3. Linear Spaces and Linear Operators

\checkmark Linear Spaces
\checkmark Basis and Representation
\checkmark Linear Operators
\checkmark Similarity Transform
\checkmark Functions of Square Matrix
\checkmark Lyapunov Equation
\checkmark Useful Formulas
\checkmark Matrix Properties

Linear Spaces

Definition: Field F is a set of scalars and over F, addition, multiplication are defined such that they satisfy

1) $\alpha+\beta \in F, \alpha \beta \in F, \quad \forall \alpha, \beta \in F$
2) Commutative:

$$
\alpha+\beta=\beta+\alpha, \alpha \beta=\beta \alpha, \quad \forall \alpha, \beta \in F
$$

3) Associative:

$$
(\alpha+\beta)+\gamma=\alpha+(\beta+\gamma),(\alpha \beta) \gamma=\alpha(\beta \gamma), \quad \forall \alpha, \beta, \gamma \in F
$$

4) Distributive: $\alpha(\beta+\gamma)=\alpha \beta+\alpha \gamma), \quad \forall \alpha, \beta, \gamma \in F$
5) \exists Identity i.e., $0 \in F \quad 1 \in F$ such that

$$
\alpha+0=\alpha, 1 \cdot \alpha=\alpha, \quad \forall \alpha \in F
$$

6) \exists Additive Inverse $\beta \in F$ such that $\alpha+\beta=0, \quad \forall \alpha \in F$
7) \exists Multiplicative Inverse $\gamma \in F$ such that $\alpha \gamma=1, \forall \alpha \in F$

Linear Spaces

Example

- Binary Field $\{0,1\}$ with operations of addition: $0+0=1+1=0,1+0=1$;
multiplication: $0 * 1=0 * 0=0,1 * 1=1$.
- Positive Real is not Field because of no additive inverse

Linear Spaces

Definition: Linear Space over a Field $F:(X, F)$
(X, F) consists of a set X of vectors, a Field F, two operations of vector addition and scalar multiplication satisfying

1) Vector addition: $\mathbf{x}_{1}+\mathbf{x}_{2} \in X, \forall \mathbf{x}_{1}, \mathbf{x}_{2} \in X$
2) Commutative: $\mathbf{x}_{1}+\mathbf{x}_{2}=\mathbf{x}_{2}+\mathbf{x}_{1}, \forall \mathbf{x}_{1}, \mathbf{x}_{2} \in X$
3) Associative: $\left(x_{1}+x_{2}\right)+x_{3}=x_{1}+\left(x_{2}+x_{3}\right), \forall x_{1}, x_{2}, x_{3} \in X$
4) $\exists \mathbf{0} \in X$ such that $\mathbf{x}+\mathbf{0}=\mathbf{x}, \quad \forall \mathbf{x} \in X$
5) $\exists \overline{\mathbf{x}} \in X$ such that $\mathbf{x}+\overline{\mathbf{x}}=\mathbf{0}, \quad \forall \mathbf{x} \in X$
6) Scalar multiplication: $\alpha \mathbf{x} \in X, \forall \mathbf{x} \in X, \forall \alpha \in F$
7) $\alpha(\beta \mathbf{x})=\alpha \beta \mathbf{x}, \forall \mathbf{x} \in X, \forall \alpha, \beta \in F$
8) $\alpha\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)=\alpha \mathbf{x}_{1}+\alpha \mathbf{x}_{2}, \forall \mathbf{x}_{1}, \mathbf{x}_{2} \in X, \forall \alpha \in F$
9) $(\alpha+\beta) \mathbf{x}=\alpha \mathbf{x}+\beta \mathbf{x}, \forall \mathbf{x} \in X, \forall \alpha, \beta \in F$
10) $\exists 1 \in F$ such that $1 \cdot \mathbf{x}=\mathbf{x}, \quad \forall \mathbf{x} \in X$

Linear Spaces

Example

- (\mathbf{R}, \mathbf{R}), (C, C), (C, R) : Linear Space
- (R, C): Not Linear Space because it does not satisfy (6)
- Define $\mathbf{R}_{\mathbf{n}}[\mathbf{s}]$ be real coefficient polynomial of \mathbf{s} with order less than \mathbf{n},

($\left.\mathbf{R}_{\mathrm{n}}[\mathbf{s}], \mathbf{R}\right), \mathbf{(R [s] , R [s]) : ~ L i n e a r ~ S p a c e ~}$ ($\mathbf{R}_{\mathbf{n}}[\mathbf{s}], \mathbf{R}[\mathbf{s}]$): Not Linear Space
- ($\left.\mathbf{R}^{\mathbf{n}}, \mathbf{R}\right)$: Linear Space, usually we use $\mathbf{R}^{\mathbf{n}}$

Linear Spaces

Example

X : Sol. Set of homogeneous differential eq.

$$
\begin{aligned}
& X=\{x \mid \ddot{x}+2 \dot{x}+3 x=0\} \\
& \Rightarrow x=\alpha e^{-\lambda_{1} t}+\beta e^{-\lambda_{2} t} \in X \\
& \Rightarrow \text { Linear Space }
\end{aligned}
$$

X : Sol. Set of Nonhomogeneous differential eq.

$$
\begin{aligned}
& X=\{x \mid \ddot{x}+2 \dot{x}+3 x=C\} \\
& \Rightarrow x=\alpha e^{-\lambda_{1} t}+\beta e^{-\lambda_{2} t}+v(t) \in X, v(t): \text { equal to all sol.s } \\
& \Rightarrow x_{1}+x_{2} \notin X \\
& \Rightarrow \text { Not Linear Space }
\end{aligned}
$$

Linear Spaces

Definition: Subspace
If (X, F) is Linear Space, (Y, F) is Linear Space, and $\mathrm{Y} \subset \mathrm{X}$ then (Y, F) is Subspace of (X, F).

Example

$\left(R^{n}, R\right)$ is Subspace of $\left(C^{n}, R\right)$
$\left(R^{2}, R\right)$ is Subspace of $\left(R^{3}, R\right)$

Note)

If $Y \subset X, 2$), 3), 7) - 10) are satisfied, then only if for LS Y satisfy 1) \& 4)-6), (Y, F) is Subspace of (X, F).
\Rightarrow Only check !!

$$
\alpha_{1} y_{1}+\alpha_{2} y_{2} \in Y, \quad \forall y_{1}, y_{2} \in Y, \quad \forall \alpha_{1}, \alpha_{2} \in F
$$

Basis and Representation

Linear (Vector) Space

Vector has unique direction and magnitude but many representations

$$
\begin{aligned}
& \bar{x}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
& \hat{x}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
\end{aligned}
$$

Basis: Coordinate system for representation
Basis consists of a set of Linearly Independent Vectors

Basis and Representation

Definition: Linearly Independent
A set of $x_{1}, x_{2}, \ldots, x_{n}$ in (X, F) is linearly independent if and only if $\sum_{i=1}^{n} \alpha_{i} x_{i}=0$ implies $\alpha_{1}=\alpha_{2}=\ldots=\alpha_{n}=0$, otherwise, linearly dependent.

