Chapter 11. Properties and Processing of Metal Powders, Ceramics, Glasses, Composites, and Superconductors

Sung-Hoon Ahn

School of Mechanical and Aerospace Engineering Seoul National University

Introduction

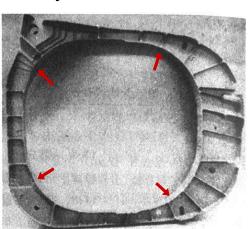
■ Powder Metallurgy (P/M, 분말야금)

Compacting metal powders in dies and sintering them

Typical products

Gears, cams, bushings, cutting tools, automotive components, etc.

Advantages


- Material density in P/M is a controllable variable.
 - Low density : porous filters
 - Full density: structural parts
- Competitive with processes such as casting, forging, and machining for relatively complex parts made of high-strength and hard alloys

(b)

(a) Examples of typical parts made by powder-metallurgy processes. (b) Upper trip lever for a commercial irrigation sprnkler, made by P/M. This part is made of unleaded brass alloy; it replaces a die-cast part, with a 60% cost savings. Source: Reproduced with permission from Success Stories on P/M Parts, Princeton, NJ: Metal Powder Industries Federation, 1998.

Prot. Ann, Sung-Hoon

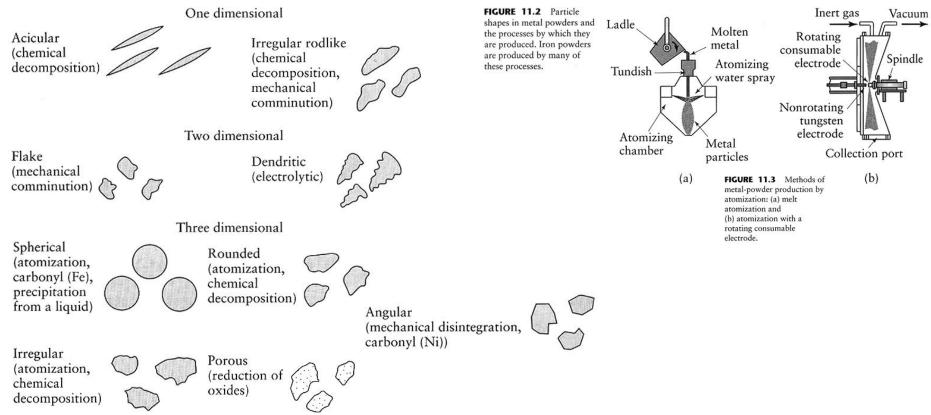
Metal powders

■ Powder production \rightarrow Blending \rightarrow Compaction \rightarrow Sintering \rightarrow Finishing operations

TABLE 11.2

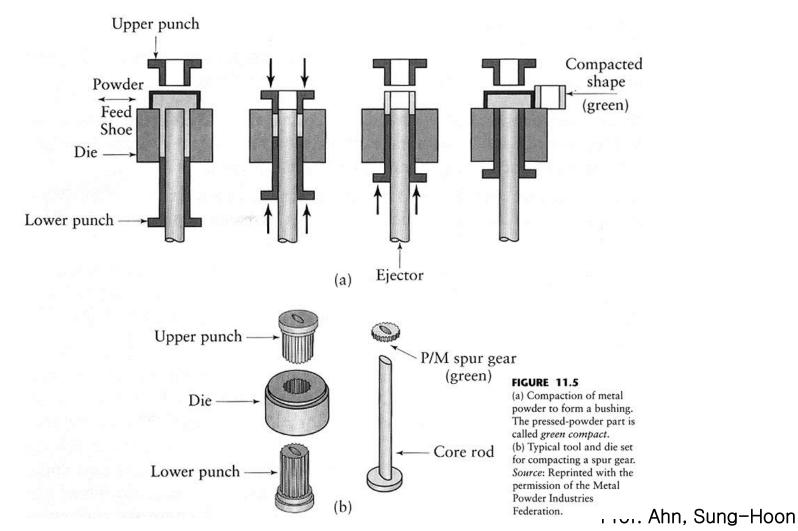
CHARACTERISTICS OF POWDER-METALLURGY PROCESSING

ADVANTAGES


- Availability of a wide range of compositions to obtain special mechanical and physical properties, such
 as stiffness, damping characteristics, hardness, density, toughness, and electrical and magnetic properties. Some of the high alloyed new superalloys can be manufactured into parts only by P/M processing.
- A net- or near-net-shape technique for making parts from high-melting-point refractory metals, which
 would be difficult or uneconomical to make by other methods.
- · High production rates on relatively complex parts, with automated equipment requiring little labor.
- Good dimensional control and, in many instances, elimination of machining and finishing operations, thus eliminating scrap and waste and saving energy.
- Capability for impregnation and infiltration for special applications.

LIMITATIONS

- · Size of parts, complexity of part shapes, and press capacity.
- High cost of powder metals compared to other raw materials.
- · High cost of tooling and equipment for small production runs.
- Mechanical properties, such as strength and ductility, that are generally lower than those obtained by forging. However, the properties of full-density P/M parts made by HIP or additional forging can be better than those made by other processes.


