4. State-space Solutions and Realizations

\checkmark Solution of LTI State Equations
\checkmark Solution of Discrete-time LTI Equations
\checkmark Equivalent State Equation
\checkmark Realizations
\checkmark Solution of LTV State Equations
\checkmark Solution of Discrete-time LTV Equations
\checkmark Equivalent Time-varying Equations
\checkmark Time-varying Realizations

Solutions of LTI State Equations

Solutions of LTI State Equations

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)+D u(t)
\end{aligned}
$$

$\times e^{-A t}$

$$
\begin{aligned}
e^{-A t} \dot{x}(t)-e^{-A t} A x(t) & =e^{-A t} B u(t) \\
\frac{d}{d t}\left(e^{-A t} x(t)\right) & =e^{-A t} B u(t)
\end{aligned}
$$

By integration

$$
\begin{aligned}
\left.e^{-A \tau} x(\tau)\right|_{\tau=0} ^{t} & =\int_{0}^{t} e^{-A \tau} B u(\tau) d \tau \\
e^{-A t} x(t)-x(0) & =\int_{0}^{t} e^{-A \tau} B u(\tau) d \tau \\
x(t) & =e^{A t} x(0)+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau
\end{aligned}
$$

Solutions of LTI State Equations

Taking derivative of $x(t)$

$$
\begin{aligned}
\dot{x}(t) & =A e^{A t} x(0)+A \int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau+B u(t) \\
& =A x(t)+B u(t) \\
y(t) & =C e^{A t} x(0)+C \int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau+D u(t) \\
& =C x(t)+D u(t)
\end{aligned}
$$

Solutions of LTI State Equations

Calculation of $e^{A t}$

1. $e^{A t}=h(A)$
2. $A=Q \hat{A} Q^{-1}, e^{A t}=Q e^{\hat{A} t} Q^{-1}$
3. Infinite Power Series
4. $e^{A t}=L^{-1}(s \mathbf{I}-A)^{-1}$

Calculation of $(s \mathbf{I}-A)^{-1}$

1. Direct Cal. of $(s \mathbf{I}-A)^{-1}$
2. $f(A)=h(A)$
3. $(s \mathbf{I}-A)^{-1}=Q(s \mathbf{I}-\hat{A})^{-1} Q^{-1}$
4. Infinite Power Series
5. Problem 3.26 (Leverrier algorithm)

Solutions of LTI State Equations

Example

$$
\begin{aligned}
\dot{x}(t) & =\left[\begin{array}{ll}
0 & -1 \\
1 & -2
\end{array}\right] x(t)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t) \\
x(t) & =e^{A t} x(0)+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau \\
(s I-A)^{-1} & =\left[\begin{array}{cc}
s & 1 \\
-1 & s+2
\end{array}\right]^{-1}=\frac{1}{s^{2}+2 s+1}\left[\begin{array}{cc}
s+2 & -1 \\
1 & s
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{s+2}{(s+1)^{2}} & \frac{-1}{(s+1)^{2}} \\
\frac{1}{(s+1)^{2}} & \frac{s}{(s+1)^{2}}
\end{array}\right]
\end{aligned}
$$

Solutions of LTI State Equations

Example(cont.)

$$
\begin{aligned}
e^{A t} & =L^{-1}\left[(s I-A)^{-1}\right]= \\
& =L^{-1}\left[\begin{array}{cc}
\frac{s+2}{(s+1)^{2}} & \frac{-1}{(s+1)^{2}} \\
\frac{1}{(s+1)^{2}} & \frac{s}{(s+1)^{2}}
\end{array}\right]=\left[\begin{array}{cc}
(1+t) e^{-t} & -t e^{-t} \\
t e^{-t} & (1-t) e^{-t}
\end{array}\right] \\
x(t) & =\left[\begin{array}{cc}
(1+t) e^{-t} & -t e^{-t} \\
t e^{-t} & (1-t) e^{-t}
\end{array}\right] x(0)+\left[\begin{array}{c}
\int_{0}^{t}(t-\tau) e^{-(t-\tau)} u(\tau) d \tau \\
\int_{0}^{t}[1-(t-\tau)] e^{-(t-\tau)} u(\tau) d \tau
\end{array}\right]
\end{aligned}
$$

HW4-1

Problem 4.1 p. 117 in Text

Solutions of LTI State Equations

Note)

$$
\begin{aligned}
e^{A t} & =Q e^{\hat{A} t} Q^{-1} \leftarrow \hat{A}: \text { Jordan form } \\
e^{\hat{A} t} & =\left[\begin{array}{ccccc}
e^{\lambda_{1} t} & t e^{\lambda_{1} t} & t^{2} e^{\lambda_{1} t} / 2! & 0 & 0 \\
0 & e^{\lambda_{1} t} & t e^{\lambda_{1} t} & \cdots & \\
& 0 & e^{\lambda_{1} t} & 0 & \\
& \cdots & 0 & e^{\lambda_{1} t} & 0 \\
0 & & & 0 & e^{\lambda_{2} t}
\end{array}\right]
\end{aligned}
$$

Solution of Discrete Linear Equations

Discretization

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)+D u(t) \\
& \dot{x}(t)=\lim _{T \rightarrow 0} \frac{x(t+T)-x(t)}{T}
\end{aligned}
$$

Approximated Eq.

$$
\begin{aligned}
& x(t+T)=x(t)+A x(t) T+B u(t) T \\
& t=k T, x(t)=x(k T):=x[k] \\
& x[k+1]=(\mathrm{I}+T A) x[k]+T B u[k] \\
& y[k]=C x[k]+D u[k] \\
& \Rightarrow \text { least accurate results }
\end{aligned}
$$

