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%= 3. The Schrodinger Equation
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3.1 The Time-Independent Schrdodinger Equation

- Time-independent Schrodinger equation: a vibration equation
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3.2 The Time-Dependent Schrodinger Equation

- Time-dependent Schrodinger equation: a wave equation
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oo 4. Solution of Schrodinger Equation
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4.1 Free Electrons

Suppose electrons propagating freely to the positive x-direction,

2m d’y  2m
Vy+—(E-V)y=0 — +
v h* ( W dx*  h*

V' =0 (potential-free space)

l//(x) = Ae'™ because T(x) — A'% . o'

2m 272- hz 2
= |—F = k:— — EF=—FK
“ VhZE b ‘ ‘ A 2m

“energy continuum”

Ey =0

Figure 4.1. Energy continuum of a free electron (compare with Fig. 4.3).
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4.2 Electron in a Potential Well (Bound Electron)
Suppose the electron can move freely between two infinitely high potential barriers

vt | Within 1-dim potential well

2
5 = dx®  h° v

=4

0 nucleus ©

Figure 4.2. One-dimensional potential well. The walls consist of infinitely high
potential barriers.

: lox —iox
Thesolution i = Ae’™ + Be ™™ where a=,-—5FE | ,
h energy levels
2 2 2
h- , hrt o, £
En =—0 :—21/1 y Es=26C { —— n=5
2m 2ma
E,=16C 4 n=4
n=123,.. e =
cc . - 77 E,=4C - an
energy quantization E;=1C - n=1
—_ 1 Figure 4.3. Allowed energy values of an electron that is bound to its atomic nucleus.
(If n—= O’ No Wave funCtIon l) EI ismthe excilatit:n e11;:‘gl)«g:|1‘fhg(‘;t'(escr:t case. C = h*n®/2ma?, see (4.18). (E) is the

zero-point energy.)



4. Solution of Schrédinger Equation
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4.2 Electron in a Potential Well (Bound Electron)
The wave function : w =24i-sinax y~ =24i-sinax o -,
wy =4A4°sin® ox ¢
a * a . ?
IO wy dt = 4142_‘-0 sin®(ax)dx = 44 [—Esin axCOSax+@]g =1 A= ‘/i
o 2 X 2a
Condition for the orbit stability
e n=3 "‘ 2727/‘ = nﬁ
| . yy \ ' vy =——n
Wy on

" ' " L : ¥
(a) (b) (c)

Figure 4.4. (a) ¢ function and (b) probability function Yy * for an electron in a
potential well for different n-values. (c) Allowed electron orbit of an atom.
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4.2 Electron in a Potential Well (Bound Electron)

@

4
1 1
For a hyd_rogen at(_)m, - me = = —13.6-—2(eV)
Coulombic potential 2(4re,h)” n n
2
V = — € ‘O TIPS TS g TPt
Are,r i -
n=2

-13.6eV
(lonization energy)

n=1

Figure 4.5. Energy levels of atomic hydrogen. E is the binding energy.

In 3-dim potential well £ =
(electron in a box)
The same energy but different quantum numbers: “degenerate” states

y z
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4 3 Finite Potential Barrier (Tunnel Effect)

Suppose electrons propagating in the positive x-direction encounter a potential
barrier V, (> total energy of electron, E)

- Region (1) x<0 Vv
d* 2 Vo
T Ey =0 °
dx h I
- Region (I1) x>0
0
d’ l/2/ 2m " (E—V,)y =0 0 X
dx e . . :
Figure 4.6. Finite potential barrier.
The solutions (see Appendix 1)
. _; 2m
w]:Aew“-l—Be “ o= h—ZE

W, = Ce'™ + De ,6’=\/h—2(E—VO)



;4. Solution of Schrodinger Equation
NN NN NN

4.3 Finite Potential Barrier (Tunnel Effect)

Since £ - Vis negative, [ = \/i—’? (E—V,) becomes imaginary.

To prevent this, define a new parameter, y =if3

2 ipx —ifx _
Thus, yz\/h—T(VO—E) and v, = Ce”™ + De™ .y, =Ce” + De™
Determinationof Cor Dby B.C. Forx —> o Yy, =C-00+D-0

Since ¥ ¥ can never be lager than 1, ¥, — oo is no solution, and thus,
C —> 0 , which reveals ¥-function decreases in Region Il
_ -
v, =De

Using (A.27) + (4.39) in textbook, the damped wave becomes

Y = De .t h)
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4.3 Finite Potential Barrier (Tunnel Effect)

As shown by the dashed curve in Fig 4.7, a potential barrier is penetrated by
electron wave : Tunneling

* For the complete solution,

(1) Atx=0 y, =, : continuity of the function
Ae'™ + Be* =D —— A+B=D

(2) Atx =0 dy, = dy
dx dx
Aiqe'™ — Bioe™™ = —yDe ™

. continuity of the slope of the function

withx=0 Aia—Bia =—yD

Consequently, 4 = 2 (a+ ZZ)
I 2 o

B=— (l— l_) Figure 4.7. -function (solid line) and electron wave (dashed line) meeting a finite
o potential barrier.
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4.3 Finite Potential Barrier (Tunnel Effect)
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Figure 4.8. Square well with finite potential barriers. (The zero points on the vertical
axis have been shifted for clarity.)
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4.4 Electron in a Periodic Field of Crystal (the Solid State)

The behavior of an electron in a crystal — A motion through periodic repetition

of potential well i
This model does not consider
well length : a _ _ T4 ) 2
1) the inner electrons are more /i, Mo NN | T M Vo> E
barrier height : 7, strongly bound to core
barrier width : 5 i) the individual potentials
' form each lattice overlap