Powder fabrication

- Atomization (입자화)
- Reduction (환원): reduction of metal oxides using gases such as hydrogen and carbon monoxide

Compaction (압축) (1)

 The step in which the blended powders are pressed into shapes in dies, using presses that are either hydraulically or mechanically actuated

Compaction (압축) (2)

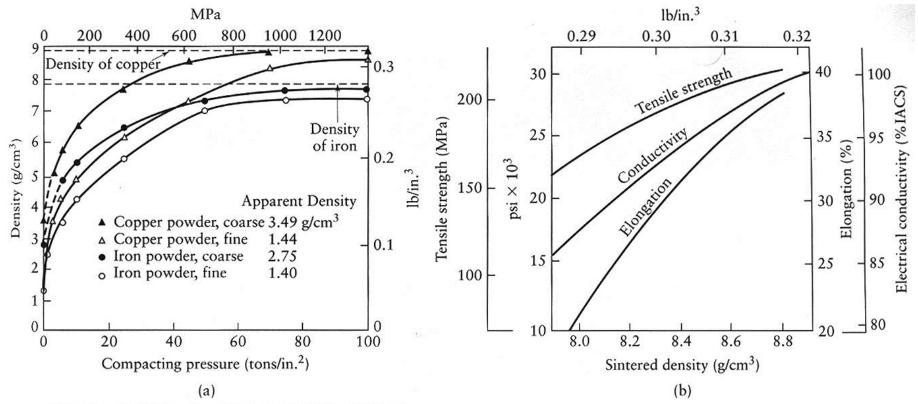
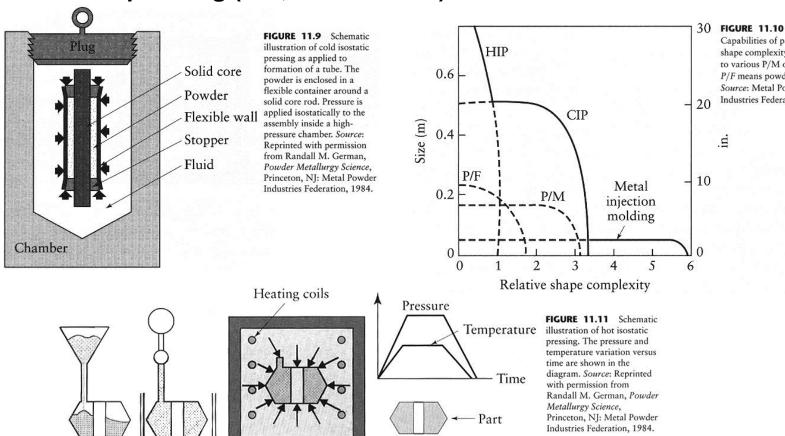


FIGURE 11.6 (a) Density of copper- and iron-powder compacts as a function of compacting pressure. Density greatly influences the mechanical and physical properties of P/M parts. Source: F. V. Lenel, Powder Metallurgy: Principles and Applications, Princeton, NJ: Metal Powder Industries Federation, 1980. Reprinted by permission of Metal Powder Industries Federation, Princeton, NJ. (b) Effect of density on tensile strength, elongation, and electrical conductivity of copper powder. IACS means International Annealed Copper Standard for electrical conductivity.

Isostatic pressing (균형가압)

- Cold isostatic pressing (CIP, 냉간균형가압)
- Hot isostatic pressing (HIP, 열간균형가압)

Fill


can

(a)

Vacuum

bake-out

(b)

Remove

can

(d)

Hot isostatic

press

(c)

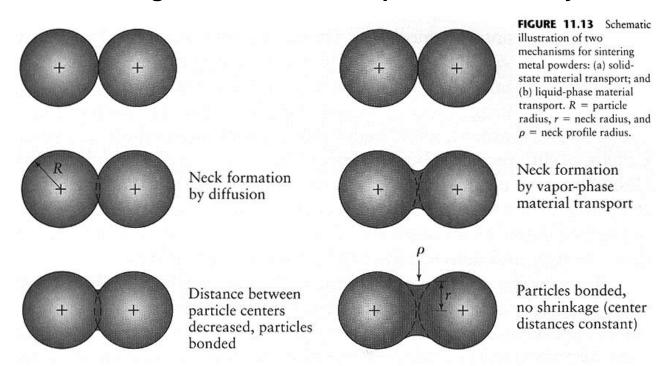
Prof. Ahn. Sung-Hoon

Capabilities of part size and

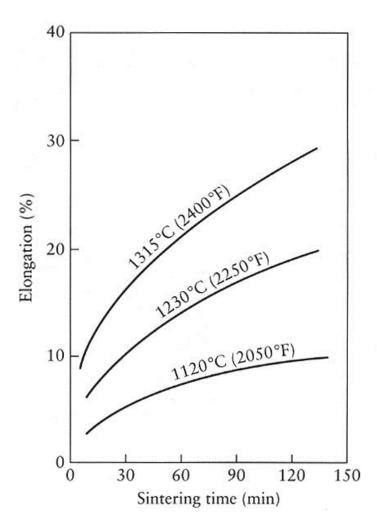
shape complexity according

to various P/M operations.

P/F means powder forging.


Source: Metal Powder

Industries Federation.


ij.

Sintering (소결) (1)

- The process whereby compressed metal powder is heated in a controlledatmosphere (hydrogen, ammonia, nitrogen) furnace to a temperature below its melting point, but sufficiently high to allow bonding of the individual particles
- Sintering temp.: 70% ~ 90% of the melting point of the metal or alloy
- Continuous-sintering furnace : for most production today

Sintering (소결) (2)

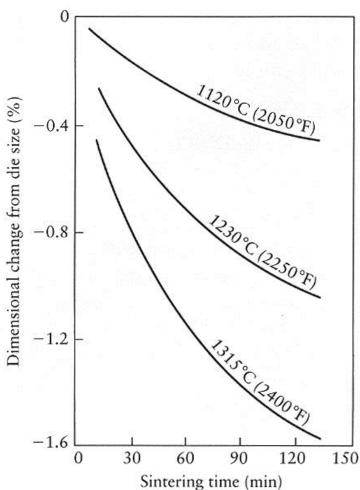


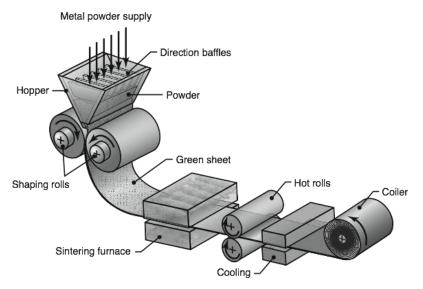
FIGURE 11.14 Effect of sintering temperature and time on elongation and dimensional change during sintering of type 316L stainless steel. Source: ASM International.

