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Solutions of LTI State Equations

2Linear Systems

( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
y t Cx t Du t

= +
= +



( ) ( ) ( )

( ( )) ( )

At At At

At At

e x t e Ax t e Bu t
d e x t e Bu t
dt

− − −

− −

− =

=



By integration

 Ate−×

0 0

0

( )

0

( ) ( )

( ) (0) ( )

( ) (0) ( )

ttA A

tAt A

tAt A t

e x e Bu d

e x t x e Bu d

x t e x e Bu d

τ τ

τ

τ

τ

τ τ τ

τ τ

τ τ

− −

=

− −

−

=

− =

= +

∫
∫

∫
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Taking derivative of 

3Linear Systems

( )

0

( )

0

( ) (0) ( ) ( )

( ) ( )

( ) (0) ( ) ( )

( ) ( )

tAt A t

tAt A t

x t Ae x A e Bu d Bu t

Ax t Bu t

y t Ce x C e Bu d Du t

Cx t Du t

τ

τ

τ τ

τ τ

−

−

= + +

= +

= + +

= +

∫

∫



( )x t
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Calculation of 1( )s A −−I
1

1 1 1

1. Direct Cal. of  ( )
2.  ( ) ( )

ˆ3. ( ) ( )
4. Infinite Power Series
5. Problem 3.26 (Leverrier algorithm)

s A
f A h A

s A Q s A Q

−

− − −

−
=

− = −

I

I I

Calculation of Ate

ˆ1 1

1 1

1. ( )
ˆ2. ,

3. Infinite Power Series
4. ( )

At

At At

At

e h A

A QAQ e Qe Q

e L s A

− −

− −

=

= =

= −I
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Example

( )

0
1

1
2

2 2

2 2

0 1 0
( ) ( ) ( )

1 2 1

( ) (0) ( )

1 2 11( )
1 2 12 1

2 1
( 1) ( 1)

1
( 1) ( 1)

tAt A t

x t x t u t

x t e x e Bu d

s s
sI A

s ss s
s
s s

s
s s

τ τ τ−

−
−

−   
= +   −   

= +

+ −   
− = =   − + + +   

+ − 
 + + =
 
 + + 

∫
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Example(cont.)
1 1

2 2
1

2 2

( )

0

( )

0

[( ) ]
2 1

( 1) ( 1) (1 )
1 (1 )

( 1) ( 1)

( ) ( )(1 )
( ) (0)

(1 ) [1 ( )] ( )

At

t t

t t

t tt t

t t t t

e L sI A
s
s s t e te

L
s te t e

s s

t e u dt e te
x t x

te t e t e u d

τ

τ

τ τ τ

τ τ τ

− −

− −
−

− −

− −
− −

− −
− −

= − =

+ − 
   + + + − = =    − 
 + + 

 − + −  = +   −  − −  

∫
∫
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Problem 4.1 p.117 in Text
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Note)

1 1 1

1 1

1

1

2

ˆ 1

2

ˆ

ˆ :  Jordan form

/ 2! 0 0
0 ...

0 0
... 0 0

0 0

At At

t t t

t t

At t

t

t

e Qe Q A

e te t e
e te

e e
e

e

λ λ λ

λ λ

λ

λ

λ

−= ←

 
 
 
 =
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Approximated Eq.

[ ]
[ ] [ ] [ ]
[ ] [ ] [ ]

( ) ( ) ( ) ( )
,  ( ) ( ) :

1 ( )

 least accurate results

x t T x t Ax t T Bu t T
t kT x t x kT x k

x k TA x k TBu k

y k Cx k Du k

+ = + +

= = =

+ = Ι + +

= +

⇒

Discretization

0

( ) ( ) ( )
( ) ( ) ( )

( ) ( )( ) lim
T

x t Ax t Bu t
y t Cx t Du t

x t T x tx t
T→

= +
= +

+ −
=
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Different Method

[ ]

[ ]

[ ]

( )

0
( 1)( 1) (( 1) )

0

( )

0

( 1) ( )