Solution of Discrete Linear Equations

Different Method

$$
\begin{aligned}
x[k]= & x(k T)=e^{A k T} x(0)+\int_{0}^{k T} e^{A(k T-\tau)} B u(\tau) d \tau \\
x[k+1]= & e^{A(k+1) T} x(0)+\int_{0}^{(k+1) T} e^{A((k+1) T-\tau)} B u(\tau) d \tau \\
= & e^{A T}\left[e^{A k T} x(0)+\int_{0}^{k T} e^{A(k T-\tau)} B u(\tau) d \tau\right] \\
& +\int_{k T}^{(k+1) T} e^{A(k T+T-\tau)} B u(\tau) d \tau \\
(u(t)= & u(k T):=u[k] k T \leq t<(k+1) T \\
x[k+1]= & e^{A T} x[k]+\int_{0}^{T} e^{A \alpha} d \alpha B u[k] \\
x[k+1]= & A_{d} x[k]+B_{d} u[k]
\end{aligned}
$$

Solution of Discrete Linear Equations

$$
\begin{aligned}
A_{d} & =e^{A T}, \quad B_{d}=\left(\int_{0}^{T} e^{A \tau} d \tau\right) B, C_{d}=C, D_{d}=D \\
\left(\int_{0}^{T} e^{A \tau} d \tau\right) & =\int_{0}^{T}\left(I+A \tau+A^{2} \frac{\tau^{2}}{2!}+\cdots\right) d \tau \\
& =T I+\frac{T^{2}}{2!} A+\frac{T^{3}}{3!} A^{2}+\cdots \\
& =A^{-1} \overleftarrow{\left(-I+I+T A+\frac{T^{2}}{2!} A^{2}+\frac{T^{3}}{3!} A^{3}+\cdots\right)} \\
& =A^{-1}\left(-I+e^{A T}\right)
\end{aligned}
$$

Solution of Discrete Linear Equations

Solution

$$
\begin{aligned}
& x[1]=A x[0]+B u[0] \\
& x[2]=A x[1]+B u[1]=A^{2} x[0]+A B u[0]+B u[1] \\
& x[k]=A^{k} x[0]+\sum_{m=0}^{k-1} A^{k-1-m} B u[m] \\
& A^{k}=Q \cdot \hat{A}^{k} Q^{-1} \\
& \hat{A}^{k}=\left[\begin{array}{ccccc}
\lambda_{1}^{k} & k \lambda_{1}^{k-1} & \frac{k(k-1)}{2!} \lambda_{1}^{k-2} & 0 \\
0 & \lambda_{1}^{k} & k \lambda_{1}^{k-1} & & \\
0 & 0 & \lambda_{1}^{k} & 0 & \\
0 & 0 & 0 & \cdots & 0 \\
0 & & 0 & \lambda_{2}^{k}
\end{array}\right]
\end{aligned}
$$

Equivalent State Equation

Example:

state1: Inductor current $x_{1}(t)$, Capacitor voltage $x_{2}(t)$
state2: Loop current $\bar{x}_{1}(t), \bar{x}_{2}(t)$

Equivalent State Equation

Example(cont.):
state1: Inductor current $x_{1}(t)$, Capacitor voltage $x_{2}(t)$

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right] } & =\left[\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u(t) \\
y(t) & =\left[\begin{array}{ll}
0 & 1
\end{array}\right] x(t)
\end{aligned}
$$

state2: Loop current $\bar{X}_{1}(t), \bar{x}_{2}(t)$

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{\bar{x}}_{1}(t) \\
\bar{x}_{2}(t)
\end{array}\right] } & =\left[\begin{array}{ll}
-1 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
\bar{x}_{1}(t) \\
\bar{x}_{2}(t)
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u(t) \\
y(t) & =\left[\begin{array}{ll}
1 & -1] \bar{x}(t)
\end{array}\right.
\end{aligned}
$$

The two equations describe the same circuit network, and They are said to be equivalent to each other.

Equivalent State Equation

Equivalence Transformation

Definition: Let P be nonsingular matrix and let

$$
\begin{aligned}
& \bar{x}=P x \\
& \dot{\bar{x}}=\bar{A} \bar{x}+\bar{B} u(t) \\
& y=\bar{C} \bar{x}+\bar{D} u(t)
\end{aligned}
$$

where

$$
\bar{A}=P A P^{-1}, \bar{B}=P B, \bar{C}=C P^{-1}, \bar{D}=D
$$

is said to be equivalent to $\{A, B, C, D\}$
$\bar{x}=P x$ is called an equivalence transformation

Equivalent State Equation

$$
\begin{aligned}
x(t) & =P^{-1} \bar{x}(t) \\
\dot{x}(t) & =P^{-1} \dot{\bar{x}}(t) \\
& =P^{-1} \bar{A} \bar{x}+P^{-1} \bar{B} u(t) \\
& =P^{-1} \bar{A} P x+P^{-1} \bar{B} u(t) \\
& =A x+B u \\
& \Rightarrow \bar{A}=P A P^{-1}, \bar{B}=P B \\
\bar{\Delta}(\lambda) & =\operatorname{det}(\lambda \mathbf{I}-\bar{A})=\operatorname{det}\left(\lambda P P^{-1}-P A P^{-1}\right) \\
& =\operatorname{det}\left(P(\lambda \mathbf{I}-A) P^{-1}\right) \\
& =\operatorname{det} P \operatorname{det}(\lambda \mathbf{I}-A) \operatorname{det} P^{-1}=\operatorname{det}(\lambda \mathbf{I}-A) \\
& =\Delta(\lambda) \\
\overline{\mathbf{G}}(s) & =\mathbf{G}(s)
\end{aligned}
$$

Equivalent State Equation

Example:

$$
\begin{aligned}
& x_{1}(t)=\bar{x}_{1}(t) \\
& x_{2}(t)=\bar{x}_{1}(t)-\bar{x}_{2}(t) \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
\bar{x}_{1} \\
\bar{x}_{2}
\end{array}\right]}
\end{aligned}
$$

Equivalent State Equation

Zero-state equivalent

$$
\begin{aligned}
& \text { Z-s-e if } D+C(s \mathbf{I}-A)^{-1} B=\bar{D}+\bar{C}(s \mathbf{I}-\bar{A})^{-1} \bar{B} \text {, i.e. } \\
& \qquad \mathbf{G}(s)=\overline{\mathbf{G}}(s) \text {, state dimension may be different }
\end{aligned}
$$

Zero-input equivalent

Z-i-e if for zero input, outputs are identical.

