Controlled-current techniques (Ch. 8)

General theory of controlled-current methods E-t curves in constant current electrolysis

Introduction

Chronopotentiometric (E vs. t) technique or *galvanostatic* technique: controlled current between WE and auxiliary electrode with a current source (called Galvanostat) \rightarrow E between WE and RE

Controlled-i vs. controlled-E

(+)Controlled-i is simplerMathematics solving diffusion equations are much simpler

(-)

Double-layer charging effect is larger & is not easy to be corrected Multicomponent systems & multistep rxns are more complicated

Classification

Constant-current chronopotentiometry Programmed current chronopotentiometry Current reversal chronopotentiometry Cyclic chronopotentiometry

General theory of controlled-current methods Mathematics of semi-infinite linear diffusion

O + ne = R (planar electrode, unstirred, only O initially present (C_O^*))

 $\frac{\partial C_{O}(x, t)}{\partial t} = D_{O}[\frac{\partial^{2}C_{O}(x, t)}{\partial x^{2}}]$ $\frac{\partial C_{R}(x, t)}{\partial t} = D_{R}[\frac{\partial^{2}C_{R}(x, t)}{\partial x^{2}}]$

At t = 0 (for all x) & as $x \to \infty$ (for all t): $C_0(x, t) = C_0^* C_R(x, t) = 0$

 $D_0[\partial C_0(x, t)/\partial x]_{x=0} = i(t)/nFA$

Constant-current electrolysis-the Sand equation

At the transition time, τ , $C_0(0, t)$ drops to zero

Sand equation $i\tau^{1/2}/C_{O}^{*} = (nFAD_{O}^{1/2}\pi^{1/2})/2 = 85.5nD_{O}^{1/2}A \text{ (mA-s^{1/2}/mM) (with A in cm^{2})}$ \uparrow Transition time constant For $0 \le t \le \tau$

$C_0(0, t)/C_0^* = 1 - (t/\tau)^{1/2}$

 $C_{R}(0, t) = (2it^{1/2})/(nFAD_{R}^{1/2}\pi^{1/2}) = \xi(t/\tau)^{1/2}C_{O}^{*}$

where $\xi = (D_0/D_R)^{1/2}$

For various t/τ

Potential-time curves in constant-current electrolysis

Reversible (Nernstian) waves Put $C_0(0, t) \& C_R(0, t)$ to $E = E^{0'} + (RT/F)ln[C_0(0,t)/C_R(0,t)]$

 $E = E_{\tau/4} + (RT/nF)\ln[(\tau^{1/2} - t^{1/2})/t^{1/2}]$

Where $E_{\tau/4}$ (quarter-wave potential), $E_{\tau/4} = E^{0'} - (RT/2nF)ln(D_0/D_R)$

Reversibility: E-t curve E vs. $\log[(\tau^{1/2} - t^{1/2})/t^{1/2}]$ \rightarrow slope 59/n mV

Totally irreversible waves

For a totally irreversible one-step, one electron reaction

 $O + e \xrightarrow{k_f} R$

 $E = E^{0'} + (RT/\alpha F)ln[FAC_0^*k^0/i] + (RT/\alpha F)ln[1 - (t/\tau)^{1/2}]$ Using Sand equation $E = E^{0'} + (RT/\alpha F)ln[2k^0/(\pi D_0)^{1/2}] + (RT/\alpha F)ln[\tau^{1/2} - t^{1/2}]$

Totally irreversible reduction wave: E-t wave \rightarrow shift toward more negative potentials with i \uparrow , with x10 \uparrow in i causing 2.3RT/ α F shift (or 59/ α mV at 25°C)

Quasireversible waves