Definition: Dimension of Linear Space
Maximum number of linearly independent vectors in LS (X, F^{F})

Example

- (R^{n}, R): n-dimensional vector space
- Functional linear space: the set of all real valued functions $(f(t), R), \quad f(t)=\sum_{i=0}^{\infty} \alpha_{i} t^{i}$ Basis: $1, t, t^{2}, \ldots$ Dimension: infinite

Basis and Representation

Definition: Basis

A set of linearly independent vectors (LIVs) of LS (X, F) is basis if every vectors in X can be expressed as a unique linear combination of these LIVs.

Theorem

In n-dim. LS, any set of n LIVs can be basis.

Note

Let $e_{1}, e_{2}, \ldots, e_{n} \in X$ be basis,
for $x \in X$,

$$
\begin{aligned}
x & =\sum_{i=1}^{n} e_{i} \beta_{i} \text { (Linear Combination) } \\
& =\left[e_{1}, e_{2}, \ldots, e_{n}\right] \beta=E \beta,
\end{aligned}
$$

where $\beta=\left[\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right]^{T} \in F^{n}, E=\left[e_{1}, e_{2}, \ldots, e_{n}\right]$

Basis and Representation

Definition: Representation

β is called representation of x with respect to the basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$.

Example

In ($\left.R_{4}[s], R\right)$,
for $x=3 s^{3}+2 s^{2}-2 s+10$,
if basis is $\left\{s^{3}, s^{2}, s, 1\right\}$,
if basis is $\left\{s^{3}-s^{2}, s^{2}-s, s-1,1\right\}$,

$$
x=\left[s^{3}, s^{2}, s, 1\right]\left[\begin{array}{c}
3 \\
2 \\
-2 \\
10
\end{array}\right] \quad x=\left[s^{3}-s^{2}, s^{2}-s, s-1,1\right]\left[\begin{array}{c}
3 \\
5 \\
3 \\
13
\end{array}\right]
$$

Basis and Representation

Change of Basis: Various forms of state variable description

$$
\left.\begin{array}{l}
x=\left[e_{1}, e_{2}, \ldots, e_{n}\right] \beta=\left[\begin{array}{c}
p_{1 i} \\
\left.\bar{e}_{1}, \bar{e}_{2}, \ldots, \bar{e}_{n}\right] \bar{\beta} \\
p_{2 i} \\
\ldots \\
e_{i}
\end{array}\right]=\left[\bar{e}_{1}, \bar{e}_{2}, \ldots, \bar{e}_{i}, \mathrm{i}=1,2, \ldots, \mathrm{n}\right. \\
p_{n i}
\end{array}\right] \overline{e_{n}}\left[p_{1} p_{2} \ldots p_{n}\right] .
$$

Basis and Representation

Norms of Vectors

Any real valued function of $x,\|x\|$, is defined as a norm if it has the following properties:

1. $\|x\| \geq 0 \forall x \&\|x\|=0$ iff $x=0$
2. $\|\alpha x\|=|\alpha|\|x\| \forall \alpha \in R$
3. $\left\|x_{1}+x_{2}\right\| \leq\left\|x_{1}\right\|+\left\|x_{2}\right\| \forall x_{1}, x_{2}$
(Trangular inequality)

$$
\begin{aligned}
& \|x\|_{1}:=\sum_{i=1}^{n}\left|x_{i}\right| \\
& \|x\|_{2}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{1 / 2}=\sqrt{x^{T}} x \\
& \|x\|_{\infty}:=\max _{i}\left|x_{i}\right|
\end{aligned}
$$

Basis and Representation

Orthonormalization

Othorgonal : $\quad x_{i}^{T} x_{j} \begin{cases}=0 & \text { if } i \neq j \\ \neq 0 & \text { if } i=j\end{cases}$
Othonormal : $\quad x_{i}^{T} x_{j} \begin{cases}=0 & \text { if } i \neq j \\ =1 & \text { if } i=j\end{cases}$
Schmidt Orthonormalization procedure
LI vectors $e_{1}, e_{2}, \ldots, e_{m}$,
$u_{1}=e_{1}$
$u_{2}=e_{2}-\left(q_{1}^{T} e_{2}\right) q_{1}$
$q_{1}=u_{1} /\left\|u_{1}\right\|$
$q_{2}:=u_{2} /\left\|u_{2}\right\|$
$u_{m}=e_{m}-\sum_{k=1}^{m-1}\left(q_{k}{ }^{T} e_{m}\right) q_{k} \quad q_{m}:=u_{m} /\left\|u_{m}\right\|$

Linear Operators

Linear Operators, Linear Mappings, Linear Transformations

$$
L:(X, F) \rightarrow(Y, F)
$$

Definition: A function L is Linear Operator if and only if

$$
L\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}\right)=\alpha_{1} L\left(x_{1}\right)+\alpha_{2} L\left(x_{2}\right) \forall x_{1}, x_{2} \in X, \forall \alpha_{1}, \alpha_{2} \in F
$$

Example: Convolution integral

$$
y(t)=\int_{0}^{t} g(t-\tau) u(\tau) d \tau
$$

Funeral Rites During 2002 World Cup in Seoul 월드컵 때 장례식장

Linear Operators

Matrix Representation of Linear Operators
$\left\{x_{i}\right\}$: Basis of X
$\left\{u_{i}\right\}$: Basis of Y
Operator

Represen. $\quad \beta=A \alpha$
Let $y_{i}=L x_{i}$

$$
\begin{aligned}
& A=\left[a_{1}, a_{2}, \ldots, a_{n}\right] \\
& a_{i}=r e p . \text { of } y_{i}\left(=L x_{i}\right) \text { w.r.t. }\left\{u_{i}\right\}
\end{aligned}
$$

Linear Operators

Matrix Representation of Linear Operators

$$
\begin{aligned}
y_{i} & =\left[u_{1}, u_{2}, \ldots, u_{m}\right] a_{i} \\
L\left[x_{1}, x_{2}, \ldots, x_{m}\right] & =\left[y_{1}, y_{2}, \ldots, y_{m}\right] \\
& =\left[u_{1}, u_{2}, \ldots, u_{m}\right]\left[a_{1}, a_{2}, \ldots, a_{m}\right] \\
& =\left[u_{1}, u_{2}, \ldots, u_{m}\right] A \\
\text { From } y & =L x, \quad L: \text { Unique } \\
{\left[u_{1}, u_{2}, \ldots, u_{m}\right] \beta } & =L\left[x_{1}, x_{2}, \ldots, x_{m}\right] \alpha \\
& =\left[u_{1}, u_{2}, \ldots, u_{m}\right] A \alpha \\
\text { Hence } \beta & =A \alpha, A: \text { Many depending on }\left\{x_{i}\right\},\left\{u_{i}\right\}
\end{aligned}
$$