       ( ) (0) ( )

  1 (0) ( )

              (0) ( )

   ( )

      ( ( ) ( ) :   

kTAkT A kT

k TA k T A k T

kTAT AkT A kT

k T A kT T

kT

x k x kT e x e Bu d

x k e x e Bu d

e e x e Bu d

e Bu d

u t u kT u k kT t

τ

τ

τ

τ

τ τ

τ τ

τ τ

τ τ

−

++ + −

−

+ + −

= = +

+ = +

 = +  

+

= = ≤

∫
∫

∫

∫

[ ] [ ] [ ]
[ ] [ ] [ ]

0

( 1)

      1

      x 1

TAT A

d d

k T

x k e x k e d Bu k

k A x k B u k

α α

< +

+ = +

+ = +

∫
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0
2

2

0 0

2 3
2

2 3
1 2 3

1

     ,   ( ) ,  ,  

( ) ( )
2!

 
2! 3!

(  )
2! 3!

( )
      

TAT A
d d d d

T TA

AT

A e B e d B C C D D

e d I A A d

T TTI A A

T TA I I TA A A

A I e

τ

τ

τ

ττ τ τ

−

−

= = = =

= + + +

= + + +

= − + + + + +

= − +

∫

∫ ∫ 





If   is nonsingularA
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Solution

[ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ]

2

1
1

0

1

1 2
1 1 1

1
1 1

1

2

1 0 0

2 1 1 0 0 1

0

ˆ

( 1) 0
2!

0ˆ
0 0

0 0 ... 0
0 0 0

k
k k m

m

k k

k k k

k k
k

k

k

x Ax Bu

x Ax Bu A x ABu Bu

x k A x A Bu m

A Q A Q
k kk

k
A

λ λ λ

λ λ
λ

λ

−
− −

=

−

− −

−

= +

= + = + +

= +

= ⋅

− 
 
 
 

=  
 
 
 
 

∑
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Example:

state1: 1 2Inductor current ( ), Capacitor voltage ( )x t x t
state2: 1 2Loop current ( ),  ( )x t x t

( ) ( )s s=G G
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Example(cont.):

state1: 1 2Inductor current ( ), Capacitor voltage ( )x t x t

state2: 1 2Loop current ( ),  ( )x t x t

1 1

2 2

( ) ( )0 1 1
( )

( ) ( )1 1 0
( ) [0 1] ( )

x t x t
u t

x t x t
y t x t

−      
= +      −      
=





11

22

( )1 1 1( )
( )

( )1 0 1( )
( ) [1 1] ( )

x tx t
u t

x tx t
y t x t

−      
= +      −     
= −





The two equations describe the same circuit network, and 
They are said to be equivalent to each other.
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Equivalence Transformation

            
           ( )
           ( )

x Px
x Ax Bu t
y Cx Du t

=

= +

= +



Definition: Let     be nonsingular matrix and let 

x Px=

1 1  ,  ,  ,  A PAP B PB C CP D D− −= = = =
where

 is said to be equivalent to  
is called an equivalence transformation

P

{ , , , }A B C D
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1

1

1 1

1 1

1

( ) ( )
( ) ( )

( )
( )

,  

x t P x t
x t P x t

P Ax P Bu t
P APx P Bu t
Ax Bu
A PAP B PB

−

−

− −

− −

−

=

=

= +

= +
= +

⇒ = =





1 1

1

1

( ) det( ) det( )
det( ( ) )
det det( )det det( )

( )

A PP PAP
P A P
P A P A

λ λ λ
λ

λ λ
λ

− −

−

−

∆ = − = −

= −

= − = −
= ∆

I
I

I I

( ) ( )s s=G G
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Example:

1 1

2 1 2

1 1

2 2

( ) ( )
( ) ( ) ( )

1 0
1 1

x t x t
x t x t x t
x x
x x

=
= −

    
=    −    
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Zero-state equivalent
1 1Z-s-e if ( ) ( ) , . .