Prof. Ahn, Sung-Hoon

Sintering (소결) (3)

TABLE 11.3

Typical Mechanical Properties of Selected P/M Materials							
Designation	MPIF type	Condition	Ultimate Tensile Strength (MPa)	Yield Stress (MPa)	Hardness	Elongation in 25 mm (%)	Elastic Modulus (GPa)
FERROUS							
FC-0208	N	AS	225	205	45 HRB	< 0.5	70
		HT	295	-	95 HRB	< 0.5	70
	R	AS	415	330	70 HRB	1	110
		HT	550	-	35 HRC	< 0.5	110
	S	AS	550	395	80 HRB	1.5	130
		HT	690	655	40 HRC	< 0.5	130
FN-0405	S	AS	425	240	72 HRB	4.5	145
		HT	1060	880	39 HRC	1	145
	T	AS	510	295	80 HRB	6	160
		HT	1240	1060	44 HRC	1.5	160
ALUMINUM							
601 AB,		AS	110	48	60 HRH	6	-
pressed bar		HT	252	241	75 HRH	2	5.
BRASS							
CZP-0220	Т		165	76	55 HRH	13	
	U		193	89	68 HRH	19	-
	W		221	103	75 HRH	23	
TITANIUM							
Ti-6AI-4V		HIP	917	827	-	13	
SUPERALLOYS					40 JJD C		
Stellite 19		11 <u> </u>	1035	- 1 ():	49 HRC	<1	

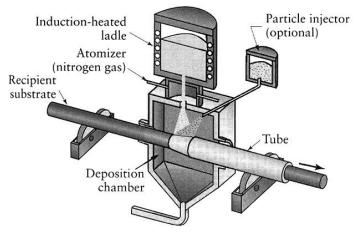

Note: MPIF = Metal Powder Industries Federation; AS = as sintered; HT = heat treated; HIP = hot isostatically pressed.

Sintering (소결) (4)

TABLE 11.4

Mechanical Property Comparisons for Ti-6Al-4V Titanium Alloy						
Process	Density (%)	Yield Stress (MPa)	Ultimate Tensile Strength (MPa)	Elongation (%)	Reduction of Area (%)	
Cast	100	840	930	7	15	
Cast and forged	100	875	965	14	40	
Powder metallurgy						
Blended elemental (P + S)*	98	786	875	8	14	
Blended elemental (HIP)*	>99	805	875	9	17	
Realloyed (HIP)*	100	880	975	14	26	

(*) P + S = pressed and sintered; HIP = hot isostatically pressed. *Source*: R. M. German.



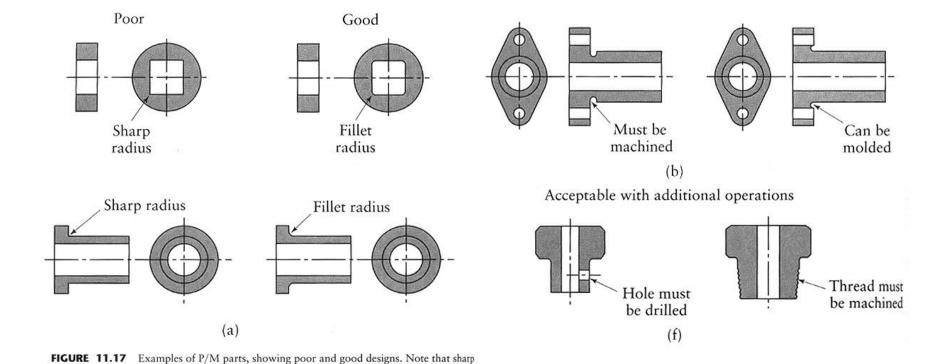

FIGURE 11.12 Spray casting (Osprey process) in which molten metal is sprayed over a rotating mandrel to produce seamless tubing and pipe. Source:
After J. Szekeley, "Can Advanced Technology Save the U.S. Steel Industry," Scientific American, July 1987, © George V. Kelvin/Scientific American.

FIGURE 11.12 An example of powder rolling. The purpose of direction baffles in the hopper is to ensure uniform distribution of powder across the width of the strip.

Design considerations

radii and reentry corners should be avoided, and that threads and transverse holes have to be produced separately by additional machining operations. *Source*: Metal Powder

Industries Federation.

Prof. Ahn, Sung-Hoon

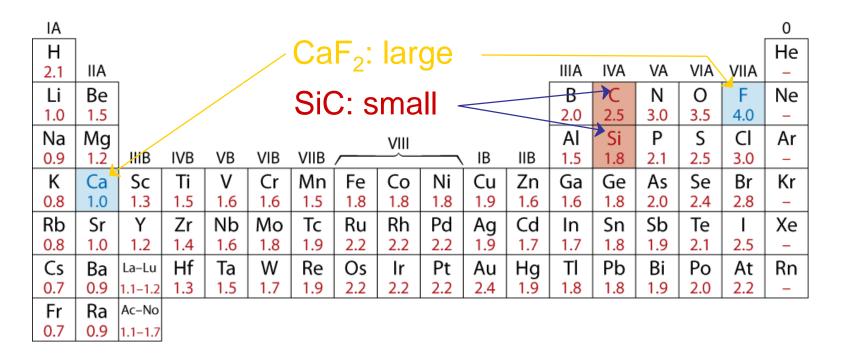
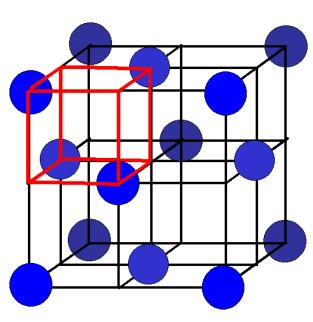
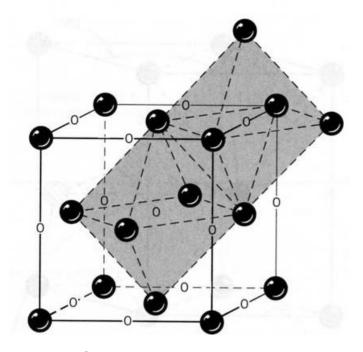

