
Chap 6. Probabilistic Design of Breakwaters 

 

6.1 Uncertainty of Design Values 
 
6.1.1 Overview 
 

 Deterministic design:  

- One characteristic (e.g., mean) value for each design variable 

- Most design variables contain uncertainty 

- Deterministic design use a safety factor to cover up the problem of uncertainty 

 

 Probabilistic design:  

- Consider uncertainties (or stochastic properties) of design variables 

- Reliability-based design ← design a structure such that reliability is above a 

certain level (or probability of failure is below a certain level) 

- Performance-based design ← design a structure such that performance of a 

structure is above certain level (e.g. expected sliding distance of a caisson is less than a 

certain value) 

 

 Sources of uncertainty 

- Uncertainty related to natural processes (waves, tides,…) 

- Errors associated with measurements 

- Uncertainty in extreme wave analysis 

- Accuracy of numerical models 

- Uncertainty related to empirical formulas 

- Uncertainty related to structural parameters 

 

6.1.2 Examples of uncertainty of design parameters for breakwater design 
 

Uncertainty is given by a probability distribution. True distribution is rarely known. 

→ Assume a normal distribution and use the characteristic ratio ( / X ) and 

coefficient of variation ( V ) 

mean value

characteristic valueX


  → ratio of mean value to characteristic value 

(cf. bias = difference between mean value and characteristic value) 



standard deviation

mean value
V   → degree of scattering relative to the mean value 

 

See Table 6.1 for uncertainties of design variables for breakwater design. See also Table 

VI-6-1 of CEM 

 

6.2 Reliability-Based Design of Breakwaters 
 
6.2.1 Classification of reliability-based design method 
 

 Different levels of RBD depending on the level of probabilistic concepts being 

employed 

- Level I: overall safety factor method (single safety factor; conventional method) 

        partial safety factor method (safety factors for each design variable) 

- Level II: correlated and non-normal distribution of variables → uncorrelated and  

standard normal distribution; Calculate reliability index (failure probability) 

  - Level III: Actual distribution functions for the variables are used 

 

6.2.2 Evaluation of external safety by Level II method 

 

Failure: Damage that results in structure performance and functionality below the 

minimum anticipated by design, but not a total or partial collapse of a structure 

 

There are many failure modes for a structure. Each failure mode must be described by a 

formula, and the interaction (correlation) between the failure modes must be known. 

However, little is known about the real correlation between the failure modes. Therefore, 

the failure modes are frequently assumed to be independent each other. 

 

Consider a single failure mode, “hydraulic stability of armor layer” described by 

Hudson formula: 
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where  

   nD  = nominal block size ( 3/1V ) 

   1/  ws   



   s  = block density 

   w  = water density 

     = armor slope angle 

   sH  = significant wave height 

   DK  = stability coefficient 

 

Limit state function (failure function, performance function): 
   1 2( , , , )nZ g X X X R S    

where R  = resistance and S  = loading. Usually R  and S  are functions of many 

random variables, i.e., 
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Probability of failure: 
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Reliability: 
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For Hudson formula, 
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where A  = stochastic variable signifying the uncertainty of the formula. 

 

For the case of sliding of a caisson, 
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Level II method (FORM; First-Order Reliability Method) 

 

• Linear failure functions of normally-distributed random variables 

 

Assume that S  and R  are independent normally-distributed variables with known 

means and standard deviations, i.e., 

   R  = normally distributed with mean R  and standard deviation R  

   S  = normally distributed with mean S  and standard deviation S  

Then, the linear failure function, g R S  , is also normally distributed with mean 

g R S     and standard deviation 2 2
g R S    . The probability density function, 

( )f g , can be transformed to a standard normal density function of ( ) /g gX g    : 

 

 
 

The probability of failure is 
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is the reliability index measuring the probability of failure. Note that fP ↓ as  ↑. 

Also note that   is the inverse of the coefficient of variation, and it is the distance (in 

terms of number of g ) from the most probable value of g  (in this case the mean) to 



the failure surface, 0g . 

 

If R  and S  are correlated, g  is given by 

   SRRSSRg  222   

where RS  is the correlation coefficient: 
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Additional geometrical interpretation of  : 

 

Transform R  and S  into a normalized coordinate system of RRRR  /)('   and 

SSSS  /)('  . Then, the failure surface 0 SRg  is transformed into 

0''  SRSR SR  . Then 22/)(/ SRSRgg    is the shortest 

distance from the origin to the failure surface. 

 

 
 

 

 

 

In Goda’s book, Z  and Z  are used instead of g  and g . 
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• Nonlinear failure functions of normally-distributed random variables 

 

If the failure function is nonlinear, the approximate values for Z  and Z  can be 

obtained by using a linearized failure function (FORM, first-order reliability method). 

Linearization is generally performed by retaining only the linear terms of a Taylor series 

expansion about the design point, * * * *
1 2( , , , )nx x x x  . 
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Iterative method to determine the design point (or the most probable failure point, 

MPFP): 

 

0. Step 0. Assume the design point to be the mean point where each design value 

has its mean value. 

