constant. 
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Frequency spectrum 
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In terms of zeroth moment, 
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Define effective diffraction coefficient: 
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Read Goda’s book for field measurement (Figs. 3.13 and 3.14).   deffd KK   based on 

regular waves with 3/1HH   and 3/1TT   = 0.07, which is significantly 

underestimated in this case. 

 

3.3.2 Diffraction Diagrams of Random Sea Waves 
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It is not specified in Goda’s book which relation is used for period ratio. It is likely to 

use  iTT /  since pT  may be difficult to find. But Goda uses  isT  to find L  (p.82). 

 

Goda assumed ),()(),( iiii fGfSfS    with B-M frequency spectrum and 

Mitsuyasu-type directional spreading. 
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Fig. 3.15 for a semi-infinite breakwater, for 10max s  (wind waves) and 75max s  

(swell, more unidirectional). 

 

Monochromatic versus directional random waves:  

1) In general, monochromatic wave underestimates wave heights in sheltered area, 

and overestimates in open area. 

2) The wave height ratio along the boundary of the geometric shadow (or the 

straight line from the tip of the breakwater to the wave direction) is 0.7 for 

directional random waves, while it is 0.5 for monochromatic waves. 

 

Figs. 3.16~3.19 for breakwater gap ( 8,4,2,1/ LB ) 

 



 

 

3.3.3 Random Wave Diffraction of Oblique Incidence 

 

Construct your own computer program if exact solution is needed. Otherwise, use an 

approximate method suggested in the book. 

 

 

 

 

 



3.3.4 Approximate Estimation of Diffracted Height by the Angular Spreading Method 

 

For large barriers (e.g. headlands and islands), 
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Neglect wave refraction. 
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01   and 02   for this problem 
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3.3.5 Applicability of Regular Wave Diffraction Diagrams 

         

Only for very narrow directional spreading 



3.4 Equivalent Deepwater Wave 
 

In real situation, 

 

 

 

Hydraulic model test in 2D wave flume, 

 

 
 

In real situation,  0sfsrds HKKKKH   

In 2D wave flume, '0HKH ss   

Thus,  00 ' sfrd HKKKH   

 

(unrefracted) equivalent deepwater wave height 

 

For wave period, usually assumes  0ss TT    error if diffraction is dominant. 



3.5 Wave Shoaling 
 

Linear wave shoaling coeff. 
L

h

C

C

H

H
K

g

g
s  offunction 

'
0

0

     (3.25) 

For shoaling of normally-incident linear random waves, 

 

  )();();( 0
2 fShfKhfS s   can write a computer program easily. 

 

For shoaling of nonlinear monochromatic waves, use Shuto (1974) model (read text). 

Or you can use Eq. (3.31) with 1/3H  and 1/3T  (see Ex. 3.7). 

 

3.6 Wave Deformation Due to Random Breaking 
 

3.6.1 Breaker Index of Regular Waves 

 

 

Breaker index: 
0
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b
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Goda’s empirical formula (1970) for regular waves: 
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   (3.32) 

 



with 2/2
0 gTL  , which somewhat over-predicts over a steep slope. Rattanapikiton 

and Shibayama (2000) modified it to 
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   (3.33) 

 

3.6.2 Hydrodynamics of Surf Zone 

 

Regular waves break at a fixed location, but random waves break in a wide zone of 

variable water depth → surf zone 

 

Incipient wave breaking of random waves: 

 

    incipient 4/3
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Define 1/3 peak( )h = water depth at which 1/3H  becomes the maximum inside surf zone, 

1/3 peak( )H = maximum value of 1/3H  inside surf zone 

1/3 peak( )h  and 1/3 peak( )H  can be calculated by Figs. 3.28 and 3.29 and Eqs. (3.35)-(3.38). 

 

Incipient breaker index of random waves: 1/3 peak 1/3 peak( ) / ( )H h  in Fig. 3.30 

 

Distribution of individual wave heights inside surf zone (see Fig. 3.31): 

- Rayleigh distribution in relatively deep water 

- Enhancement of large waves due to nonlinear shoaling near breaking point → 

longer right tail 

- Breaking of large waves inside surf zone → upper tail truncated 

- Regeneration of nonbreaking waves in much shallow area near shoreline → 

widening toward Rayleigh distribution (not shown in Fig. 3.31) 



- Upper curves of Fig. 3.32 (lab, 2% 1/3/ 1.4H H   for Rayleigh) and Fig. 3.33 

(field, 1/10 1/3/ 1.27H H  for Rayleigh) prove these changes. 

 

Water level change: 

Wave setup ( ) was computed using the results of monochromatic waves with sT  and 

2H  = mean square of random waves, the latter of which is affected by  . Therefore, 

we need iteration to solve   and 2H  simultaneously. See Eq. (3.40) and Fig. 3.34. 