Theorem 4.1

$\{A, B, C, D\} \&\{\bar{A}, \bar{B}, \bar{C}, \bar{D}\}$ are
Zero-state-equivalent if $D=\bar{D}$ \&
$C A^{m} B=\overline{C A}^{m} \bar{B}, m=0,1,2, \cdots$
Pf.)

$$
\begin{aligned}
D+C B s^{-1}+ & C A B s^{-2}+C A^{2} B s^{-3}+\cdots \\
& =\bar{D}+\bar{C} \bar{B} s^{-1}+\overline{C A} \bar{B} s^{-2}+\overline{C A}^{2} \bar{B} s^{-3}+\cdots
\end{aligned}
$$

Equivalent State Equation

Example

(a) $y(t)=0.5 u(t), A=B=C=0, D=0.5$
(b) $\dot{x}=x(t), y=0.5 x(t)+0.5 u(t), \bar{A}=1, \bar{B}=0, \bar{C}=0.5, \bar{D}=0.5$
$\Rightarrow C A^{m} B=C \bar{A}^{m} \bar{B}=0 \Rightarrow$ zero state equivalent

Realizations

Realization

- $\mathbf{G}(s)$ is said to be realizable if there exists $\{A, B, C, D\}$ such that

$$
\mathbf{G}(s)=C(s \mathbf{I}-A)^{-1} B+D
$$

- $\{A, B, C, D\}$ is called a realization of $\mathbf{G}(s)$

Theorem

$\mathbf{G}(s)$ is realizable iff $\mathbf{G}(s)$ is a proper rational matrix.

Realizations

Pf.)

(\Rightarrow)
$\mathbf{G}(s)=C(s \mathbf{I}-A)^{-1} B+D$
$\mathbf{G}(\infty)=D, \mathbf{G}_{s p}=C(s \mathbf{I}-A)^{-1} B=\frac{1}{\operatorname{det}(s \mathbf{I}-A)} C[\operatorname{Adj}(s \mathbf{I}-A)] B$
\rightarrow Every entry of $\operatorname{Adj}(s \mathbf{I}-A)$ is the determinent of an
$(n-1) \times(n-1)$ submatrix of $(s \mathbf{I}-A)$, thus it has at most degree $(n-1)$
$\rightarrow \mathbf{G}_{s p}$: strictly proper rational matrix
$\rightarrow C(s \mathbf{I}-A)^{-1} B+D$ is proper rational matrix

Realizations

Pf.cont)

(\Leftarrow)
Assume that $\mathbf{G}(s)$ is a $q \times p$ proper rational matrix.

$$
\begin{aligned}
& \mathbf{G}(s)=\mathbf{G}(\infty)+\mathbf{G}_{s p}(s) . \text { Let } \\
& d(s)=s^{r}+\alpha_{1} s^{r-1}+\cdots+\alpha_{r}
\end{aligned}
$$

be the least common denominator of all entries of $\mathbf{G}_{s p}(s)$.

$$
\mathbf{G}_{s p}(s)=\frac{1}{d(s)}\left[N_{1} s^{r-1}+N_{2} s^{r-2}+\quad+N_{r}\right]
$$

where N_{i} are $q \times p$ constant matrices. We claim that

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{ccc}
-\alpha_{1} \mathbf{I}_{p} & \cdots & -\alpha_{r} \mathbf{I}_{p} \\
\mathbf{I}_{p} & & 0 \\
0 & & \ddots
\end{array} \mathbf{I}_{p}\right] x+\left[\begin{array}{l}
\mathbf{I}_{p} \\
0 \\
0
\end{array}\right] u \\
& y=\left[\begin{array}{llll}
N_{1} & N_{2} & \cdots & N_{r}^{p}
\end{array}\right] x+\mathbf{G}(\infty) u \\
& \text { is a realization of } \mathbf{G}(s) \text {. }
\end{aligned}
$$

Realizations

Pf.cont)

Define

$$
\begin{aligned}
& Z:=(s \mathbf{I}-A)^{-1} B=\left[\begin{array}{lll}
Z_{1}{ }^{T} Z_{2}{ }^{T} \ldots Z_{r}{ }^{T}
\end{array}\right]^{T} \\
& C(s \mathbf{I}-A)^{-1} B=N_{1} Z_{1}+\cdots+N_{r} Z_{r} \\
& (s \mathbf{I}-A) Z=B \\
& \mathrm{sZ}=A Z+B \\
& s Z_{2}=Z_{1}, s Z_{3}=Z_{2} \cdots s Z_{r}=Z_{r-1} \\
& Z_{2}=\frac{1}{s} Z_{1} \quad \cdots \quad Z_{r}=\frac{1}{s} Z_{r-1} \\
& Z_{r}=\frac{1}{s^{r-1}} Z_{1} \\
& A=\left[\begin{array}{ccc}
-\alpha_{1} \mathbf{I}_{p} & \cdots & -\alpha_{r} \mathbf{I}_{p} \\
\mathbf{I}_{p} & & 0 \\
0 & \ddots & \mathbf{I}_{p}
\end{array}\right] \\
& s Z_{1}=-\alpha_{1} Z_{1}-\alpha_{2} Z_{2} \cdots-\alpha_{r} Z_{r}+\mathbf{I}_{p} \\
& =-\left(\alpha_{1}+\frac{\alpha_{2}}{s}+\cdots \frac{\alpha_{r}}{s^{r-1}}\right) Z_{1}+\mathbf{I}_{p}
\end{aligned}
$$