                         ( ) ( ) , state dimension may be different
D C s A B D C s A B i e

s s

− −+ − = + −

=

I I
G G

Theorem 4.1

1 2 2 3

1 2 2 3                 
D CBs CABs CA Bs

D CBs CABs CA Bs

− − −

− − −

+ + + +

= + + + +





Pf.)

{ , , , }&{ , , , } are
Zero-state-equivalent   &

,  0,1, 2,m m

A B C D A B C D
if D D

CA B CA B m
=

= =





Zero-input equivalent
Z-i-e if for zero input, outputs are identical.
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Example

( ) ( ) 0.5 ( ), 0,  0.5
( ) ( ), 0.5 ( ) 0.5 ( ), 1,  0,  0.5,  0.5

0  zero state equivalentm m

a y t u t A B C D
b x x t y x t u t A B C D

CA B CA B

= = = = =

= = + = = = =

⇒ = = ⇒
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Realization

1

 ( ) is said to be realizable if 
   there exists { , , , } such that 
   ( ) ( )
 { , , , } is called a realization of ( )

s
A B C D

s C s A B D
A B C D s

−

•

= − +
•

G

G I
G

Theorem

( ) is  realizable if  ( ) is a proper
rational matrix.

s f sG G
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1

1

( )
( ) ( )

1( ) , ( ) [ ( )]
det( )

Every entry of ( ) is the determinent of an 
     ( 1) ( 1) submatrix of ( ), 
     thus it has at most degree ( 1)

:  str

sp

sp

s C s A B D

D C s A B C Adj s A B
s A

Adj s A
n n s A

n

−

−

⇒

= − +

∞ = = − = −
−

→ −
− × − −

−
→

G I

G G I I
I

I
I

G
1

ictly proper rational matrix

( )  is proper  rational matrixC s A B D−→ − +I

Pf.)
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1
1

1 2
1 2

( )
Assume that ( ) is a  proper rational matrix.

( ) ( ) ( ).  Let
( )

be the least common denominator of all entries of ( ).
1( )        ,
( )

where  

sp
r r

r

sp

r r
sp r

i

s q p
s s

d s s s
s

s N s N s N
d s

N

α α−

− −

⇐
×

= ∞ +
= + + +

 = + + + 

G
G G G

G

G



[ ]

1

1 2

 are  constant matrices. We claim that 

           0 0
0 0        

  ( )
is a realization of ( ).

p r p p

p

p

r

q p

x x u

y N N N x u
s

α α
×

 − −  
   

= +   
   

   
= + ∞

I I I
I

I
G

G









Pf.cont)
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1
1 2

1
1 1

2 1 3 2 1

2 1 1

11

1 1 1 2 2

: ( ) [ ... ]

( )
( )
s

 , 
1 1          ...         

1                                     =

  

T T T T
r

r r

r r

r r

r r

r r p

Z s A B Z Z Z
C s A B N Z N Z
s A Z B
Z AZ B

sZ Z sZ Z sZ Z

Z Z Z Z
s s

Z Z
s

sZ Z Z Zα α α

−

−

−

−

−

= − =

− = + +
− =
= +
= = =

= =

= − − − +

I
I

I

I







2
1 11   ( )r

pr Z
s s
α αα −= − + + + I

Define
Pf.cont)

1

           0

0        

p r p

p

p

A

α α − −
 

=  
 
  

I I

I

I





0
0 

p

B
 
 

=  
 
 

I
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1 1
1 1

1

1

1 1
1

( )

                          
( )

                          
1                          
( )

1( ) [          ] ( )
( )

r r r
r p

r

p

r p

r
r sp

s s Z s

sZ
d s

Z
d s

C S A B N s N G s
d s

α α− −

−

− −

+ + =

=

=

− = + =

I

I

I

I





Pf.cont)
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2 2

2 3 2

2

3 2

4 10 3 12 3
2 02 1 2 2 1 2( )

1 1 1 10 0
(2 1)( 2) ( 2) (2 1)( 2) ( 2)