 

 (=  at 0z  ) = wave setup at still-water shoreline: Eq. (3.41) and Fig. 3.35 

s (maximum  ) = maximum wave setup on swash zone: Eq. (3.45) 

 

Surf beat, )(t : slow (30~300 s) fluctuation of free surface mainly inside surf zone 

 
from Gaussian distribution with rms  given by Eq. (3.46) 

Thus, )(tdh    

 

3.6.3 Wave Height Variations on Planar Beaches 

 

Before wave breaking, Rayleigh distribution may be assumed 
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After breaking, )()(0 xpxp   
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Eq. (3.32) was developed for breaking point ( bhh  ) of regular waves. But it may be 

used inside the surf zone if bH  = broken wave height, h  = local depth. 

 

Verification of the model with laboratory (Fig. 3.37) and field (Fig. 3.38) data 

 

Diagrams (Figs. 3.39 – 3.42) and formulas (Eqs. 3.47 – 3.48 and Table 3.6) 

 

Improved and extended ( 1/3H  and maxH  → H , rmsH , 0mH , 1/3H , 1/10H  and maxH ) 

equations are given by Rattanapitikon and Shibayama (2013, Coastal Engineering 

Journal 55(3), 1350009-1~1350009-23) 

 



3.7 Reflection of Waves and Their Propagation and Dissipation 
 

3.7.1 Coefficient of Wave Reflection 

 

R
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Typical reflection coefficients are given in Table 3.8.  

Reflection coefficient for sloping structure can be calculated by Eq. (3.50). 

 

For perforated wall caissons, RK  becomes minimum (0.3~0.4) at 2.0~15.0/ LB  

(see Fig. 3.44). Under a standing wave system, maximum u  at node  maximum 

energy dissipation & minimum reflection at 4/LB    25.0/ LB . However, in 

reality, minimum reflection occurs at 2.0~15.0/ LB , due to inertia effect. 

 

 

 

 



3.7.2 Propagation of Reflected Waves 

 

 

ri    (geometrical optics theory) 

diamond pattern of surface profile 

 

 



For long-period waves incident at large angle, Mach stem is formed. 

 

 

amplitude dispersion 

(Higher waves go faster.) 

 

 



Reflection from finite length of seawall  diffraction by breakwater gap 

 

 
 

Reflection from very long seawall  diffraction by semi-infinite breakwater 

(or angular spreading method for headland) 

 

 

 

Effect of opposing wind (sea  land): attenuates waves of large steepness, but its effect 

is minor for swell of low steepness. 

 



3.7.3 Superposition of Incident and Reflected Waves 

 

For linear waves, we can superpose the free surface displacement: 
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Time-averaged energy per unit surface area: 
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If the distance from the reflective structure is more than one wavelength, we may 

assume 
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Fig. 3.48 indicates    20
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3.8 Spatial Variation of Wave Height along Reflective Structures 
 

3.8.1 Wave Height Variation near the Tip of a Semi-Infinite Structure 

 

 
 

Wave height (crest elevation – trough elevation) along vertical wall ( 0y ): 

 

22 )()1( SCSC
H

H

I

S   

 

where 

 

 







u
dttC

0

2

2
cos


,   








u
dttS

0

2

2
sin


,  

2
sin

2
2


L

x
u   

 

Note: at 0x , 0u   0 SC   1/ IS HH  
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less undulation 

for irregular waves 

 

 

 

 

 

 

 

For irregular waves, ( )d effK  was calculated by Eq. (3.22) with 
I

S
d H

H
K   

 

for component waves  

( uLf  ) 

 

Explains meandering damage of concrete caissons. 

 



3.8.2 Wave Height Variation at an Inward Corner of Reflective Structures 
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wave height SH = crest elevation – trough elevation 

 

 

Same as sum of 4 waves  

propagating in 4 different directions 

 

 

 

 

 

 

 

 

 

 

 

If the length is finite, use a computer program or an approximate method given in 

Goda’s book. 

 

 
 

 



3.8.3 Wave Height Variation along an Island Breakwater 

 

 
cause undulation along wall (Fig. 3.54 and 3.55) 

 

If LB  , may add two waves diffracted from each tip: 

 

 

 



3.9 Wave Transmission at Breakwaters and Low-Crested Structures 
 

3.9.1 Wave Transmission Coefficient of Composite Breakwaters 

 

 

 

                                         transmission coefficient 
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Wave transmission through rubble mound may be negligible. 
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Fig. 3.56 for regular wave tests  may be applicable to irregular waves with 
 II HH 3/1  and  TT HH 3/1  (see Fig. 3.57) 
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Eq. (3.58)  horizontally composite breakwaters 

 

 

1/3 1/3( ) / ( ) 1.2 0.28T I TT T K   

 



3.9.2 Wave Transmission Coefficient of Low-Crested Structures (LCS) 

 

Low-crested breakwater is built mostly for protection of sandy beaches 

 

Wave transmission through LCS constructed with energy dissipating blocks: Fig. 3.58 

(Tetrapods), Eq. (3.59) 

 

Wave transmission over LCS: Eqs. (3.60)-(3.62) 

 

Overall (through+over) transmission of LCS: Eq. (3.63) 

 

3.9.3 Propagation of Transmitted Waves in a Harbor 

 

No reliable information is available (Read text) 

 

 

 