Realizations

Pf.cont)

$$
\begin{gathered}
\left(s^{r}+\alpha_{1} s^{r-1}+\cdots \alpha_{r}\right) Z_{1}=s^{r-1} \mathbf{I}_{p} \\
Z_{1}=\frac{s^{r-1}}{d(s)} \mathbf{I}_{p} \\
\vdots \\
Z_{r}=\frac{1}{d(s)} \mathbf{I}_{p} \\
C(S \mathbf{I}-A)^{-1} B=\frac{1}{d(s)}\left[N_{1} s^{r-1}+\quad N_{r}\right]=G_{s p}(s)
\end{gathered}
$$

Realizations

Eample

$$
\begin{aligned}
G(s) & =\left[\begin{array}{cc}
\frac{4 s-10}{2 s+1} & \frac{3}{s+2} \\
\frac{1}{(2 s+1)(s+2)} & \frac{s+1}{(s+2)^{2}}
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
\frac{-12}{2 s+1} & \frac{3}{s+2} \\
\frac{1}{(2 s+1)(s+2)} & \frac{s+1}{(s+2)^{2}}
\end{array}\right] \\
d(s) & =(s+0.5)(s+2)^{2}=s^{3}+4.5 s^{2}+6 s+2: \text { least common denominator } \\
G_{s p}(s) & =\frac{1}{s^{3}+4.5 s^{2}+6 s+2}\left[\begin{array}{cc}
-6(s+2)^{2} & 3(s+2)(s+0.5) \\
0.5(s+2) & (s+1)(s+0.5)
\end{array}\right] \\
& =\frac{1}{d(s)}\left(\left[\begin{array}{cc}
-6 & 3 \\
0 & 1
\end{array}\right] s^{2}+\left[\begin{array}{cc}
-24 & 7.5 \\
0.5 & 1.5
\end{array}\right] s+\left[\begin{array}{cc}
-24 & 3 \\
1 & 1.5
\end{array}\right]\right) \\
\dot{x} & =\left[\begin{array}{ccc}
-4.5 \mathbf{I} & -6 \mathbf{I} & -2 \mathbf{I} \\
\mathbf{I} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{I} & \mathbf{0}
\end{array}\right] x+\left[\begin{array}{l}
\mathbf{I} \\
\mathbf{0} \\
\mathbf{0}
\end{array}\right] u \\
y & =\left[\begin{array}{cccc}
-6 & 3 & -24 & 7.5 \\
0 & 1 & 0.5 & 1.5 \\
-24 & 1 & 1.5
\end{array}\right] x+\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right] u
\end{aligned}
$$

Realizations

Eample (zero state equivalent)

$$
\begin{aligned}
G(s) & =\left[\begin{array}{c}
\frac{4 s-10}{2 s+1} \\
\frac{1}{(2 s+1)(s+2)}
\end{array}\right]=\left[\begin{array}{l}
2 \\
0
\end{array}\right]+\frac{1}{s^{2}+2.5 s+1}\left(\left[\begin{array}{c}
-6 \\
0
\end{array}\right] s+\left[\begin{array}{c}
-12 \\
0.5
\end{array}\right]\right) \\
\dot{x}_{1} & =\left[\begin{array}{cc}
-2.5 & -1 \\
1 & 0
\end{array}\right] x_{1}+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u_{1,}, y_{1}=\left[\begin{array}{cc}
-6 & -12 \\
0 & 0.5
\end{array}\right] x_{1}+\left[\begin{array}{l}
2 \\
0
\end{array}\right] u_{1,} \\
\dot{x}_{2} & =\left[\begin{array}{cc}
-4 & -4 \\
1 & 0
\end{array}\right] x_{2}+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u_{2,} \quad y_{2}=\left[\begin{array}{cc}
3 & 6 \\
1 & 1
\end{array}\right] x_{2}+\left[\begin{array}{l}
0 \\
0
\end{array}\right] u_{2,},
\end{aligned}
$$

by superposition principle,

$$
y=y_{1}+y_{2}
$$

$$
\dot{x}=\left[\begin{array}{cccc}
-2.5 & -1 & 0 & \\
1 & 0 & 0 & \\
& & -4 & -4 \\
\mathbf{0} & & 1 & 0
\end{array}\right] x+\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right] u, y=\left[\begin{array}{cccc}
-6 & -12 & 3 & 6 \\
0 & 0.5 & 1 & 1
\end{array}\right] x+\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right] u
$$

Solution of LTV Equation

Solution of Linear Time Varying Equation (LTV)

$$
\begin{array}{ll}
\dot{x}(t)=A(t) x(t)+B(t) u(t) & E F \neq F E \\
y(t)=C(t) x(t)+D(t) u(t) & \mathrm{e}^{(F+E) t} \neq \mathrm{e}^{F t} \cdot \mathrm{e}^{E t} \\
\dot{x}=a(t) x(t), x(0) & \\
x(t)=e^{\int_{0}^{t} a(\tau) d \tau} x(0) \\
\frac{d}{d t} e^{\int_{0}^{t} a(\tau) d \tau}=a(t) e^{\int_{0}^{t} a(\tau) d \tau}=e^{\int_{0}^{t} a(\tau) d \tau} a(t)
\end{array}
$$