1. Step 1. Calculate the mean and standard deviation of the limit state function by 
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2. Step 2. Calculate sensitivity factor  nii  , ,2 ,1   by 

   
*

iX
i x

i
Z

g
X









  

3. Step 3. Determine a better estimate of *x  by 
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4. Step 4. Calculate the mean and standard deviation of the limit state function at 
*x  by 
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5. Step 5. Repeat Steps 2 to 4 to achieve convergence 

 



• Nonlinear failure functions of non-normal random variables (e.g., extreme 

distribution of wave heights; Weibull or Gumbel distribution) 

 

Substitute the non-normal distribution of the basic variable iX  by a normal 

distribution in such a way that the density and distribution functions 
iXf  and 

iXF  are 

unchanged at the design point (see CEM). Then use the above-mentioned iteration 

method to calculate Z  and Z . 

 
6.2.3 Design of breakwaters with partial factor system 

 

Level II method calculates the probability of failure quantitatively. However, there 

remains some ambiguity in statistical characteristics of various design variables, and 

consensus is not established on the acceptable probability of failure. Moreover, the 

Level II method is quite different from the conventional safety factor method and is 

complicated to apply. The design engineers prefer the Level I (partial safety factor) 

method, which is similar to the conventional method.  

 

Consider the limit state function formulated with resistance ( )R X


 and load ( )S Y


 

 

( , ) ( ) ( )Z g X Y R X S Y  
   

   (1) 

 

The limit state function including the partial safety factors,  , is given by 

 

( ) ( ) 0R c c S c cZ R X S Y   
 

   (2) 

 

where the subscript c  stands for the characteristic value. For example, the limit state 

function for the sliding of a caisson is given by 

 

( ) 0f W U PZ f W U P            (6.20) in Goda’s book 

 

The reliability index,  , is defined as 
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If the target reliability index is T , we need 

 

T     (4) 

 

Substituting Eq. (3) into Eq. (4) and using the relationship 2
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(definition of the sensitivity factor  ), we have 

 

( )R S T R R S S             (5) 

 

Using /R R RV    and /S S SV   , 

 

(1 ) (1 )R T R R S T S SV V            (6) 

 

Comparing Eqs. (2) and (6), the partial safety factors for resistance and load are 
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A general form for a random variable X : 

 

(1 ) X
X X T X

c

V
X

     ← Eq. (6.21) in Goda’s book 

 

6.3 Performance-Based Design of Breakwaters 
 
6.3.1 Outline of performance-based design method 
 

Reliability-based design method: T   or ( )f f TP P  

Performance-based design method: deformation of a structure (e.g. sliding distance of 



caisson) is less than allowable value. 

 

Measure of deformation for different types of structures: 

1) rubble mound breakwaters: damage level of armor units 

2) vertical breakwaters: sliding distance of caisson 

 

Performance requirement of a structure: 

1) Serviceability = serviceability limit state in ISO 2394 

2) Restorability 

3) Safety = ultimate limit state in ISO 2394  

4) Usability ← at the stage of layout plan of port and harbor facilities 

 

The allowable value of deformation is different for respective performance 

requirements: serviceability < restorability < safety 

 

Performance-based design is to predict the magnitude of deformation and determine the 

structural dimensions so that the predicted deformation is less than the allowable value. 

 



6.3.2 Performance-based design with expected sliding distance method 

 

 
 

The statistical characteristics (mean and coefficient of variation) and probability density 

function of each design variable are given as in Table 6.6.  

→ The design variable is randomly sampled from the pdf in each simulation.  

→ Different result in each simulation, S  

→ Ensemble averaging of several thousand simulations 

→ Expected sliding distance, ES  

• Two proposals for acceptable sliding distance: 

Acceptable amount of accumulated sliding distance by one storm event: Table 6.7 gives 

a matrix for different return periods, different limit states, and different importance of 

the breakwater. For example, for a very important breakwater (A in Table 6.7) such as 

nuclear power plant breakwater, 0.03ES  m for 500-year return period storm, and 

0.1ES  m for 5000-year return period storm. 

 

Acceptable exceedance rate of total sliding distance during the lifetime of breakwater: 

Table 6.8 for different importance of breakwater and different total sliding distance. For 

example, Pr[ 0.3 m] 10%S    for the breakwater of medium importance. 



 

6.3.3 Vertical breakwater design with modified Level I method 
 

Partial safety factors in Table 6.5 were developed with constant 2.4T  . The partial 

safety factor method is easy to use, but it gives no idea on how much sliding would 

occur. 

 

Eq. (6.22) calculates SLT  considering sliding performance, which was developed by 

linear multiple regression analysis of existing breakwaters such that the expected total 

sliding distance is 0.3 m (Read text for detailed procedure). The partial safety factors are 

calculated by Eq. (6.21) with T SLT  . This method calculates different reliability 

index, but the expected sliding distance would be close to 0.3 m if it is calculated by 

using the performance-based design method. 

 

Future design: preliminary design using modified Level I method → detailed design 

using expected sliding distance method 