Linear Operators

Basis Changes

Operator
Rep1: basis $\left[e_{1} \ldots e_{n}\right]$ $\alpha \xrightarrow{A} \beta(=A \alpha)$
$P|\uparrow Q \quad P| \uparrow Q$
Rep2: basis $\left[\bar{e}_{1} \ldots \bar{e}_{n}\right]$

$$
\bar{\alpha} \xrightarrow{\bar{A}} \bar{\beta}(=\bar{A} \bar{\alpha})
$$

$$
x \xrightarrow{L} y(=L x)
$$

$$
a_{i}: \text { rep. of } L e_{i} \text { w.r.t. }\left\{e_{i}\right\}
$$

$$
\bar{a}_{i}: \text { rep. of } L \bar{e}_{i} \text { w.r.t. }\left\{\bar{e}_{i}\right\}
$$

$$
p_{i}: \text { rep. of } e_{i} \text { w.r.t. }\left\{\bar{e}_{i}\right\}
$$

$$
q_{i}: \text { rep. of } \bar{e}_{i} \text { w.r.t. }\left\{e_{i}\right\}
$$

Linear Operators

Similarity Transform

$$
\begin{array}{ll}
\bar{\alpha}=P \alpha, & \bar{\beta}=P \beta=P A \alpha=P A P^{-1} \bar{\alpha} \\
& \bar{\beta}=\bar{A} \bar{\alpha} \\
\Rightarrow \quad & \bar{A}=P A P^{-1}=Q^{-1} A Q
\end{array}
$$

Note: $\bar{A} \& A$ are similar if there exists a nonsingular P

Linear Operators

Example

$$
A=\left[\begin{array}{ccc}
3 & 2 & -1 \\
-2 & 1 & 0 \\
4 & 3 & 1
\end{array}\right] \quad b=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Let new basis be
$\left\{b, A b, A^{2} b\right\}$: Linearly independent
$\mathrm{Q}=\left[\begin{array}{lll}b & A b & A^{2} b\end{array}\right]$
$\bar{A}=Q^{-1} A Q=\left[\begin{array}{ccc}0 & 0 & 17 \\ 1 & 0 & -15 \\ 0 & 1 & 5\end{array}\right]$
$A Q=Q \bar{A}$
$\left[A q_{1} \ldots A q_{n}\right]=\left[\begin{array}{lll}q_{1} & \ldots & q_{n}\end{array}\right] \bar{A}$
\bar{a}_{i} : rep. of $A q_{i}$ w.r.t. $\left\{q_{i}\right\}$

Homework

HW1: Problem 3.1 in Text

Should submit the report within one week after finishing the lecture of this chapter

HW2
Given $A=\left[\begin{array}{llll}2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \quad b=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right] \quad \bar{b}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$
What are the representations of A with respect to the basis
$\left\{b, A b, A^{2} b, A^{3} b\right\}$ and the basis $\left\{\bar{b}, A \bar{b}, A^{2} \bar{b}, A^{3} \bar{b}\right\}$, respectively?
Drive using the definition of representation.

Linear Operators

Linear Algebraic Equations

$$
A x=y \quad A:\left(F^{n}, F\right) \rightarrow\left(F^{m}, F^{F}\right)
$$

Definition: Range Space
$R(A)=\{$ all y for which there is at least one x such that $y=A x\}$

Theorem:

$R(A)$ is Subspace of $\left(F^{m}, F\right)$

Linear Operators

Example

$y=\left[\begin{array}{l}y_{1} \\ y_{2} \\ \ldots \\ y_{m}\end{array}\right]=A x=\left[\begin{array}{lll}a_{1} & \ldots & a_{n}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ \ldots \\ x_{n}\end{array}\right]=\sum_{i}^{n} x_{i} a_{i}$
$\Rightarrow y$ is spaned from $\left\{a_{i}\right\}$
$\Rightarrow \operatorname{Dim}$. of $R(A)$ is equal to number of LI vectors in $\left\{a_{i}\right\}$
$\Rightarrow \operatorname{Dim}$. of $R(A)=$ Rank of $A \leq m$

Linear Operators

Definition: Null Space
$N(A)=\{$ all x for which $A x=0\}, \operatorname{dim}$. of $N(A)=n-\operatorname{dim}$. of $R(A)$

Example

If dim. of $R(A)=n$
$A x=0 \Rightarrow x=0, \quad N(A)=\{x \mid A x=0\}=\{0\}$: not vector space
Hence dim. of $N(A)=0$
If dim. of $R(A)=k \prec n, \exists x \neq 0$ such that $A x=0$
$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right] \quad N(A)=\left\{\left[\begin{array}{c}0 \\ 0 \\ x_{3} \\ x_{4}\end{array}\right]\right\}$
dim. of $N(A)=n-k$
$\Rightarrow \operatorname{dim}$. of $R(A)+\operatorname{dim}$. of $N(A)=n$

Linear Operators

Theorem

Let $A: F^{n} \rightarrow F^{m} \quad$ cf. $)\left(F^{m}, F\right)$

1. for given y, there exists x such that

$$
A x=y \quad \text { iff } \rho(A)=\rho([A y])
$$

2. for all $y \in F^{\prime \prime}$, there exists x such that

$$
A x=y \quad \text { iff } \rho(A)=m \quad(\text { indefiniteness, } m<n)
$$

Linear Operators

Theorem

Let x_{p} be a solution of $A x=y$
$k=n-\rho(A):$ nullity
then

$$
x=x_{p}+\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{k} v_{k}
$$

is a solution of $A x=y$,
where $\left\{v_{i}\right\}$ is a basis of $N(A)$

Pf.

$A x_{p}=y$
$A x=A x_{p}+\sum \alpha_{i} A v_{i}=y$

Linear Operators

Theorem

$A x=y, A$: square

1. If A is nonsingular, $x=A^{-1} y, A x=0 \Rightarrow x=0$
2. Iff A is singular, $A x=0$ has nonzero sol's.

Number of LI sol's is nullity of A.

Similarity Transform

Characteristic Polynomial

Eigenvalue λ
Eigenvector x (non zero)
$\exists x$ such that $A x=\lambda x$
$\Rightarrow(A-\lambda I) x=0 \Rightarrow$ nullity of $(A-\lambda I) \geq 1$
$\Rightarrow(A-\lambda I)$ is singular $\Rightarrow \Delta(\lambda)=\operatorname{det}(A-\lambda I)=0$
$\Delta(\lambda)$ is called characteristic polynomial of A

Example

Companion form

$$
\left[\begin{array}{llll}
0 & 0 & 0 & -a_{4} \\
1 & 0 & 0 & -a_{3} \\
0 & 1 & 0 & -a_{2} \\
0 & 0 & 1 & -a_{1}
\end{array}\right] \quad \Delta(\lambda)=\lambda^{4}+a_{1} \lambda^{3}+a_{2} \lambda^{2}+a_{3} \lambda+a_{4}
$$

Similarity Transform

Similarity Transform to J ordan form

case 1: distinct eigenvalues

Theorem

Let $\lambda_{i}, i=1, \ldots, n$, be distinct eigenvalues, then eigenvectors $v_{i}, i=1, \ldots, n$, are linearly independent.
$\left\{v_{i}\right\}$ can be basis.

