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3. The Schrödinger Equation

3.1 The Time-Independent Schrödinger Equation

- Time-independent Schrödinger equation: a vibration equation
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3.2 The Time-Dependent Schrödinger Equation

- Time-dependent Schrödinger equation: a wave equation
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4. Solution of Schrödinger Equation

4.1 Free Electrons

Suppose electrons propagating freely to the positive x-direction,

V = 0 (potential-free space)

because 

“energy continuum”
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4. Solution of Schrödinger Equation

4.2 Electron in a Potential Well (Bound Electron)
Suppose the electron can move freely between two infinitely high potential barriers

Within 1-dim potential well

The solution where

“energy quantization”
(If n = 0, no wave function !)
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4. Solution of Schrödinger Equation

4.2 Electron in a Potential Well (Bound Electron)

The wave function : 
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4. Solution of Schrödinger Equation

4.2 Electron in a Potential Well (Bound Electron)

For a hydrogen atom,
Coulombic potential

In 3-dim potential well
(electron in a box)
The same energy but different quantum numbers: “degenerate” states 
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4. Solution of Schrödinger Equation

4.3 Finite Potential Barrier (Tunnel Effect)

Suppose electrons propagating in the positive x-direction encounter a potential 
barrier V0 (>  total energy of electron, E)

- Region (I)  x < 0
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- Region (II) x > 0
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The solutions (see Appendix 1)
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4. Solution of Schrödinger Equation

4.3 Finite Potential Barrier (Tunnel Effect)

Since E - V0 is negative,                                    becomes imaginary.

To prevent this, define a new parameter,

Thus,                                  , and 

Determination of C or D by B.C. For x →∞

Since  Ψ Ψ* can never be lager than 1,        →∞ is no solution, and thus,   

, which reveals Ψ-function decreases in Region II
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Using (A.27) + (4.39) in textbook, the damped wave becomes
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4. Solution of Schrödinger Equation

4.3 Finite Potential Barrier (Tunnel Effect)

As shown by the dashed curve in Fig 4.7, a potential barrier is penetrated by 
electron wave : Tunneling

* For the complete solution,

(1) At x = 0                        : continuity of the functionIII ψψ =
xixixi DeBeAe γαα =+ − DBA =+

(2) At x = 0                        : continuity of the slope of the function

With x = 0                                                    

Consequently,
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4. Solution of Schrödinger Equation

4.3 Finite Potential Barrier (Tunnel Effect)



4. Solution of Schrödinger Equation

4.4 Electron in a Periodic Field of Crystal (the Solid State)
The behavior of an electron in a crystal → A motion through periodic repetition 
of potential well

well length : a

barrier height : V0

barrier width : b

Region (I)

Region (II)
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This model does not consider

i) the inner electrons are more 
strongly bound to core

ii) the individual potentials 
form each lattice overlap

V0 > E



4. Solution of Schrödinger Equation

4.4 Electron in a Periodic Field of Crystal (the Solid State)

(Continued) For abbreviation

The solution of this type equation (not simple but complicate)

Where, u(x) is a periodic function which possesses the periodicity of the lattice 
in the x-direction

The final solution of the Schrödinger equations;

where
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4. Solution of Schrödinger Equation

4.4 Electron in a Periodic Field of Crystal (the Solid State)

Mathematical treatment for the solution : Bloch function

Differentiating the Bloch function twice with respect to x

Then the Schrödinger equations in two regions become
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equations of damped vibrations

The solutions of (I) and (II)
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4. Solution of Schrödinger Equation

4.4 Electron in a Periodic Field of Crystal (the Solid State)

(Continued)  From continuity of the function 

du/dx values for equations (I) & (II)  are identical at x = 0

Further,Ψ and u is continuous at x = a + b→ Eq. (I) at x = 0 must be equal to 
Eq. (II) at x = a + b, more simply, Eq. (I) at x = a is equal to Eq. (II) at x = - b

Finally, du/dx is periodic in a + b

limiting conditions : using 4.57- 4.60 in text and eliminating the four constant A-D, and 
using some Euler eq.(see Appendix 2)
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4. Solution of Schrödinger Equation

4.4 Electron in a Periodic Field of Crystal (the Solid State)

If V0 is very large, then E in 4.47 is very small compared to V0 so that

Since V0b has to remain finite, and as b→ 0, γb becomes very small. 

For a small γb, we obtain (see tables of the hyperbolic function)

Finally, neglect α2 compared to γ2 and, b compared to a so that 4.61 reads as follow

Let ,  then
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4. Solution of Schrödinger Equation

4.4 Electron in a Periodic Field of Crystal (the Solid State)

“Electron that moves in a periodically varying potential field can only occupy 
certain allowed energy zone”
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4. Solution of Schrödinger Equation

4.4 Electron in a Periodic Field of Crystal (the Solid State)

The size of the allowed and forbidden 
energy bands varies with P.

For special cases, since

(a) If the potential barrier strength, V0b
is large, P is also large and the curve 
on Fig 4.11 steeper. The allowed 
band are narrow.

(b) If V0b and P are small, the allowed 
band becomes wider. (see Fig. 4.12)

(c) If  V0b goes 0, thus, P → 0
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4. Solution of Schrödinger Equation

4.4 Electron in a Periodic Field of Crystal (the Solid State)

(d) If the  V0b is very large, P→∞
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