( ) ( 0.5)( 2) 4.5 6 2 :  least common denominator

6( 2) 3( 2)1( )
4.5 6 2sp

s
s s s sG s

s s
s s s s s s

d s s s s s s

s s
G s

s s s

− −   
    + + + +   = = + + +    
   + + + + + +   

= + + = + + +

− + +
=

+ + +

2

( 0.5)
0.5( 2) ( 1)( 0.5)

6 3 24 7.5 24 31
0 1 0.5 1.5 1 1.5( )

4.5 6 2

6 3 24 7.5 24 3 2 0
0 1 0.5 1.5 1 1.5 0 0

s
s s s

s s
d s

x x u

y x u

 +
 + + + 

 − − −     
= + +      

      
− − −   
   = +   
      
− − −   

= +   
   

I I I I
I 0 0 0
0 I 0 0



Eample
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2

1 1 1 11, 1,

2 2 2 22,

4 10
2 6 1212 1( )

1 0 0 0.52.5 1
(2 1)( 2)

2.5 1 1 6 12 2
1 0 0 0 0.5 0

4 4 1 3 6 0
1 0 0 1 1 0

s
sG s s

s s
s s

x x u y x u

x x u y x

− 
   − −     + = = + +      + +        
 + + 
− − − −       

= + = +       
       
− −      

= + = +     
     





2,

1 2

by superposition principle,

2.5 1 1 0
1 0 0 0 6 12 3 6 2 0

,
4 4 0 1 0 0.5 1 1 0 0

1 0 0 0

u

y y y

x x u y x u


 
 

= +

− −   
    − −      = + = +      − −    
   
   

0

0


Eample (zero state equivalent)
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( )

( ) ( ) ( ) ( ) ( )                    
( ) ( ) ( ) ( ) ( )           e  e  e  F E t Ft Et

x t A t x t B t u t EF FE
y t C t x t D t u t +

= + ≠

= + ≠ ⋅



Solution of Linear Time Varying Equation (LTV)

0

0 0 0

( )

( ) ( ) ( )

( ) ( ),  (0)

( ) (0)

( ) ( )

t

t t t

a d

a d a d a d

x a t x t x

x t e x
d e a t e e a t
dt

τ τ

τ τ τ τ τ τ

=

∫=

∫ ∫ ∫= =
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In general, (*) is not solution of linear time varying systems.

0

0

0

0

( )

( )

0 0 0

( )

0

0

( )

( ) (0) (*)    Solution?
1( ) ( ( ) )( ( ) )+...
2

1( ) ( ) ( )
2

1                    ( ) ( )
2

1                ( ) ( ( ) (
2

t

t

t

t

A d

t t tA d

tA d

t

A d

x t e x

e A d A d A d

d e A t A t A d
dt

A d A t

A t e A t A

τ τ

τ τ

τ τ

τ τ

τ τ τ τ τ τ

τ τ

τ τ

∫= ⋅⋅⋅

∫ = + +

∫ = +

+

∫≠

∫ ∫ ∫

∫

∫

I



0 0

1) ( ) ( ))
2

( ) ( ) ( )

t t
d A d A t

x t A t x t

τ τ τ τ≠

⇒ ≠

∫ ∫
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Fundamental Matrix

1 2

1 2

( ) [ ( ), ( ), , ( )]
which is a solution of           

( ) ( ) ( ).
If (0) [ (0), (0), , (0)] is nonsingular,

( ) can be Fundamental Matrix.

n

n

X t x t x t x t

X t A t X t
X x x x

X t

=

=

=







Theorem: the set of all solutions of  
forms an n-dimensional Linear Space.

( ) ( ) ( )x t A t x t=

Pf.) See the second edition.

Define Fundamental Matrix composed of n-linearly 
independent solutions as
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Example

1 0 1 1

2 1 1

2
2 1 2 1 20

2

0 0
( ) ( )

0

The solution of ( ) 0 for 0 is ( ) (0);

the solution of ( ) ( ) (0) is

( ) (0) (0) 0.5 (0) (0)

1 1 1 1
(0) ( ) ; (0) ( )

0 0.5 2

t

x t x t
t

x t t x t x

x t tx t tx

x t x d x t x x

x x t x x t
t

τ τ

 
=  
 

= = =

= =

= + = +

     
= ⇒ = = ⇒ =     
     

∫







2

2 2

0.5 2

1 1
( ) =

0.5 0.5 2
can be Fundamental Matrix.

t

X t
t t

 
 + 

 
 + 
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Definition: Let         be any fundamental matrix of 

is called the state transition matrix.