Similarity Transform

Similarity Transform to J ordan form

case 1: distinct eigenvalues

$\left\{n_{i}\right\}$	$x \xrightarrow{A} y$	$q_{i}:$ rep. of v_{i} w.r.t. $\left\{n_{i}\right\}$
$Q \bigcap_{i}$	$P \downarrow \downarrow$	$v_{i}=\left[n_{1} \ldots n_{i} \ldots n_{n}\right] q_{i}=q_{i}$
$\left\{v_{i}\right\}$	$\bar{x} \xrightarrow{\hat{A}} \bar{y}$	$Q=\left[v_{1} \ldots v_{i} \ldots v_{n}\right] \Rightarrow \hat{A}=Q^{-1} A Q=P A P^{-1}$

$\hat{a}_{i}:$ rep. of $A v_{i}$ w.r.t. $\left\{v_{i}\right\}$
$A v_{i}=\lambda_{i} v_{i}=\left[\begin{array}{lll}v_{1} & \ldots & v_{i} \ldots v_{n}\end{array}\right]\left[\begin{array}{c}0 \\ \ldots \\ \lambda_{i} \\ 0\end{array}\right] \Rightarrow \hat{A}=57,58$

Similarity Transform

Example

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right] \rightarrow \Delta(\lambda)=\operatorname{det}(\lambda I-A)=(\lambda-2)(\lambda+1) \lambda \\
& (A-2 \mathrm{I}) \mathrm{q}_{1}=\left[\begin{array}{ccc}
-2 & 0 & 0 \\
1 & -2 & 2 \\
0 & 1 & -1
\end{array}\right] \mathrm{q}_{1}=0 \rightarrow \mathrm{q}_{1}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \\
& (A+\mathrm{I}) \mathrm{q}_{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 2 \\
0 & 1 & 2
\end{array}\right] \mathrm{q}_{2}=0 \rightarrow \mathrm{q}_{2}=\left[\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right], A \mathrm{q}_{3}=0 \rightarrow \mathrm{q}_{3}=\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right] \\
& Q=\left[\begin{array}{ccc}
0 & 0 & 2 \\
1 & -2 & 1 \\
1 & 1 & -1
\end{array}\right] \Rightarrow \hat{A}=Q^{-1} A Q=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Similarity Transform

Similarity Transform to J ordan form

case 2: not all distinct eigenvalues
Definition: Generalized eigenvector v of grade k iff $(A-\lambda I)^{k} v=0$ and $(A-\lambda I)^{k-1} v \neq 0$

Example

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
\lambda & 1 & 1 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right] \Rightarrow(A-\lambda I)=\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \\
& \Rightarrow(A-\lambda I)^{2}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \Rightarrow(A-\lambda I)^{3}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \Rightarrow v=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]^{T} \text { is generalized eigenvector of grade } 3 .
\end{aligned}
$$

Similarity Transform

Derivation of Basis

$$
\left.\begin{array}{rl}
v_{k} & :=v \\
v_{k-1} & :=(A-\lambda I) v=(A-\lambda I) v_{k} \\
v_{k-2} & :=(A-\lambda I)^{2} v=(A-\lambda I) v_{k-1} \\
\ldots \\
v_{1} & :=(A-\lambda I)^{k-1} v=(A-\lambda I) v_{2} \\
\left\{v_{i}\right\} & :=\text { Chain of generalized eigenvectors } \\
\hat{a}_{i} & : \text { rep.of } A v_{i} \text { w.r.t. }\left\{v_{i}\right\} \\
(A-\lambda I) v_{i} & =v_{i-1} \\
A v_{i} & =\lambda v_{i}+v_{i-1} \\
& =\left[\begin{array}{lll}
v_{1} & \ldots v_{i-1} & v_{i}
\end{array} \quad . . v_{n}\right.
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
\lambda \\
0
\end{array}\right] \rightarrow \hat{A}=\left[\begin{array}{cccc}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & \ldots & 1 \\
0 & 0 & 0 & \lambda
\end{array}\right] .
$$

Similarity Transform

How to find generalized eigenvectors?

$$
\begin{aligned}
\operatorname{det}(s I-A) & =\left(s-\lambda_{1}\right)\left(s-\lambda_{2}\right)\left(s-\lambda_{1}\right)^{8}=0 \\
s & =\lambda_{1}, \lambda_{2}, \lambda_{3}(8 \text { multiple roots }) \\
\left(A-\lambda_{1} I\right) x_{1} & =0 \Rightarrow x_{1} \text { can be basis } \\
\left(A-\lambda_{2} I\right) x_{2} & =0 \Rightarrow x_{2} \text { can be basis }
\end{aligned}
$$

8 generalized eigenvectors for λ_{3}

$$
\begin{array}{ll}
\rho\left(A-\lambda_{3} I\right)^{0}=10, & v_{0}=0 \\
\rho\left(A-\lambda_{3} I\right)^{1}=7, & v_{0}=3, u_{1} w_{1} v_{1} \\
\rho\left(A-\lambda_{3} I\right)^{2}=4, & v_{0}=6, u_{2} w_{2} v_{2} \\
\rho\left(A-\lambda_{3} I\right)^{3}=3, & v_{0}=7, u_{3} \\
\rho\left(A-\lambda_{3} I\right)^{4}=2, & v_{0}=8, u_{4} \\
\rho\left(A-\lambda_{3} I\right)^{5}=2, & v_{0}=8
\end{array}
$$

$\exists u \neq 0$ such that

$$
\left(A-\lambda_{3} I\right)^{3} u \neq 0
$$

$$
\left(A-\lambda_{3} I\right)^{4} u=0
$$

There is 4 chains $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$
\exists two $w($ or $v) \neq 0$ and such that

$$
\begin{aligned}
& \left(A-\lambda_{3} I\right) w(\text { or } v) \neq 0 \\
& \left(A-\lambda_{3} I\right)^{2} w(\text { or } v)=0
\end{aligned}
$$

There is 2 chains for each $w($ or v).
$\left\{w_{1}, w_{2}, v_{1}, v_{2}\right\}$