Ceramics

TABLE 11.6

Types and General	Characteristics of Ceramics and Glasses
Туре	General Characteristics
Oxide Ceramics	
Alumina	High hot hardness and abrasion resistance, moderate strength and toughness; most widely used ceramic; used for cutting tools, abrasives, and electrical and thermal insulation.
Zirconia	High strength and toughness; resistance to thermal shock, wear, and corrosion; partially-stabilized zirconia and transformation-toughened zirconia have better properties; suitable for heat-engine components.
Carbides	
Tungsten carbide	High hardness, strength, toughness, and wear resistance, depending on cobalt binder content; commonly used for dies and cutting tools.
Titanium carbide	Not as tough as tungsten carbide, but has a higher wear resistance; has nickel and molybdenum as the binder; used as cutting tools.
Silicon carbide	High-temperature strength and wear resistance, used for heat engines and as abrasives.
Nitrides	
Cubic boron nitride	Second hardest substance known, after diamond; high resistance to oxidation; used as abrasives and cutting tools.
Titanium nitride	Used as coatings on tools, because of its low frictional characteristics.
Silicon nitride	High resistance to creep and thermal shock; high toughness and hot hardness; used in heat engines.
Sialon	Consists of silicon nitrides and other oxides and carbides; used as cutting tools.
Cermets	Consist of oxides, carbides, and nitrides; high chemical resistance but is somewhat brittle and costly; used in high-temperature applications.
Nanophase ceramics	Stronger and easier to fabricate and machine than conventional ceramics; used in automotive and jet-engine applications.
Silica	High temperature resistance; quartz exhibits piezoelectric effects; silicates containing various oxides are used in high-temperature, nonstructural applications.
Glasses	Contain at least 50% silica; amorphous structure; several types available, with a wide range of mechanical, physical, and optical properties.
Glass ceramics	High crystalline component to their structure; stronger than glass; good thermal-shock resistance; used for cookware, heat exchangers, and electronics.
Graphite	Crystalline form of carbon; high electrical and thermal conductivity; good thermal-shock resistance; also available as fibers, foam, and buckyballs for solid lubrication; used for molds and high-temperature components.
Diamond	Hardest substance known; available as single-crystal or polycrystalline form; used as cutting tools and abrasives and as die insert for fine wire drawing; also used as coatings.

Ceramic Bonding

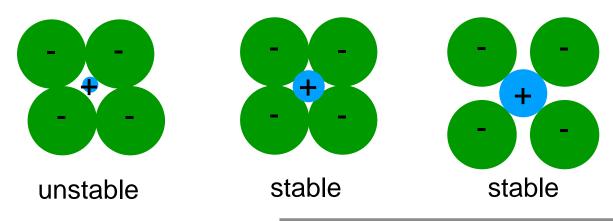

- Bonding:
 - Mostly ionic, some covalent
 - % ionic character increases with difference in electronegativity.
- Large vs. small ionic bond character :


Ceramic Crystal Structures

Oxide structures

- Oxygen anions are much larger than metal cations.
- Close packed oxygen in a lattice (usually FCC)
- Cations in the holes of the oxygen lattice

Tetrahedral site


Octahedral site

What determines crystal structure?

- 1. Magnitude of electrical charge on each of component ions
 - Crystals must be electrically neutral.
- 2. Relative sizes of cations and anions
 - Does the cation fit in the site.

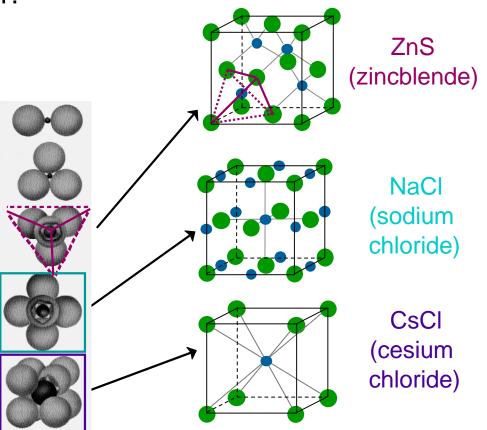
Ionic Bonding & Structure

- Size stable structures :
 - Maximize the number of nearest oppositely charged neighbors.

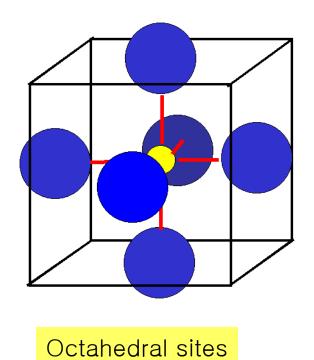
- Charge neutrality :
 - Net charge in the structure should be zero.

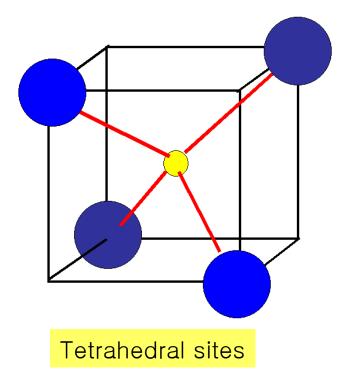
$$CaF_2$$
: Ca^{2+} + Ca^{2+} anions F^-

- General form : A m Xp


m, p determined by charge neutrality

Coordination number and Ionic Radii


• Coordination number increases with $\frac{r_{\text{cation}}}{r_{\text{anion}}}$


Issue: How many anions can you arrange around a cation?

rcation ranion	Coord. #	
< 0.155	2	linear
0.155 - 0.225	3	triangular
0.225 - 0.414	4	T_D
0.414 - 0.732	6	O _H
0.732 - 1.0	8	cubic

Interstitial Sites

Rock Salt Structure

Same concepts can be applied to ionic solids in general.