The transition matrix is a unique solution of

( )X t

1
0 0

( ) ( ) ( ). Then,
( , ) : ( ) ( )

x t A t x t
t t X t X t−

=

Φ =



0 0( , ) ( ) ( , )t t A t t t
t
∂
Φ = Φ

∂
with initial condition 0 0( , )t tΦ = I

1
0 0

0 1 1 0

( , ) ,  ( , ) ( , )
( , ) ( , ) ( , )
t t t t t t
t t t t t t

−Φ = Φ = Φ
Φ = Φ Φ

INote) 
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Example

2 2

2
1

2

1
0 0 2 2

0

1 1
( ) =

0.5 0.5 2

0.50.25 1
( ) =

0.50.25

1 0
( , ) ( ) ( )

0.5( ) 1

X t
t t

t
X t

t

t t X t X t
t t

−

−

 
 + 

− +
 − 

 
Φ = =  − 
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Claim:

0
0 0( ) ( , ) ( , ) ( ) ( )

t

t
x t t t x t B u dτ τ τ τ= Φ + Φ∫

Pf.)

0

0

0

0 0

0 0

0 0

0 0

( )

( , ) ( , ) ( ) ( )

( ) ( , ) ( , ) ( ) ( ) ( ) ( , ) ( ) ( )

( )[ ( , ) ( , ) ( ) ( ) ] ( ) ( )

( ) ( ) ( ) ( )

t

t

t

t

t

t

x t x

x t t x t B u d
t t

A t t t x t t B t u t A t t B u d

A t t t x t B u d B t u t

A t x t B t u t

τ τ τ τ

τ τ τ τ

τ τ τ τ

=
∂ ∂

= Φ + Φ
∂ ∂

= Φ +Φ + Φ

= Φ + Φ +

= +

∫

∫

∫
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Zero-input

0 0( ) ( ) ( , ) ( )y t C t t t x t= Φ

Zero-state

0

0

0

( ) ( ) ( , ) ( ) ( ) ( ) ( )

[ ( ) ( , ) ( ) ( ) ( ) ( )] ( )

( , ) ( )

t

t

t

t

t

t

y t C t t B u d D t u t

C t t B u D t t u d

G t u d

τ τ τ τ

τ τ τ δ τ τ τ

τ τ τ

= Φ +

= Φ + −

=

∫

∫

∫
Impulse Response

1

( , ) ( ) ( , ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

G t C t t B D t t
C t X t X B D t t

τ τ τ δ τ
τ τ δ τ−

= Φ + −

= + −



Perception and Intelligence Laboratory
School of Electrical Engineering at SNU

Solution of LTV Equation

35Linear Systems

If        is commutative (diagonal or constant), i.e, 

If A is constant,

( )A t

0 0

0

0

( )

0
0

( )( ( ) ) ( ( ) ) ( )

1( , ) ( ( ) )
!

t

t

t t

t t

A d t k

t
k

A t A d A d A t

t t e A d
k

τ τ

τ τ τ τ

τ τ
∞

=

=

∫Φ = =

∫ ∫

∑ ∫

0( )
0( , ) ,  ( )A t t Att t e X t e−Φ = =
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Discrete-Time Case

[ 1] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]

x k A k x k B k u k
y k C k x k D k u k
+ = +

= +

State transition matrix

0 0 0 0

0 0

0 0 0 0 0

[ 1, ] [ ] [ , ],  [ , ]
[ , ] [ 1] [ 2] [ ]