Solution of LTV Equation

$$
\begin{aligned}
& x(t)=e^{\int_{0}^{t} A(\tau) d \tau} x(0) \cdots(*) \quad \text { Solution? } \\
& \begin{aligned}
& e^{\int_{0}^{t} A(\tau) d \tau}=\mathbf{I}+ \\
& \begin{aligned}
& \frac{d}{d t} \int_{0}^{t} A(\tau) d \tau+\frac{1}{2}\left(\int_{0}^{t} A(\tau) d \tau\right)\left(\int_{0}^{t} A(\tau) d \tau\right)+\ldots \\
&=A(t)+\frac{1}{2} A(t) \int_{0}^{t} A(\tau) d \tau \\
&+\frac{1}{2} \int_{0}^{t} A(\tau) d \tau A(t) \\
& \neq A(t) e^{\int_{0}^{t} A(\tau) d \tau}\left(\because \frac{1}{2} A(t) \int_{0}^{t} A(\tau) d \tau \neq \frac{1}{2} \int_{0}^{t} A(\tau) d \tau A(t)\right)
\end{aligned} \\
& \Rightarrow \dot{x}(t) \neq A(t) x(t)
\end{aligned}
\end{aligned}
$$

In general, $\left(^{*}\right)$ is not solution of linear time varying systems.

Solution of LTV Equation

Fundamental Matrix

Theorem: the set of all solutions of $\dot{x}(t)=A(t) x(t)$
forms an n-dimensional Linear Space.
Pf.) See the second edition.
Define Fundamental Matrix composed of n-linearly
independent solutions as

$$
X(t)=\left[x_{1}(t), x_{2}(t), \cdots, x_{n}(t)\right]
$$

which is a solution of
$\dot{X}(t)=A(t) X(t)$.
If $X(0)=\left[x_{1}(0), x_{2}(0), \cdots, x_{n}(0)\right]$ is nonsingular,
$X(t)$ can be Fundamental Matrix.

Solution of LTV Equation

Example

$$
\dot{x}(t)=\left[\begin{array}{ll}
0 & 0 \\
t & 0
\end{array}\right] x(t)
$$

The solution of $\quad \dot{x}_{1}(t)=0$ for $t_{0}=0$ is $x_{1}(t)=x_{1}(0)$;
the solution of $\quad \dot{x}_{2}(t)=t x_{1}(t)=t x_{1}(0)$ is

$$
\begin{aligned}
& x_{2}(t)=\int_{0}^{t} \tau x_{1}(0) d \tau+x_{2}(0)=0.5 t^{2} x_{1}(0)+x_{2}(0) \\
& x(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \Rightarrow x(t)=\left[\begin{array}{c}
1 \\
0.5 t^{2}
\end{array}\right] ; x(0)=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \Rightarrow x(t)=\left[\begin{array}{c}
1 \\
0.5 t^{2}+2
\end{array}\right] \\
& X(t)=\left[\begin{array}{cc}
1 & 1 \\
0.5 t^{2} & 0.5 t^{2}+2
\end{array}\right]
\end{aligned}
$$

can be Fundamental Matrix.

Solution of LTV Equation

Definition: Let $X(t)$ be any fundamental matrix of

$$
\begin{aligned}
& \dot{x}(t)=A(t) x(t) . \text { Then, } \\
& \Phi\left(t, t_{0}\right):=X(t) X^{-1}\left(t_{0}\right)
\end{aligned}
$$

is called the state transition matrix.
The transition matrix is a unique solution of

$$
\frac{\partial}{\partial t} \Phi\left(t, t_{0}\right)=A(t) \Phi\left(t, t_{0}\right)
$$

with initial condition $\Phi\left(t_{0}, t_{0}\right)=\mathbf{I}$
Note) $\Phi(t, t)=\mathbf{I}, \Phi^{-1}\left(t, t_{0}\right)=\Phi\left(t_{0}, t\right)$

$$
\Phi\left(t, t_{0}\right)=\Phi\left(t, t_{1}\right) \Phi\left(t_{1}, t_{0}\right)
$$

Solution of LTV Equation

Example

$$
\begin{aligned}
& X(t)=\left[\begin{array}{cc}
1 & 1 \\
0.5 t^{2} & 0.5 t^{2}+2
\end{array}\right] \\
& X^{-1}(t)=\left[\begin{array}{cc}
0.25 t^{2}+1 & -0.5 \\
-0.25 t^{2} & 0.5
\end{array}\right] \\
& \Phi\left(t, t_{0}\right)=X(t) X^{-1}\left(t_{0}\right)=\left[\begin{array}{cc}
1 & 0 \\
0.5\left(t^{2}-t_{0}^{2}\right) & 1
\end{array}\right]
\end{aligned}
$$

Solution of LTV Equation

Claim:

$$
x(t)=\Phi\left(t, t_{0}\right) x_{0}+\int_{t_{0}}^{t} \Phi(t, \tau) B(\tau) u(\tau) d \tau
$$

Pf.)

$$
\begin{aligned}
x\left(t_{0}\right) & =x_{0} \\
\dot{x} & =\frac{\partial}{\partial t} \Phi\left(t, t_{0}\right) x_{0}+\frac{\partial}{\partial t} \int_{t_{0}}^{t} \Phi(t, \tau) B(\tau) u(\tau) d \tau \\
& =A(t) \Phi\left(t, t_{0}\right) x_{0}+\Phi(t, t) B(t) u(t)+\int_{t_{0}}^{t} A(t) \Phi(t, \tau) B(\tau) u(\tau) d \tau \\
& =A(t)\left[\Phi\left(t, t_{0}\right) x_{0}+\int_{t_{0}}^{t} \Phi(t, \tau) B(\tau) u(\tau) d \tau\right]+B(t) u(t) \\
& =A(t) x(t)+B(t) u(t)
\end{aligned}
$$