Example: NaCl (rock salt) structure

$$o$$
 Na⁺ $r_{Na} = 0.102 \text{ nm}$

$$r_{CI} = 0.181 \text{ nm}$$

$$r_{\rm Na}/r_{\rm Cl} = 0.564$$

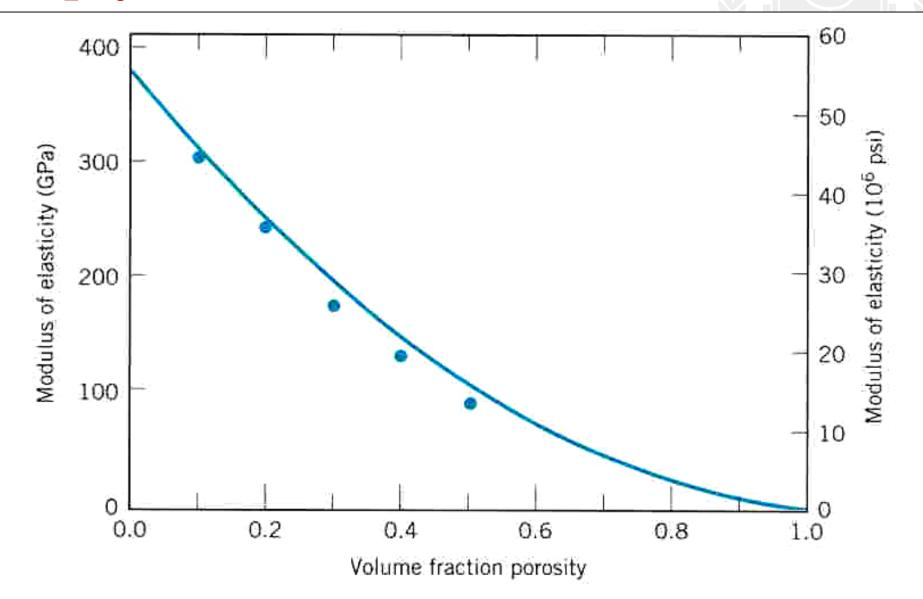
 \therefore cations prefer O_H sites

Effect of Porosity

Residual Porosity :

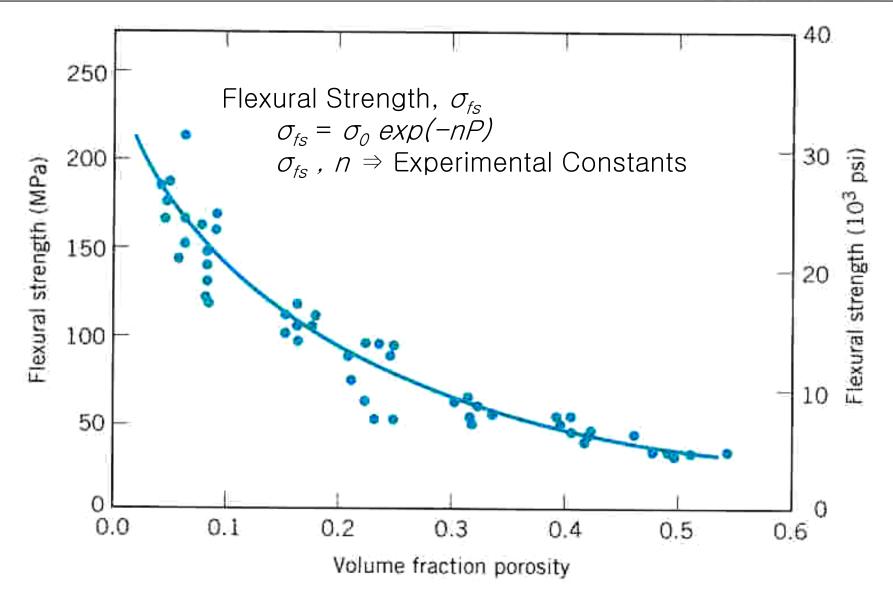
Elastic Modulus and Strength ⇒ Lower Elastic Modulus, *E*