[ 1] [ ] [ ] [ ] [ ]

k k A k k k k k
k k A k A k A k

x k A k x k B k u k

Φ + = Φ Φ =
Φ = − −

+ = +

I
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0 0 0 0 0

0 0 0 0 0 0

0 0

0 0 0 0 0

[ 2] [ 1] [ 1] [ 1] [ 1]
[ 1] [ ] [ ] [ 1] [ ] [ ]

                                         [ 1] [ 1]

[ ] [ 1]... [ ] [ ] [ 1]... [ 1] [ ] [ ]...
[ 1] [ 2] [

x k A k x k B k u k
A k A k x k A k B k u k

B k u k

x k A k A k x k A k A k B k u k
A k B k u k

+ = + + + + +
= + + +

+ + +

= − + − +
+ − −



0

0

1

0 0

1

0 0

2] [ 1] [ 1]

[ , ] [ ] [ , 1] [ ] [ ]

[ ] [ ] [ , ] [ ] [ ] [ , 1] [ ] [ ] [ ] [ ]

[ , ] [ ] [ , 1] [ ] [ ] [ ] :  Impulse Response

k

m k

k

m k

B k u k

k k x k k m B m u m

y k C k k k x k C k k m B m u m D k u k

G k m C k k m B m D m k mδ

−

=

−

=

− + − −

= Φ + Φ +

= Φ + Φ + +

= Φ + + −

∑

∑
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Equivalent Time-varying Equations

( ) ( )
{ ( ), ( ), ( ), ( )} { ( ), ( ), ( ), ( )}
                                equivalent

x P t x t
A t B t C t D t A t B t C t D t
=

↔

if it satisfies

Let                     :         is called equivalence transformation

1

1

( ) [ ( ) ( ) ( )] ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

A t P t A t P t P t
B t P t B t
C t C t P t
D t D t

−

−

= +

=

=

=



under the assumption that 
          ( ) :  nonsingular and ( ) & ( ) are continueus for all .P t P t P t t

( )P t
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Verify :

1

( ) ( ) ( )
( ) ( )( ( ) ( ) ( ) ( ))

( ( ) ( ) ( )) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

x P t x P t x t
P t x P t A t x t B t u t
P t P t A t P t x t P t B t u t

A t x t B t u t

−

= +

= + +

= + +

= +










1

( ) ( ) ( )
( ) ( ) ( ) ( )

( ( ) ( ) ( )) ( ) ( )
( ) ( )

X P t X P t X t
P t X P t A t X t
P t P t A t P t X t

A t X t

−

= +

= +

= +

=



 





Claim:                          is fundamental matrix
Pf.)

( ) ( ) ( )X t P t X t=
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Theorem

0

0

0 0

0

1 1

1

1 1 1
0

0

( )

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) [ ( ) ( ) ( )] ( )

       [ ( ) ( ) ( ) ( )] ( )
       

A t

A t

A t A t

A t A

X t e
X t P t X t P t X t X t e X t
A t P t A t P t P t

P t A t A e X t e X A t P t
A

− −

−

− − −

=

=

= → = =

= +

= + −
=



Let        be an arbitrary constant. Then
there  exists an equivalence transformation
For                 .

0A

0( )A t A=
Pf.) 1

1 1

1 1 1 1

0
( )

X X
X X X X

X X XX X A t

−

− −

− − − −

=

+ =

⇒ = − = −

I
 

 



Perception and Intelligence Laboratory
School of Electrical Engineering at SNU

Equivalent Time-varying Equations

41Linear Systems

0
1

1

0

( ) ( )
0, ( ) ( ) ( ), ( ) ( ) ( ), ( )

A

P t X t
A B t X t B t C t C t X t D t D

−

−

=

=

= = = =

If

u
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Definition
is called a Lyapunov transformation if
is nonsingular and 

are continuous & bounded.
Then, 

( )P t
( )P t

1( ) & ( )P t P t−

( ) ( )
{ , , , } { , , , }
          Lyapunov equivalent

x P t x t
A B C D A B C D
=

↔

Note) If        is Lyapunov transformation,

so is          .
Note) Lyapunov transformation preserves stability.
If LTI Case : equivalence transformation is always Lyapunov Tr.
If P(t) should be Lyapunov Tr., it may not transformed into constant A0,

however, if        is periodic, this is true.