Solution of LTV Equation

Zero-input

$$
y(t)=C(t) \Phi\left(t, t_{0}\right) x\left(t_{0}\right)
$$

Zero-state

$$
\begin{aligned}
y(t) & =\int_{t_{0}}^{t} C(t) \Phi(t, \tau) B(\tau) u(\tau) d \tau+D(t) u(t) \\
& =\int_{t_{0}}^{t}[C(t) \Phi(t, \tau) B(\tau) u(\tau)+D(t) \delta(t-\tau)] u(\tau) d \tau \\
& =\int_{t_{0}}^{t} G(t, \tau) u(\tau) d \tau
\end{aligned}
$$

Impulse Response

$$
\begin{aligned}
G(t, \tau) & =C(t) \Phi(t, \tau) B(\tau)+D(t) \delta(t-\tau) \\
& =C(t) X(t) X^{-1}(\tau) B(\tau)+D(t) \delta(t-\tau)
\end{aligned}
$$

Solution of LTV Equation

If $A(t)$ is commutative (diagonal or constant), i.e,

$$
\begin{aligned}
A(t)\left(\int_{t_{0}}^{t} A(\tau) d \tau\right) & =\left(\int_{t_{0}}^{t} A(\tau) d \tau\right) A(t) \\
\Phi\left(t, t_{0}\right) & =e^{\int_{t_{0}}^{t} A(\tau) d \tau}=\sum_{k=0}^{\infty} \frac{1}{k!}\left(\int_{t_{0}}^{t} A(\tau) d \tau\right)^{k}
\end{aligned}
$$

If A is constant,

$$
\Phi\left(t, t_{0}\right)=e^{A\left(t-t_{0}\right)}, X(t)=e^{A t}
$$

Solution of Discrete-time LTV Equation

Discrete-Time Case

$$
\begin{aligned}
x[k+1] & =A[k] x[k]+B[k] u[k] \\
y[k] & =C[k] x[k]+D[k] u[k]
\end{aligned}
$$

State transition matrix

$$
\begin{aligned}
\Phi\left[k+1, k_{0}\right] & =A[k] \Phi\left[k, k_{0}\right], \Phi\left[k_{0}, k_{0}\right]=\mathbf{I} \\
\Phi\left[k, k_{0}\right] & =A[k-1] A[k-2] \cdots A\left[k_{0}\right] \\
x\left[k_{0}+1\right] & =A\left[k_{0}\right] x\left[k_{0}\right]+B\left[k_{0}\right] u\left[k_{0}\right]
\end{aligned}
$$

Solution of Discrete-time LTV Equation

$$
\begin{aligned}
x\left[k_{0}+2\right]= & A\left[k_{0}+1\right] x\left[k_{0}+1\right]+B\left[k_{0}+1\right] u\left[k_{0}+1\right] \\
= & A\left[k_{0}+1\right] A\left[k_{0}\right] x\left[k_{0}\right]+A\left[k_{0}+1\right] B\left[k_{0}\right] u\left[k_{0}\right] \\
& \quad+B\left[k_{0}+1\right] u\left[k_{0}+1\right] \\
& \vdots[k]= \\
& A[k-1] \ldots A\left[k_{0}\right] x\left[k_{0}\right]+A[k-1] \ldots A\left[k_{0}+1\right] B\left[k_{0}\right] u\left[k_{0}\right] \ldots \\
& +A[k-1] B[k-2] u[k-2]+B[k-1] u[k-1] \\
= & \Phi\left[k, k_{0}\right] x\left[k_{0}\right]+\sum_{m=k_{0}}^{k-1} \Phi[k, m+1] B[m] u[m] \\
y[k]= & C[k] \Phi\left[k, k_{0}\right] x\left[k_{0}\right]+C[k] \sum_{m=k_{0}}^{k-1} \Phi[k, m+1] B[m] u[m]+D[k] u[k]
\end{aligned}
$$

$G[k, m]=C[k] \Phi[k, m+1] B[m]+D[m] \delta[k-m]$: Impulse Response

Equivalent Time-varying Equations

Equivalent Time-varying Equations
Let $\bar{x}=P(t) x(t): P(t)$ is called equivalence transformation

$$
\{A(t), B(t), C(t), D(t)\} \leftrightarrow\{\bar{A}(t), \bar{B}(t), \bar{C}(t), \bar{D}(t)\}
$$

if it satisfies

$$
\begin{aligned}
& \bar{A}(t)=[P(t) A(t)+\dot{P}(t)] P^{-1}(t) \\
& \bar{B}(t)=P(t) B(t) \\
& \bar{C}(t)=C(t) P(t)^{-1} \\
& \bar{D}(t)=D(t)
\end{aligned}
$$

under the assumption that
$P(t)$: nonsingular and $P(t) \& \dot{P}(t)$ are continueus for all t.

Equivalent Time-varying Equations

Verify :

$$
\begin{aligned}
\dot{\bar{x}} & =\dot{P}(t) x+P(t) \dot{x}(t) \\
& =\dot{P}(t) x+P(t)(A(t) x(t)+B(t) u(t)) \\
& =(\dot{P}(t)+P(t) A(t)) P^{-1}(t) \bar{x}(t)+P(t) B(t) u(t) \\
& =\bar{A}(t) \bar{x}(t)+\bar{B}(t) u(t)
\end{aligned}
$$

Claim: $\bar{X}(t)=P(t) X(t)$ is fundamental matrix
Pf.)

$$
\begin{aligned}
\dot{\bar{X}} & =\dot{P}(t) X+P(t) \dot{X}(t) \\
& =\dot{P}(t) X+P(t) A(t) X(t) \\
& =(\dot{P}(t)+P(t) A(t)) P^{-1}(t) \bar{X}(t) \\
& =\bar{A}(t) \bar{X}(t)
\end{aligned}
$$