$$E = E_0 (1 - 1.9P + 0.9P^2)$$

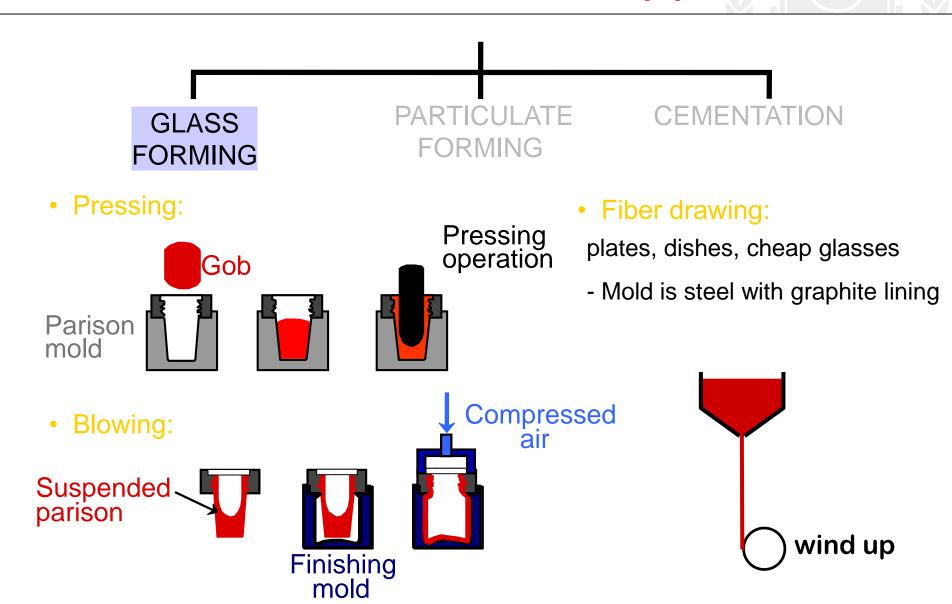

P: Volume Fraction of Porosity

 E_0 : Elastic Modulus of Material

Reasons: strength lowered by porosity


- (1) Cross-Sectional Area ⇒ Reduce
- (2) Stress Concentrators

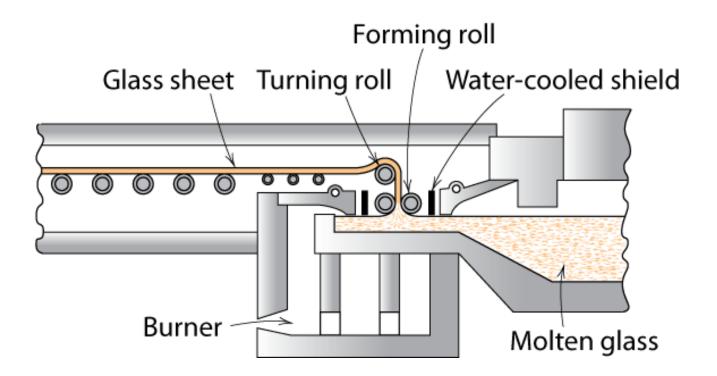
Al₂O₃ Elastic Modulus vs. Porosity


Prof. Ahn, Sung-Hoon

Al₂O₃ Flexural Strength vs. Porosity

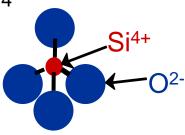
Prof. Ahn, Sung-Hoon

Ceramic Fabrication Methods (1)

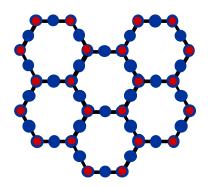


Prof. Ahn, Sung-Hoon

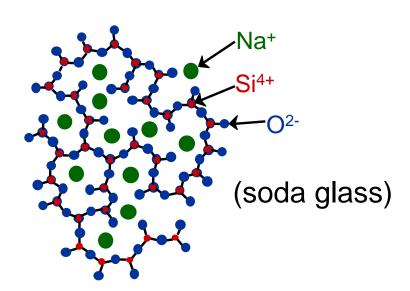
Sheet Glass Forming


Sheet forming – continuous draw

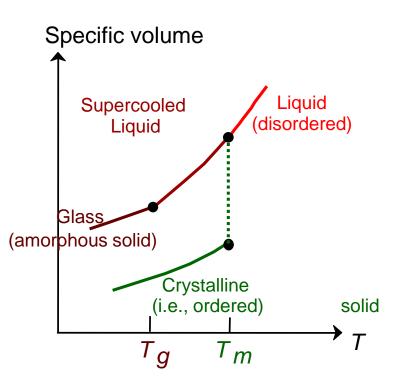
Originally sheet glass was made by "floating" glass on a pool of tin.



Glass Structure


Basic Unit:
 Si0₄⁴⁻ tetrahedron

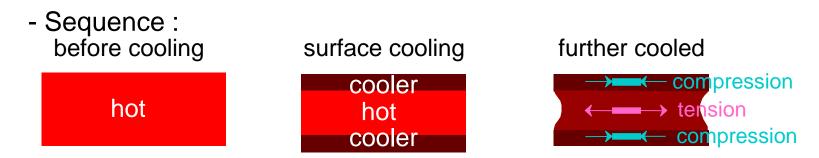
Quartz is crystalline.
 SiO₂:



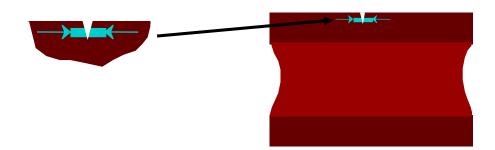
- Glass is amorphous.
- Amorphous structure occurs by adding impurities. (Na+, Mg²⁺, Ca²⁺, Al³⁺)
- Impurities: interfere with formation of crystalline structure

Glass Properties

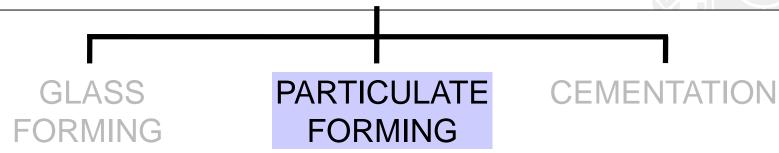
Specific volume (1/r) vs. Temperature (T):


- Crystalline materials:
 - crystallize at melting temp, $T_{m.}$
 - have abrupt change in spec. vol. at $T_{m.}$

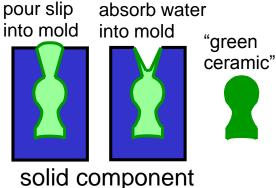
Glasses:

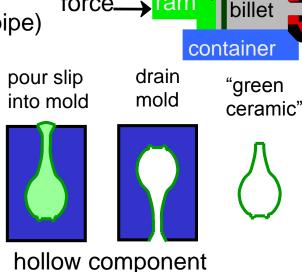

- do not crystallize.
- change in slope in spec. vol. curve at glass transition temperature, T_g .
- transparent no crystals to scatter light.