Similarity Transform

How to find generalized eigenvectors?
$\operatorname{det}(s I-A)=\left(s-\lambda_{1}\right)\left(s-\lambda_{2}\right)\left(s-\lambda_{3}\right)^{8}=0$
$s=\lambda_{1}, \lambda_{2}, \lambda_{3}(8$ multiple roots)
($A-\lambda_{1} I$) $X_{1}=0 \Rightarrow x_{1}$ can be basis
$\left(A-\lambda_{2} I\right) x_{2}=0 \Rightarrow x_{2}$ can be basis
8 generalized eigenvectors for λ_{3}

$$
\begin{array}{lll}
\left(A-\lambda_{3} I\right)^{4} u=0, u_{4}=u & \rho\left(A-\lambda_{3} I\right)^{0}=10, & v_{0}=0 \\
\left(A-\lambda_{3} I\right)^{3} u_{3}=0, u_{3}=\left(A-\lambda_{3} I\right) u \neq 0 & \rho\left(A-\lambda_{3} I\right)^{1}=7, & v_{0}=3, u_{1} w_{1} v_{1} \\
\left(A-\lambda_{3} I\right)^{2} u_{2}=0, u_{2}=\left(A-\lambda_{3} I\right)^{2} u \neq 0 & \rho\left(A-\lambda_{3} I\right)^{2}=4, & v_{0}=6, u_{2} w_{2} v_{2} \\
\left(A-\lambda_{3} I\right)^{1} u_{1}=0, u_{1}=\left(A-\lambda_{3} I\right)^{3} u \neq 0 & \rho\left(A-\lambda_{3} I\right)^{3}=3, & v_{0}=7, u_{3} \\
\text { In similar way, } & \rho\left(A-\lambda_{1} I\right)^{4}=2, & v_{0}=8, u_{4} \\
& \rho\left(A-\lambda_{3} I\right)^{5}=2, & v_{0}=8
\end{array}
$$

$$
\left\{w_{1}, w_{2}, v_{1}, v_{2}\right\} \text { can be obtained. }
$$

Similarity Transform

How to find generalized eigenvectors?

$$
\begin{aligned}
& Q=\left[\begin{array}{llllllllll}
x_{1} & x_{2} & w_{1} & w_{2} & v_{1} & v_{2} & u_{1} & u_{2} & u_{3} & u_{4}
\end{array}\right] \\
& \hat{A}=Q^{-1} A Q
\end{aligned}
$$

$$
\hat{A}=\left[\begin{array}{cccc:cc:cccc}
\lambda_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \lambda_{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \lambda_{3} & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \lambda_{3} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \lambda_{3} & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \lambda_{3} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \lambda_{3} & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \lambda_{3} & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \lambda_{3} & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \lambda_{3}
\end{array}\right] \text { J ordan Block }
$$

Transform the following matrix to Jordan form

$$
A=\left[\begin{array}{cccccc}
3 & -1 & 1 & 1 & 0 & 0 \\
1 & 1 & -1 & -1 & 0 & 0 \\
0 & 0 & 2 & 0 & 1 & 1 \\
0 & 0 & 0 & 2 & -1 & -1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

Motivations

Linear algebra for linear time invariant systems
Linear space and operator theory for linear time varying system
Stability for linear time invariant systems
General definition and Theorem on stability for general systems

Repetitive \& tedious training is required for learning of language, mathematics, skill, mind control, sports, ...

Mathematics is useful for analysis, writing a paper, proof, ...

Overcoming of tedious training phase must give you freedom in the future.

Functions of Square Matrix

Square Matrix $A, \quad A^{k}:=A A \cdots A$
Let $f(\lambda)$ be a ploynomial
$f(\lambda)=\lambda^{3}+2 \lambda^{2}-6$
$f(A)=A^{3}+2 A^{2}-6 I \Leftarrow$ Ploynomial of A
$A=Q^{-1} \bar{A} Q$
$A^{k}=Q^{-1} \bar{A} Q Q^{-1} \bar{A} Q \ldots=Q^{-1} \bar{A}^{k} Q$
$\left[\begin{array}{cc}A_{1} & 0 \\ 0 & A_{2}\end{array}\right]^{k}=\left[\begin{array}{cc}A_{1}^{k} & 0 \\ 0 & A_{2}^{k}\end{array}\right]$

Definition

Minimal polynomial of A is defined as monic polynomial $f(\lambda)$ of least degree such that $f(A)=0$.

Functions of Square Matrix

Definition

Largest order of Jordan blocks for λ_{i} is index of λ_{i} in A

Theorem

Minimal polynomial of A is $f(\lambda)=\prod_{i=1}^{m}\left(\lambda-\lambda_{i}\right)^{\bar{n}_{i}}$
where \bar{n}_{i} is index of λ_{i} in A.
Ex.) Charcteristic poly. $\Delta(\lambda)=(\lambda-3)^{3}(\lambda-1)$

$$
\begin{aligned}
& {\left[\begin{array}{llll}
3 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
3 & 1 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
3 & 1 & 0 & 0 \\
0 & 3 & 1 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]} \\
& (\lambda-3)(\lambda-1)(\lambda-3)^{2}(\lambda-1)(\lambda-3)^{3}(\lambda-1): \text { min. poly. }
\end{aligned}
$$

Functions of Square Matrix

Cayley-Hamilton Theorem

$\Delta(\lambda)=\operatorname{det}(A-\lambda I):=\lambda^{n}+\alpha_{1} \lambda^{n-1}+\ldots+\alpha_{n}$
$\Rightarrow \Delta(A)=0$

Remark:

$\Delta(\lambda)=\varphi(\lambda) h(\lambda), \varphi(\lambda):$ minimal polynomial
$\Rightarrow \Delta(A)=\varphi(A) h(A)=0 \cdot h(A)=0$

Functions of Square Matrix

Calculation of Function of Square Matrix $f(A)$

$$
\begin{aligned}
f(\lambda) & =\Delta(\lambda) g(\lambda)+h(\lambda), \text { order of } h(\lambda) \text { is } n-1 \\
f(A) & =\Delta(A) g(A)+h(A)=h(A) \\
& =\beta_{n-1} A^{n-1}+\beta_{n-2} A^{n-2}+\ldots+\beta_{0} I
\end{aligned}
$$

Example

Compute A^{100}, where $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$
Minimal polynormal

$$
\begin{aligned}
& \varphi(\lambda)=(\lambda-1)^{2}, \varphi(A)=(A-I)^{2}=0 \\
& f(\lambda)=\lambda^{100}=(\lambda-1)^{2} g(\lambda)+\beta_{1}+\beta_{2} \lambda \\
& f(1)=\beta_{1}+\beta_{2}=1 \\
& f^{\prime}(1)=\beta_{2}=100 \rightarrow \beta_{1}=-99 \\
& f(A)=A^{100}=\beta_{1} I+\beta_{2} A=\left[\begin{array}{cc}
1 & 200 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Functions of Square Matrix

Example

Compute $\mathrm{e}^{A t}$, where $A=\left[\begin{array}{ccc}0 & 0 & -2 \\ 0 & 1 & 0 \\ 1 & 0 & 3\end{array}\right]$

$$
\begin{aligned}
& \Delta(\lambda)=(\lambda-1)^{2}(\lambda-2), \\
& f(\lambda)=e^{\lambda t}=(\lambda-1)^{2}(\lambda-2) g(\lambda)+\beta_{1}+\beta_{2} \lambda+\beta_{3} \lambda^{2} \\
& f(1)=\beta_{1}+\beta_{2}+\beta_{3}=e^{t} \\
& f^{\prime}(1)=\beta_{2}+2 \beta_{3}=t e^{t} \\
& f(2)=\beta_{1}+2 \beta_{2}+4 \beta_{3}=e^{2 t} \\
& f(A)=\mathrm{e}^{A t}=\beta_{1} I+\beta_{2} A+\beta_{3} A^{2}=\left[\begin{array}{ccc}
2 e^{t}-e^{2 t} & 0 & 2 e^{t}-2 e^{2 t} \\
0 & e^{t} & 0 \\
-e^{t}+e^{2 t} & -t e^{t} & -e^{t}+2 e^{2 t}
\end{array}\right]
\end{aligned}
$$