Equivalent Time-varying Equations

Theorem

Let A_{0} be an arbitrary constant. Then there exists an equivalence transformation For $\bar{A}(t)=A_{0}$.
Pf.)

$$
\begin{aligned}
& X^{-1} X=\mathbf{I} \\
& \dot{X}^{-1} X+X^{-1} \dot{X}=0
\end{aligned}
$$

$$
\bar{A}(t)=A_{0} \quad \Rightarrow \dot{X}^{-1}=-X^{-1} \dot{X} X^{-1}=-X^{-1} A(t)
$$

$$
\bar{X}(t)=e^{A_{0} t}
$$

$$
\bar{X}(t)=P(t) X(t) \rightarrow P(t)=\bar{X}(t) X(t)^{-1}=e^{A_{0} t} X(t)^{-1}
$$

$$
\bar{A}(t)=[P(t) A(t)+\dot{P}(t)] P^{-1}(t)
$$

$$
=\left[P(t) A(t)+A_{0} e^{A_{0} t} X(t)^{-1}-e^{A_{0} t} X^{-1} A(t)\right] P^{-1}(t)
$$

$$
=A_{0}
$$

Equivalent Time-varying Equations

$$
\text { If } \begin{aligned}
& A_{0}=0 \\
& P(t)=X(t)^{-1} \\
& \bar{A}=0, \bar{B}(t)=X(t)^{-1} B(t), \bar{C}(t)=C(t) X(t), \bar{D}(t)=D
\end{aligned}
$$

(a)

(b)

Equivalent Time-varying Equations

Definition

$P(t)$ is called a Lyapunov transformation if
$P(t)$ is nonsingular and
$P(t) \& P^{-1}(t)$ are continuous \& bounded.
Then, $\bar{x}=P(t) x(t)$
$\{A, B, C, D\} \leftrightarrow\{\bar{A}, \bar{B}, \bar{C}, \bar{D}\}$
Lyapunov equivalent
Note) If $P(t)$ is Lyapunov transformation,

$$
\text { so is } P^{-1}(t)
$$

Note) Lyapunov transformation preserves stability.
If LTI Case : equivalence transformation is always Lyapunov Tr.
If $P(t)$ should be Lyapunov Tr., it may not transformed into constant A_{0}, however, if $A(t)$ is periodic, this is true.

Equivalent Time-varying Equations

Verify
Assume $A(t+T)=A(t)$ for all t.
Let $X(t)$ be fundamental matrix, then $X(t+T)$ is also fundamental matrix
$(\because \dot{X}(t+T)=A(t+T) X(t+T)=A(t) X(t+T))$.
Furthermore it can be expressed as

$$
X(t+T)=X(t) Q, \text { where } Q \text { is nonsingular matrix, }
$$

$(\because \dot{X}(t+T)=\dot{X}(t) Q=A(t) X(t) Q=A(t) X(t+T))$.
$\Rightarrow \quad X(t+T)=X(t) e^{\bar{A} T}\left(\Leftarrow \exists \cdot \bar{A} \ni Q=e^{\bar{A} T} \leftarrow\right.$ Problem 3.24)
Define $P(t)=e^{\bar{A} t} X^{-1}(t)(\Rightarrow$ transformation to constant $\bar{A})$

$$
P(t+T)=e^{\bar{A}(t+T)} X^{-1}(t+T)=e^{\bar{A} t} e^{\bar{A} T} e^{-\bar{A} T} X^{-1}(t)=P(t)
$$

$\Rightarrow P(t)$: periodic \Rightarrow bounded \Rightarrow so is $\dot{P}(t)$
\Rightarrow Lyapunov Transformation.

Equivalent Time-varying Equations

Theorem

Assume $A(t)=A(t+T)$ for all $t, X(t)$ be fundamental matrix.
Then $P(t)=e^{\bar{A} t} X^{-1}(t)$ is Lyapunov transformation that yields
Lyapunov equivalent equation of

$$
\begin{aligned}
& \dot{\bar{x}}(t)=\bar{A} \bar{x}(t)+P(t) B(t) u(t) \\
& y(t)=C(t) P^{-1}(t) \bar{x}(t)+D(t) u(t) .
\end{aligned}
$$

Note: The homogeneous part of the Theorem is called the Theory of Floquet.

Time-varying Realizations

Time varying realization

$$
\mathbf{G}(t, \tau) \rightarrow\{A(t), B(t), C(t), D(t)\}
$$

realization

$$
\mathbf{G}(t, \tau)=C(t) X(t) X^{-1}(\tau) B(\tau)+D(t) \delta(t-\tau)
$$

Theorem

$\mathbf{G}(t, \tau)$ is realizable iff it can be decomposed into

$$
\mathbf{G}(t, \tau)=M(t) N(\tau)+D(t) \delta(t-\tau)
$$

Time-varying Realizations

Pf.)

(Sufficiency) $M(t)=C(t) X(t)$

$$
\begin{aligned}
N(\tau) & =X^{-1}(\tau) B(\tau) \\
\dot{x} & =N(t) u(t) \\
y(t) & =M(t) x(t)+D(t) u(t) \\
\dot{x} & =0 x(t) \Rightarrow X(t)=\mathbf{I} \\
x(t) & =\int_{0}^{t} \mathbf{I} \cdot \mathbf{I}^{-1} N(\tau) u(\tau) d \tau \\
y(t) & =\int_{0}^{t}\left(M(t) \cdot \mathbf{I} \cdot \mathbf{I}^{-1} N(\tau)+D(t) \delta(t-\tau)\right) u(\tau) d \tau \\
\mathbf{G}(t, \tau) & =M(t) \cdot \mathbf{I} \cdot \mathbf{I}^{-1} N(\tau)+D(t) \delta(t-\tau)
\end{aligned}
$$

Time-varying Realizations

Example

Consider $g(t)=t e^{\lambda t}$

$$
\begin{aligned}
g(t, \tau) & =g(t-\tau)=(t-\tau) e^{\lambda(t-\tau)} \\
& =\left[e^{\lambda t} t e^{\lambda t}\right]\left[\begin{array}{c}
-\tau e^{-\lambda \tau} \\
e^{-\lambda \tau}
\end{array}\right]
\end{aligned}
$$

Time varying eq.