Heat Treating Glass


- Annealing:
 - removes internal stress caused by uneven cooling.
- Tempering:
 - puts surface of glass part into compression.
 - suppresses growth of cracks from surface scratches.

- Result: surface crack growth is suppressed.




Ceramic Fabrication Methods (2)

- Milling and screening: desired particle size
- Mixing particles & water: produces a "slip"
- Form a "green" component
 - Hydroplastic forming: extrude the slip (e.g., into a pipe)

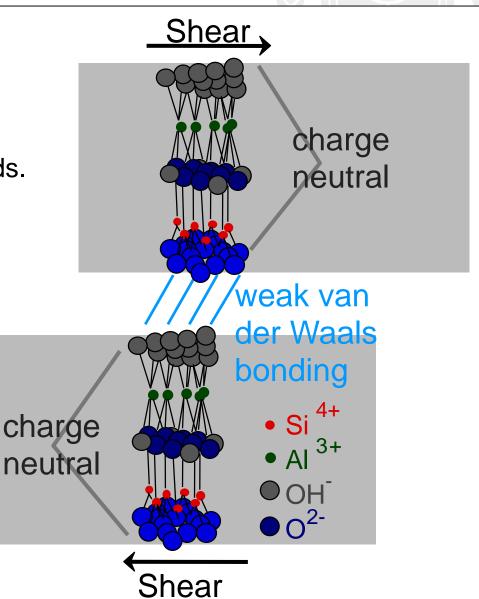
- Slip casting: pour slip

force____ram

container

Dry and fire the component.

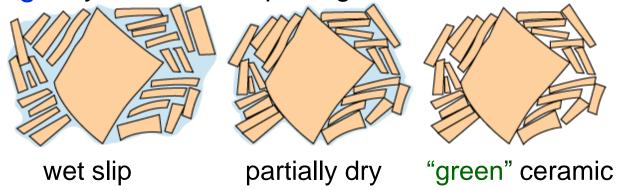
die holder


extrusion

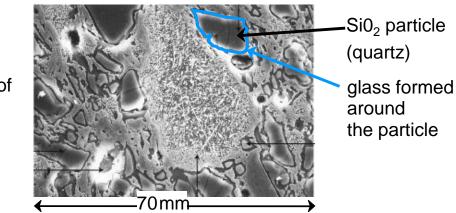
die

Features of a Slip

- Clay is inexpensive.
- Adding water to clay
 - allows material to shear easily along weak van der Waals bonds.
 - enables extrusion.
 - enables slip casting.


 Structure of Kaolinite Clay : (고령토)

Prof. Ahn, Sung-Hoon

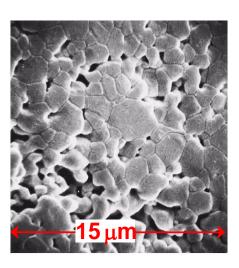

Drying and Firing

Drying: layer size and spacing decrease.

Drying too fast causes sample to warp or crack due to non-uniform shrinkage.

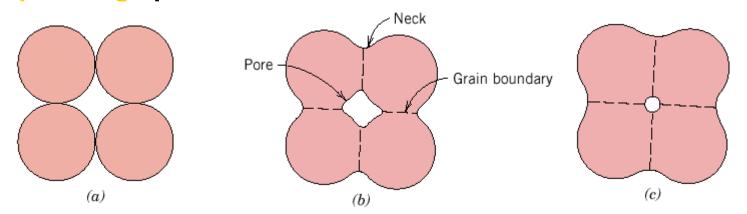
- Firing:
 - -*T* raised to 900~1400°C
 - -vitrification: liquid glass forms from clay and flows between SiO₂ particles. Flux melts at lower *T*.

micrograph of porcelain

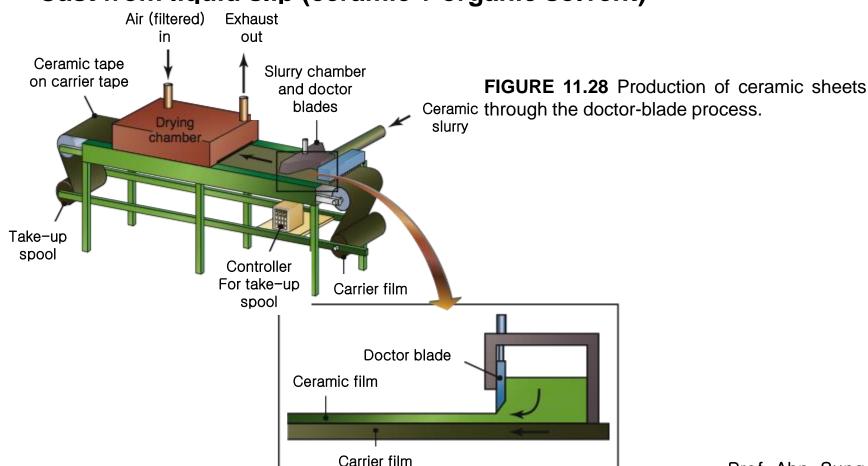

Ceramic Fabrication Methods (3)

GLASS FORMING

PARTICULATE CEMENTATION **FORMING**


Sintering: useful for both clay and non-clay compositions

- Procedure:
 - produce ceramic and/or glass particles by grinding.
 - place particles in mold.
 - press at elevated *T* to reduce pore size.
- Aluminum oxide powder:
 - sintered at 1700°C for 6 minutes


Powder Pressing

- Sintering powder touches forms neck & gradually neck thickens
 - add processing aids to help form neck
 - little or no plastic deformation
- Uniaxial compression compacted in single direction
- Isostatic (hydrostatic) compression pressure applied by fluid, powder in rubber envelope
- Hot pressing pressure + heat