Functions of Square Matrix

Theorem

For given $f(\lambda)$ and an $n \times n$ matrix A with characteristic polynomial

$$
\Delta(\lambda)=\prod_{i=1}^{m}\left(\lambda-\lambda_{i}\right)^{n_{i}}
$$

where $n=\sum_{\mathrm{i}=1}^{\mathrm{m}} n_{i}$.

$$
\begin{aligned}
& f(\lambda)=\bar{\Delta}(\lambda) g(\lambda)+h(\lambda) \\
& f^{(l)}\left(\lambda_{i}\right)=h^{(l)}\left(\lambda_{i}\right), \quad l=1,2, \ldots, n_{i}-1
\end{aligned}
$$

where $f^{(l)}\left(\lambda_{i}\right)=\left.\frac{d^{l} f(\lambda)}{d \lambda^{l}}\right|_{\lambda=\lambda_{i}}$.
Then

$$
f(A)=h(A)
$$

and $h(\lambda)$ is said to equal to $f(\lambda)$ on the Spectrum of A.

Functions of Square Matrix

Matrix function based on Power Series

For given $f(\lambda)$ and an $n \times n$ matrix A,

$$
\begin{aligned}
e^{\lambda t} & =1+\lambda t+\frac{1}{2!} \lambda^{2} t^{2}+\cdots=\sum_{k=0}^{\infty} \frac{1}{k!} \lambda^{k} t^{k} \\
e^{A t} & =\sum_{k=0}^{\infty} \frac{1}{k!} t^{k} A^{k}
\end{aligned}
$$

Laplace Transform of $e^{A t}$

$$
\begin{aligned}
& L\left(\frac{1}{k!} t^{k}\right)=s^{-(k+1)} \\
& L\left(e^{A t}\right)=\sum_{k=0}^{\infty} s^{-(k+1)} A^{k}=s^{-1} \sum_{k=0}^{\infty}\left(s^{-1} A\right)^{k} \\
& \sum_{k=0}^{\infty}\left(s^{-1} \lambda\right)^{k}=\frac{1}{1-s^{-1} \lambda}, \text { for }\left|s^{-1} \lambda\right|<1 \\
& L\left(e^{A t}\right)=s^{-1}\left(I-s^{-1} A\right)^{-1}=(s I-A)^{-1}
\end{aligned}
$$

Review

Linear Operator

$$
\begin{aligned}
& L: R^{n} \rightarrow R^{m} \\
& L(x)=y, x \in R^{n}, y \in R^{m}
\end{aligned}
$$

Matrix Representation

$$
A x=y, \quad x \in R^{n}, y \in R^{m}
$$

Range Space

$$
\begin{aligned}
& R(A)=\{y \mid A x=y\} \\
& y=\sum_{i=1}^{n} x_{i} \mathbf{a}_{i} \\
& \rightarrow \rho R(A)=\# \text { of LI } \\
& \text { Space } \\
& N(A)=\{x \mid A x=0\} \\
& \rho N(A)=n-\rho R(A)
\end{aligned}
$$

$$
\rightarrow \rho R(A)=\# \text { of LI vectors in }\left\{\mathbf{a}_{i}\right\}
$$

Null Space

Review

Simple Example

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], y=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] \\
& A x=\left[\begin{array}{l}
x_{1} \\
0
\end{array}\right]=y=\left[\begin{array}{l}
* \\
0
\end{array}\right] \rightarrow \rho\{y\}=\rho R(A)=1 \\
& A x=0 \rightarrow\left\{\left[\begin{array}{c}
* \\
* \\
*
\end{array}\right]\right\}=N(A) \rightarrow \rho N(A)=2
\end{aligned}
$$

Lyapunov Equation

Lyapunov Equation

Problem to find $M \in R^{n \times m}$ satisfying the Lyapunov equation

$$
A M+M B=C
$$

for given $A \in R^{n \times n}, B \in R^{m \times m}, C \in R^{n \times m}$.

Conversion to Linear Equation

For $A \in R^{3 \times 3}, B \in R^{2 \times 2}$
$\left.\begin{array}{rlll}{\left[\begin{array}{cccc}a_{11}+b_{11} & a_{12} & \cdot & \\ a_{21} & \cdot & & \\ & & \cdot & b_{21} \\ & & & a_{33}+b_{22}\end{array}\right]} \\ 6 \times 6 & & 6 \times 1\end{array}\right]=\left[\begin{array}{c}m_{11} \\ m_{21} \\ \ldots \\ m_{32}\end{array}\right]=\left[\begin{array}{c}{\left[\begin{array}{c}c_{11} \\ c_{21} \\ \ldots \\ c_{32}\end{array}\right]} \\ \end{array}\right.$
$\Rightarrow Q m=c$: Linear Equation
\rightarrow if Q is nonsingular, the solution exists and unique
\rightarrow if Q is singular, indeterminate or insoluble(insolvable)

Lyapunov Equation

Define Linear Mapping $L: R^{n m} \rightarrow R^{n m}$

$$
L(M)=A M+M B
$$

Let η be eigenvalue of linear mapping $L(\cdot)$

$$
L(M)=\eta M
$$

Let u and λ be right eigenvector and eigenvalue of A and
v and μ be left eigenvector and eigenvalue of B
$A u=\lambda u, \quad v B=\mu v$
$\Rightarrow L(u v)=A u v+u v B=\lambda u v+\mu u v=(\lambda+\mu) u v$
$\Rightarrow(\lambda+\mu)$ is eigenvalue of $L(\cdot)$
$\Rightarrow Q$ is nonsingular iff all $\eta_{k}=\left(\lambda_{i}+\mu_{j}\right)$ is nonzero
\Rightarrow If some $\eta_{k}=\left(\lambda_{i}+\mu_{j}\right)$ is zero case1: C is in range space of L, sol. exists and not unique case2: otherwise, sol. does not exist.

Problem 3.31 in the Text.