-b 0 a s "'Jb'l- X
Reglon (I) Figure 4.9. One-dimensional periodic potential distribution (simplified) (Kronig-
Penney model ).
2
d 2m
l,ZV +— EW =0 Ve
dx h
~ Surface potential
Region (I1)
d’ 2m
oy (E=Vy)y =0
d 2
X _‘ nuclei =

Figure 4.10. One-dimensional periodic potential distribution for a crystal (muffin tin
potential ).
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4., 4 Electron in a Periodic Field of Crystal (the

(Continued) For abbreviation

azzz—mE 7/222—m(V E)

The solution of this type equation (not simple but complicate)

p(x) =u(x) e

, 4. Solution of Schrodinger Equation

NN N R YR
Solid State)

(Bloch function)

Where, u(x) is a periodic function which possesses the periodicity of the lattice
In the x-direction

The final solution of the Schrodinger equations;

P

SIN aa

aa

+ COSaa = COS ka

where P =

maV,b
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4.4 Electron in a Periodic Field of Crystal (the Solid State)

=8

LA

Mathematical treatment for the solution : Bloch function
ikx
w(x)=u(x)-e

Differentiating the Bloch function twice with respect to x

2 2
ay = (d 4. Z’u 2ik — k*u)e™
X

dx’ dx’
Then the Schrddinger equations in two regions become equations of damped vibrations
d’u . du d’u . du
= 2ik ——(k*—a®)u=0 () —+2ik——(k*+y*)u=0 ()
dx dx dx dx

The solutions of (1) and (11)

u=e™ (Ae'™ + Be™™) (1) u= e - (Ce™™ + De™) (1)
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4, 4 Electron in a Periodic Field of Crystal (the Solid State)
(Continued) From continuity of the function  and CZ_W
X

A+B=C+D

du/dx values for equations (1) & (1) are identical at x =0
A(ia —ik)+ B(—ia —ik) = C(y —ik) + D(y —ik)

Further, ¥ and u is continuous at x = a + » — EQq. (I) at x = 0 must be equal to
Eq. (Il) at x = a + b, more simply, Eq. (1) atx =a isequal to Eq. (I) atx=- b

Ae(ia—ik)a _I_Be(—ia—ik)a _ Ce(ik+7/)b _l_De(ik—j/)b
Finally, du/dx is periodicina + b

Ai(a—k)e™ "™ - Bi(a + k)e ™™ =-C(y +ik)e™"" + D(y —ik)e™ "

limiting conditions : using 4.57- 4.60 in text and eliminating the four constant A-D, and

using some Euler eq.(see Appendix 2)
2

L =% sin(yb)-sin(aa) + cos(b) - cos(aa) = cos k(a + b)
20y
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4.4 Electron in a Periodic Field of Crystal (the Solid State)

If V, is very large, then £ in 4.47 is very small compared to V, so that

CUNIA Vb=\/2:21\/(%b)b

Since Vb has to remain finite, and as » — 0, yb becomes very small.

For a small yb, we obtain (see tables of the hyperbolic function)

cosh(yp) =1 and sinh(y) = b

Finally, neglect o> compared to y2 and, b compared to « so that 4.61 reads as follow

ah

SIN aa
maVyb ~ then P

> + COSaa = COS ka
h oa

Let P =
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4.4 Electron in a Periodic Field of Crystal (the Solid State)

“Electron that moves in a periodically varying potential field can only occupy

certain allowed energy zone” v
. 1V — —
SIN ca e S /) S
P———+CcoSaa =coska
aa
p_ma Vyb 50 : e [ 3
- hz #PSECSU'COSaG :35:,112‘ ;z&ci;I'lc_dimmmmml periodic potential distribution (simplified) (Kronig-
6_ *
| ), 2m
" a"=—5L
g“ h
4ﬁ
- 1
3 - 3 - el . .
-z,}ﬂ z /] s el & o - as Withincreasing aa, the
1 disallowed (or forbidden) bands
27 become narrower.

Figure 4.11. Function P(sinoa/0a) + cosaa versus aa. P was arbitrarily set to be

(3/2)x.



4. Solution of Schrodinger Equation
’ NN NN NN

4.4 Electron in a Periodic Field of Crystal (the Solid State)

|
p 1&g Slﬂa'.G

The size of the allowed and forbidden " oS
energy bands varies with P. r
For special cases, since P = mc;llz/ob T}—\—-—-—————— ———

(a) If the potential barrier strength, Vb 0 . —
Is large, P is also large and the curve ¢ \U/ \
on Fig 4.11 steeper. The allowed s B B e
band are narrow.

Figure 4.12. Function P(sinoa/aa) + cosaa with P = /10.

(b) If V,b and P are small, the allowed

band becomes wider. (see Fig. 4.12) ‘
. A
(c) If Vb goes O, thus, P — 0 ‘
From 4.67, COSata = COS ka | ppe——
B2 k2 P
E —_ (a) (b) (c)
2m Figure 4.13. Allowed energy levels for (a) bound electrons, (b) free electrons, and

(c) electrons in a solid.
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4.4 Electron in a Periodic Field of Crystal (the Solid State)

(d) If the Vb is very large, P — ©©

SN aa
— >0
aa
Sinaa — 0 Aa =nJl ] o
n27z_2 A
a’=—— for n=123,.. °
a
Combining 4.46 and 4.69
222
Th
E = n’ et —

Figure 4.14. Widening of the sharp energy levels into bands and finally into a quasi-
continuous energy region with decreasing interatomic distance, a, for a metal (after
calculations of Slater). The quantum numbers are explained in Appendix 3.
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