Tape Casting

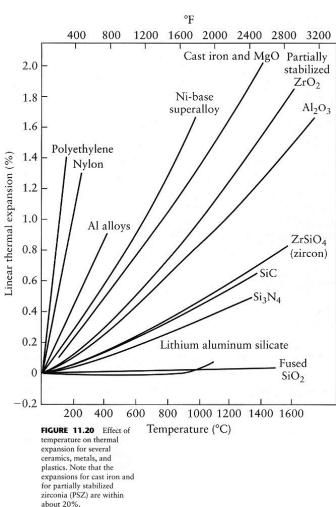
- Thin sheets of green ceramic cast as flexible tape
- Used for integrated circuits and capacitors
- Cast from liquid slip (ceramic + organic solvent)

Ceramic Fabrication Methods (4)

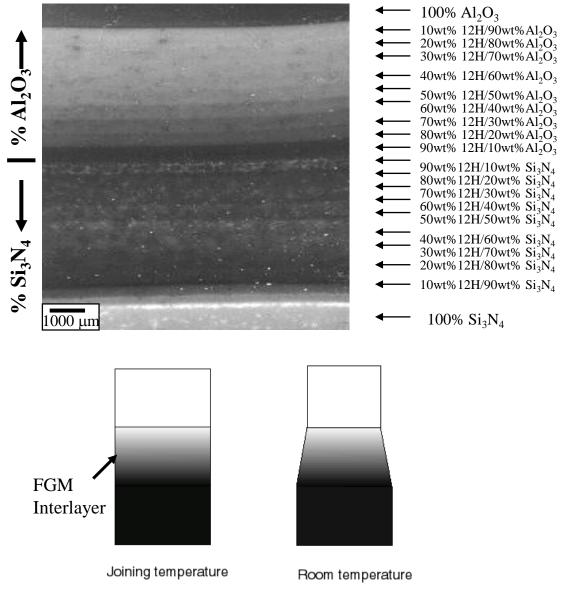
GLASS FORMING

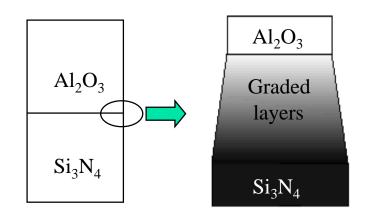
PARTICULATE FORMING

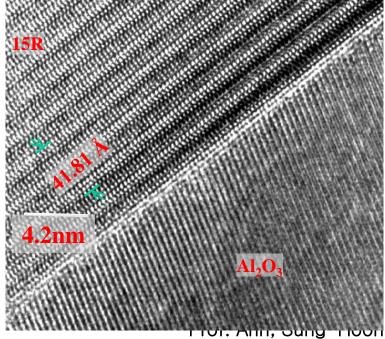
CEMENTATION

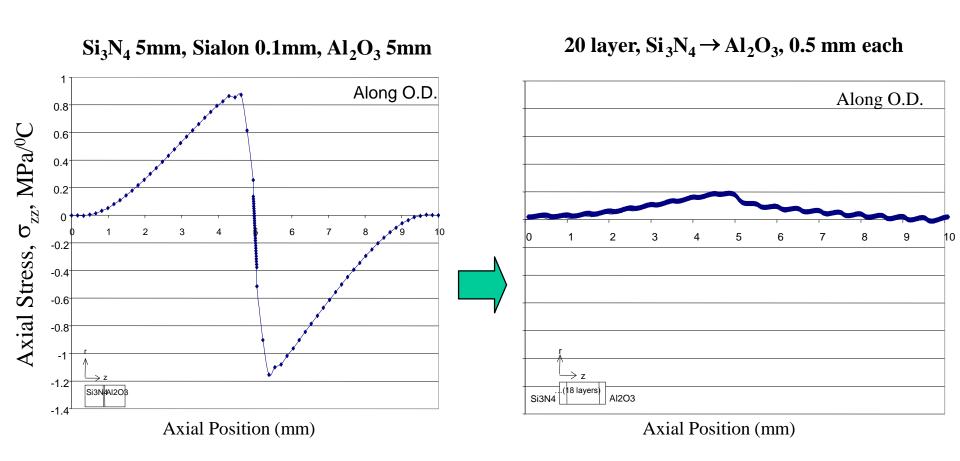

- Produced in extremely large quantities.
- Portland cement:
 - mix clay and lime bearing materials
 - calcination (heat to 1400°C)
 - primary constituents:
 tri-calcium silicate
 di-calcium silicate
- Adding water
 - produces a paste which hardens
 - hardening occurs due to hydration (chemical reactions with the water).
- Forming: done usually minutes after hydration begins.

Properties of ceramics


TABLE 11.7


	Bee Tex 1 co	Transverse		2 8 s			1
Material	Symbol	Rupture Strength (MPa)	Compressive Strength (MPa)	Elastic Modulus (GPa)	Hardness (HK)	Poisson's Ratio (ν)	Density (kg/m³)
Aluminum oxide	Al_2O_3	140-240	1000-2900	310–410	2000-3000	0.26	4000–4500
Cubic boron nitride	cBN	725	7000	850	4000–5000	-	3480
Diamond	. B	1400	7000	830-1000	7000-8000		3500
Silica, fused	SiO ₂	-	1300	70	550	0.25	-
Silicon carbide	SiC	100–750	700–3500	240–480	2100–3000	0.14	3100
Silicon nitride	Si_3N_4	480–600	-	300–310	2000–2500	0.24	3300
Titanium carbide	TiC	1400–1900	3100-3850	310–410	1800-3200	-	5500-5800
Tungsten carbide	WC	1030–2600	4100–5900	520-700	1800-2400	-	10,000-15,000
Partially stabilized zirconia	PSZ	620	# - 45	200	1100	0.3	5800


Note: These properties vary widely, depending on the condition of the material.


FGM (Functionally Graded Material)

Residual stresses calculation of FGM joint

• Significant reduction in residual stresses confirms experiment (Lee et al., Acta Mat. (2001))