Useful Formulas

Theorem

$$
\rho(A B) \leq \min (\rho(A), \quad \rho(B)), \quad A \in R^{m \times n}, \quad B \in R^{n \times p}
$$

Bpf.)

$$
\text { 1. row of AB is spaned by }\left\{\mathbf{b}_{j}\right\}
$$

\Rightarrow rank of AB is not more than the number of LI vectors in $\left\{\mathbf{b}_{j}\right\}$

$$
A B=\left[\begin{array}{lll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}
\end{array}\right]\left[\begin{array}{lll}
b_{11} & \ldots & b_{1 p} \\
& \ldots & \\
b_{n 1} & & b_{n p}
\end{array}\right]=\left[\begin{array}{lll}
\sum b_{i 1} \mathbf{a}_{i} & \ldots & \sum b_{i n} \mathbf{a}_{i}
\end{array}\right]
$$

2. column of AB is spaned by $\left\{\mathbf{a}_{i}\right\}$
\Rightarrow rank of AB is not more than the number of LI vectors in $\left\{\mathbf{a}_{i}\right\}$

Useful Formulas

Theorem

The rank of a matrix will not change after pre- or postmultiplying by a nonsingular matrix

$$
\rho(A)=\rho(A C)=\rho(D A), A \in R^{m \times n}, C \in R^{n \times n}, D \in R^{m \times m}
$$

Pf.)

$$
\begin{aligned}
& P=A C \\
& \rho(A)=\min (m, n), \rho(C)=n \\
& \rightarrow \rho(A) \leq \rho(C) \\
& \rho(P) \leq \min (\rho(A), \rho(C))=\rho(A) \\
& A=P C^{-1} \\
& \rightarrow \rho(A) \leq \rho(P) \\
& \Rightarrow \rho(A)=\rho(P)
\end{aligned}
$$

Useful Formulas

Theorem

$$
\operatorname{det}\left(I_{m}+A B\right)=\operatorname{det}\left(I_{n}+B A\right), A \in R^{m \times n}, B \in R^{n \times m}
$$

Pf.)

Define $N=\left[\begin{array}{cc}I_{m} & A \\ 0 & I_{n}\end{array}\right], Q=\left[\begin{array}{cc}I_{m} & 0 \\ -B & I_{n}\end{array}\right], P=\left[\begin{array}{cc}I_{m} & -A \\ B & I_{n}\end{array}\right]$
$N P=\left[\begin{array}{cc}I_{m}+A B & 0 \\ B & I_{n}\end{array}\right], Q P=\left[\begin{array}{cc}I_{m} & -A \\ 0 & I_{n}+B A\end{array}\right]$
$\operatorname{det} N=\operatorname{det} I_{m} \operatorname{det} I_{n}=1=\operatorname{det} Q$
$\operatorname{det} N P=\operatorname{det}\left[I_{m}+A B\right]=\operatorname{det} N \operatorname{det} P=\operatorname{det} P$
$\operatorname{det} Q P=\operatorname{det}\left[I_{n}+B A\right]=\operatorname{det} Q \operatorname{det} P=\operatorname{det} P$

Matrix Properties

Fact: all eigenvalues of symetric real M are real.

Pf.)

Assume x be complex

$$
\left(x^{*} M x\right)^{*}=x^{*} M^{*} X=x^{*} M x
$$

This implies $x^{*} M x$ is real.
Let λ, v be eigenvalue and eigenvector of M

$$
\begin{aligned}
& M v=\lambda v \\
& v^{*} M v=v^{*} \lambda v=\lambda v^{*} v
\end{aligned}
$$

$\rightarrow \lambda$ should be real since $v^{*} v$ and $v^{*} M v$ are real.

Matrix Properties

Claim: every symmetric real matrix can be diagonalized by a similarity transform.

Pf.)

To show that there is no gneralized eigenvector of grade 2 or higher, suppose x be a generalized eigenvector of grade 2 or higher, i.e.,

$$
(M-\lambda I)^{2} x=0 \cdots(1)
$$

From (2)

$$
[(M-\lambda I) x]^{*}(M-\lambda I) x \neq 0
$$

From (1)

$$
[(M-\lambda I) x]^{*}(M-\lambda I) x=x^{*}(M-\lambda I)^{2} x=0
$$

This contradicts.

Matrix Properties

Claim: Jordan form of symmetric real matrix M has no Jordan block of order of 2 or higher.

Note: A is called orthogonal (orthomormal) matrix if all columns are orthogonal(orthomormal). If A is orthomormal,
$A^{T} A=I, A^{T}=A^{-1}$: called unitary matrix.

Matrix Properties

Theorem

$M=Q D Q^{-1}, Q^{T}=Q^{-1}, D$: diagonal, M : symmetric real
Pf.)
Since $D^{T}=D, M^{T}=M$
$M=Q D Q^{-1}=\left(Q D Q^{-1}\right)^{T}=Q^{-T} D Q^{T}$
$\Rightarrow Q^{T}=Q^{-1}$

Positive Definiteness

M is positive definite, $M>0$ if $x^{T} M x>0$ for every nonzero x
M is positive semidefinite, $M \geq 0$ if $x^{T} M x \geq 0$ for every nonzero x

Matrix Properties

Theorem

M is positive definite (semidefinite) iff
any one of the following conditions holds

- every eigenvalue of M is positive (zero or positive),
- all leading principal minors of M are positive (all principal minors are zero or positive) (see [10])
- there exists nonsingular N (nonsingular or mxn matrix N with $m<n$) such that $M=N^{T} N$.

Note:

principal minors: det of $1 \times 1,2 \times 2,3 \times 3$... submatrix leading principal minors include m_{11}

Matrix Properties

Theorem

1. $m \times n$ matrix $H, m \geq n$, has rank n iff
$H^{T} H$ has rank n or det $H^{T} H \neq 0$
2. $m \times n$ matrix $H, m \leq n$, has rank m iff $H H^{T}$ has rank m or $\operatorname{det} H H^{T} \neq 0$

Pf.)

(Necessity) $\rho\left(H^{T} H\right)=n \rightarrow \rho(H)=n$ (Sufficiency) $\rho(H)=n \rightarrow \rho\left(H^{T} H\right)=n$
by contraction, suppose
$\rho\left(H^{T} H\right)=n$, but $\rho(H)<n$
$\rightarrow \exists v \neq 0$ such that $H v=0$
$\rightarrow H^{T} \mathrm{Hv}=0$
\rightarrow contradicts $\rho\left(H^{T} H\right)=n$
by contraction, suppose

$$
\rho(H)=n \text {, but } \rho\left(H^{T} H\right)<n
$$

$\rightarrow \exists v \neq 0$ such that $H^{T} H v=0$
$\rightarrow v^{T} H^{T} H v=0=(H v)^{T} H v=\|H v\|^{2}$
$\rightarrow \mathrm{Hv}=0$
\rightarrow contradicts $\rho(H)=n$

Matrix Properties

Singular Value

$$
\begin{aligned}
& M=H^{T} H \geq 0 ; \text { eigenvalues } \lambda_{i}^{2} \geq 0 \\
& \lambda_{1}^{2} \geq \lambda_{2}^{2} \geq \cdots \geq \lambda_{\mathrm{r}}^{2}>0=\lambda_{\mathrm{r}+1}^{2}=\cdots=\lambda_{\mathrm{n}}^{2}
\end{aligned}
$$

Let $\bar{n}=\min (m, n)$

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\mathrm{r}}>0=\lambda_{\mathrm{r}+1}=\cdots=\lambda_{\mathrm{n}}
$$

λ_{i} is called singular values of H

Matrix Properties

Example: Singular Value

$H=\left[\begin{array}{ccc}-4 & -1 & 2 \\ 2 & 0.5 & -1\end{array}\right]$
$M=H^{T} H=\left[\begin{array}{ccc}20 & 5 & -10 \\ 5 & 1.25 & -2.5 \\ -10 & -2.5 & 5\end{array}\right]$
$\operatorname{det}(\lambda I-M)=\lambda^{3}-26.25 \lambda^{2}=\lambda^{2}(\lambda-26.25)$
\rightarrow singular values of H are $\sqrt{26.25}=5.1235,0$

Matrix Properties

Theorem: Singular Value Decomposition

Every $m \times n$ matrix H can be transformed into

$$
H=R S Q^{T}
$$

with $\quad R^{T} R=R R^{T}=I_{m}, Q^{T} Q=Q Q^{T}=I_{n}$, and
S is diagonal matrix with signular values
Q : orthonormalized eigenvectors of $H^{T} H$
R : orthonormalized eigenvectors of $H H^{T}$

Matrix Properties

Pf.)