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] x+\left[\begin{array}{c}
-t e^{-\lambda t} \\
e^{-\lambda t}
\end{array}\right] u \\
& y=\left[\begin{array}{ll}
e^{\lambda t} & t e^{\lambda t}
\end{array}\right] x .
\end{aligned}
$$

Laplace transform of $g(t)$

$$
L[g(t)]=\frac{1}{s^{2}-2 \lambda s+\lambda^{2}}
$$

Time invariant eq.

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{cc}
2 \lambda & -\lambda^{2} \\
1 & 0
\end{array}\right] x+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u \\
& y=\left[\begin{array}{ll}
0 & 1
\end{array}\right] x .
\end{aligned}
$$

HW4-2

Problem 4.16, p. 119 in the Text

Summary

Solution of Linear Systems $\dot{x}=A x+B u$

$$
\begin{aligned}
& x(t)=\Phi\left(t, t_{0}\right) x_{0}+\int_{t_{0}}^{t} \Phi(t, \tau) B(\tau) u(\tau) d \tau \cdots(*) \leftarrow L T V+L T I \\
& x(t)=e^{\mathrm{A}\left(t-t_{0}\right)} x_{0}+\int_{t_{0}}^{t} e^{\mathrm{A}(t-\tau)} \mathrm{B} u(\tau) d \tau \leftarrow L T I \\
& \Phi\left(t, t_{0}\right)=X(t) X^{-1}\left(t_{0}\right): \text { state transition matrix } \\
& X(t)=\left[x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right]: \text { fundamental matrix } \\
& x_{i}(t): \text { LI solutions of } \dot{x}=A x+B u .
\end{aligned}
$$

Expected problem for exam:
Show that (*) is the solution of $\dot{x}=A x+B u$.
Find the solution of $\dot{x}=A x+B u$, where $A=\ldots, B=\ldots$

Summary

Solution of Discrete-time Linear Systems

$$
\begin{aligned}
x[k+1] & =A[k] x[k]+B[k] u[k] \\
x[k] & =\Phi\left[k, k_{0}\right] x\left[k_{0}\right]+\sum_{m=k_{0}}^{k-1} \Phi[k, m+1] B[m] u[m] \\
\Phi\left[k, k_{0}\right] & =A[k-1] \ldots A\left[k_{0}\right]: \text { state transition matrix } \\
& =A^{k-k_{0}} \text { for LTI. }
\end{aligned}
$$

Summary

Equivalence

$$
\begin{aligned}
& \begin{array}{l}
\dot{x}=A x+B u \\
y=C x+D u
\end{array} \longleftrightarrow \begin{array}{c}
\bar{x}=P x
\end{array} \longleftrightarrow \begin{array}{l}
\dot{\bar{x}}=\bar{A} \bar{x}+\bar{B} u \\
y=\bar{C} \bar{x}+\bar{D} u
\end{array} \\
& \bar{A}=[P A+\dot{P}] P^{-1}, \dot{P}=0 \text { for LTI, } \\
& \bar{B}=P B, \quad \bar{C}=C P^{-1}, \quad \bar{D}=D \\
& A(t) \underset{P(t)=e^{A_{0} t} X^{-1}(t)}{\longleftrightarrow} \bar{A}=A_{0}: \text { constant }
\end{aligned}
$$

$P(t) \& P^{-1}(t)$: nonsingular, continuous, bounded
$\rightarrow P(t) \& P^{-1}(t)$: Lyapunov transformation
Zero State Equivalence

$$
\begin{aligned}
& D+C(s \mathbf{I}-A)^{-1} B=\bar{D}+\bar{C}(s \mathbf{I}-\bar{A})^{-1} \bar{B} \\
& D=\bar{D} \& C A^{m} B=\overline{C A}^{m} \bar{B}, m=0,1,2, \cdots
\end{aligned}
$$

Summary

$$
\text { If } \begin{aligned}
& A_{0}=0 \\
& P(t)=X(t)^{-1} \\
& \bar{A}=0, \bar{B}(t)=X(t)^{-1} B(t), \bar{C}(t)=C(t) X(t), \bar{D}(t)=D
\end{aligned}
$$

(a)

(b)

Summary

Realization

$\mathbf{G}(s)$ is a proper rational matrix.
\exists a realization $\{A, B, C, D\}$ such that $\mathbf{G}(s)=C^{\prime}(s \mathbf{I}-A)^{-1} B+D$.
For example

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{ccc}
-\alpha_{1} \mathbf{I}_{p} & \cdots & -\alpha_{r} \mathbf{I}_{p} \\
\mathbf{I}_{p} & & 0 \\
0 & \ddots & \mathbf{I}_{p}
\end{array}\right] x+\left[\begin{array}{l}
\mathbf{I}_{p} \\
0 \\
0
\end{array}\right] u \\
& y=\left[N_{1} N_{2} \cdots N_{r}\right] x+\mathbf{G}(\infty) u \\
& \text { is a realization of } \mathbf{G}(s) . \text { Here, } \\
& \mathbf{G}(s)=\mathbf{G}(\infty)+\mathbf{G}_{s p}(s) . \\
& \mathbf{G}_{s p}(s)=\frac{1}{d(s)}\left[N_{1} s^{r-1}+N_{2} s^{r-2}+\right. \\
& d(s)=s^{r}+\alpha_{1} s^{r-1}+\cdots+\alpha_{r} .
\end{aligned}
$$