$\rho(H)=r=\rho\left(H^{T} H\right), \lambda_{1}^{2} \geq \lambda_{2}^{2} \cdots \lambda_{r}^{2}>0=\lambda_{r+1} \cdots$
$Q=\left[q_{1} \cdots q_{r} q_{r+1} \cdots q_{n}\right]=\left[Q_{1} Q_{2}\right]$
q_{i} : orthonormalized eigenvectors of $H^{T} H$
note) $H^{T} H q_{i}=\lambda_{i}^{2} q_{i}$, for $i=1, \ldots, r$
$H^{T} H q_{j}=0$, for $j=r+1, \ldots, n$ (Null space basis)
$Q^{T} H^{T} H Q=\left[\begin{array}{cc}\Lambda^{2} & 0 \\ 0 & 0\end{array}\right] \Rightarrow \begin{aligned} & Q_{2}{ }^{T} H^{T} H Q_{2}=0 \\ & Q_{1}{ }^{T} H^{T} H Q_{1}=\Lambda^{2}\end{aligned}$
$\Lambda^{-1} Q_{1}^{T} H^{T} H Q_{1} \Lambda^{-1}=I \Rightarrow R_{1}^{T} R_{1}=I$ by defining $R_{1}=H Q_{1} \Lambda^{-1}$
Choose R_{2} such that $R^{T} R=I, R=\left[R_{1}, R_{2}\right]$
$R^{T} H Q=\left[\begin{array}{c}R_{1}{ }^{T} \\ R_{2}{ }^{T}\end{array}\right] H\left[Q_{1} Q_{2}\right]=\left[\begin{array}{ll}R_{1}^{T} H Q_{1} & R_{1}^{T} H Q_{2} \\ R_{2}{ }^{T} H Q_{1} & R_{2}{ }^{T} H Q_{2}\end{array}\right]$
$R^{T} H Q=\left[\begin{array}{cc}\Lambda & 0 \\ R_{2}{ }^{T} R_{1} \Lambda=0 & 0\end{array}\right]:=S \Rightarrow H=R S Q^{T}$

Find Singular Value Decomposition for the following matrix

$$
H=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
2 & -1 & 0
\end{array}\right]
$$

Matrix Properties

Norm of Matrix (Induced Norm)

$$
\begin{aligned}
\|A\| & =\sup _{x \neq 0} \frac{\|A x\|}{\|x\|}=\sup _{\|x\|=1}\|A x\| \\
\|A\|_{1} & \left.=\max _{j}\left(\sum_{i=1}^{n} \mid a_{i j}\right) \text {, for }\|x\|_{1}=1, e x\right) x=[0 \ldots 1 \ldots 0] \\
\|A\|_{2} & =\left(\lambda_{\max }\left(A^{*} A\right)\right)^{1 / 2} \text {, for }\|x\|_{2}=1 \\
\|A\|_{\infty} & \left.=\max _{i}\left(\sum_{j=1}^{n}\left|a_{i j}\right|\right) \text {, for }\|x\|_{\infty}=1, e x\right) x=[-1 \ldots 1 \ldots-1] \\
& \Leftarrow \\
\|A\|_{2} & =\sup _{\|x\|=1}\left(x^{*} A^{*} A x\right)^{1 / 2}=\sup _{\|x\|=1}\left(x^{*} A^{*} A \sum \alpha_{i} v_{i}\right)^{1 / 2}, x=\sum \alpha_{i} v_{i} \\
& =\sup _{\|x\|=1}\left(x^{*} \sum \alpha_{i} \lambda_{i} v_{i}\right)^{1 / 2} \leq \sup _{\|x\|=1}\left(x^{*} \lambda_{\max } \sum \alpha_{i} v_{i}\right)^{1 / 2}=\left(\lambda_{\max }\left(A^{*} A\right)\right)^{1 / 2}
\end{aligned}
$$

Matrix Properties

Examples

$$
\begin{aligned}
& \left.\|A\|_{1}=\max _{j}\left(\sum_{i=1}^{n}\left|a_{i j}\right|\right), \text { for }\|x\|_{1}=1, e x\right) x=[0 \ldots 1 \ldots 0] \\
& A=\left[\begin{array}{ccc}
1 & -2 & 4 \\
-5 & 2 & 0 \\
2 & 3 & 1
\end{array}\right] \\
& x^{T}=\left[\begin{array}{lll}
\pm 1 & 0 & 0
\end{array}\right] \rightarrow\|A x\|_{1}=8 \\
& x^{T}=\left[\begin{array}{lll}
0 & \pm 1 & 0
\end{array}\right] \rightarrow\|A x\|_{1}=7 \\
& x^{T}=\left[\begin{array}{lll}
0 & 0 & \pm 1
\end{array}\right] \rightarrow\|A x\|_{1}=5 \\
& \Rightarrow\|A\|_{1}=8
\end{aligned}
$$

Matrix Properties

Examples

$$
\begin{aligned}
& \left.\|A\|_{\infty}=\max _{i}\left(\sum_{j=1}^{n} \mid a_{i j}\right) \text {, for }\|x\|_{\infty}=1, e x\right) x=[-1 \ldots 1 . . .-1] \\
& A=\left[\begin{array}{ccc}
1 & -2 & 4 \\
-5 & 2 & 0 \\
2 & 3 & 1
\end{array}\right] \\
& x^{T}=\left[\begin{array}{lll}
1 & -1 & 1
\end{array}\right] \rightarrow\|A x\|_{\infty}=7 \\
& x^{T}=\left[\begin{array}{lll}
-1 & 1 & 0
\end{array}\right] \rightarrow\|A x\|_{\infty}=7 \\
& x^{T}=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right] \rightarrow\|A x\|_{\infty}=6 \\
& \Rightarrow\|A\|_{\infty}=7
\end{aligned}
$$

Matrix Properties

Norm of Matrix (Induced Norm)

(a)

Matrix Properties

Norm of Matrix (Induced Norm)

(b)

Matrix Properties

Norm of Matrix (I nduced Norm)

(c)

Summary

Field, Linear (Vector) Space
Basis, Linearly Independent Vectors,
Representation of Vectors and Linear Operators
Basis Change, Similarity Transform
Generalized Eigenvectors, J ordan Form
Function of Square Matrix
Range Space and Null Space in Linear Algebraic Equations
Lyapunov Equation
Singular Value Decomposition, Unitary Matrix
Matrix Norm
Useful Formula and Matrix Properties