( )P t
1( )P t−

( )A t
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Verify
Assume ( ) ( ) for all  .
Let ( ) be fundamental matrix, 
then ( ) is also fundamental matrix
( ( ) ( ) ( ) ( ) ( )).
Furthermore it can be expressed  as
             ( ) ( ) ,  whe

A t T A t t
X t
X t T

X t T A t T X t T A t X t T

X t T X t Q

+ =

+

+ = + + = +

+ =





1

( ) 1

re    is nonsingular matrix,
( ( ) ( ) ( ) ( ) ( ) ( )).

        ( ) ( ) ( Problem 3.24)

Define  ( ) ( )( transformation to constant )

            ( ) (

AT AT

At

A t T

Q
X t T X t Q A t X t Q A t X t T

X t T X t e A Q e

P t e X t A

P t T e X t

−

+ −

+ = = = +

⇒ + = ⇐∃⋅ ∋ = ←

= ⇒

+ =

 



1) ( ) ( )
 ( ) : periodic bounded so is ( ) 
Lyapunov Transformation.

At AT ATT e e e X t P t
P t P t

− −+ = =

⇒ ⇒ ⇒
⇒
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Theorem

1

1

Assume ( ) ( ) for all , ( ) be fundamental matrix.

Then ( ) ( ) is Lyapunov transformation that yields
Lyapunov equivalent equation of 
        ( ) ( ) ( ) ( ) ( )
        ( ) ( ) (

At

A t A t T t X t

P t e X t

x t Ax t P t B t u t
y t C t P t

−

−

= +

=

= +

=



) ( ) ( ) ( ).x t D t u t+

Note: The homogeneous part of the Theorem is called the 
Theory of Floquet.
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Time varying realization

1

( , ) { ( ), ( ), ( ), ( )}
         realization

( , ) ( ) ( ) ( ) ( ) ( ) ( )

t A t B t C t D t

t C t X t X B D t t

τ

τ τ τ δ τ−

→

= + −

G

G

Theorem 
( , ) is realizable iff it can be decomposed into

            ( , ) ( ) ( ) ( ) ( ).
t

t M t N D t t
τ

τ τ δ τ= + −
G

G
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Pf.)

1

1

0

1

0
1

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )
0 ( ) ( )

( ) ( ) ( )

( ) ( ( ) ( ) ( ) ( )) ( )

( , ) ( ) ( ) ( ) ( )

t

t

Sufficiency M t C t X t
N X B

x N t u t
y t M t x t D t u t

x x t X t

x t N u d

y t M t N D t t u d

t M t N D t t

τ τ τ

τ τ τ

τ δ τ τ τ

τ τ δ τ

−

−

−

−

=

=
=
= +
= ⇒ =

= ⋅

= ⋅ ⋅ + −

= ⋅ ⋅ + −

∫
∫

I

I I

I I

G I I







Perception and Intelligence Laboratory
School of Electrical Engineering at SNU

Time-varying Realizations

47Linear Systems

Example

( )

Consider ( )
( , ) ( ) ( )

             [ ]

Time varying eq. 

0 0
    

0 0

    [ ] .

t

t

t t

t

t

t t

g t te
g t g t t e

e
e te

e

te
x x u

e

y e te x

λ

λ τ

λτ
λ λ

λτ

λ

λ

λ λ

τ τ τ

τ

−

−

−

−

−

=

= − = −

 −
=  

 

 − 
= +   
   

=



2 2

2

Laplace transform of ( )
1    [ ( )]

2
Time invariant eq. 

12
   

01 0
    [0 1] .

g t

L g t
s s

x x u

y x

λ λ

λ λ

=
− +

 −  
= +   

  
=
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Problem 4.16, p. 119 in the Text 
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Solution of Linear Systems 

0
0 0( ) ( , ) ( , ) ( ) ( ) (*)

t

t
x t t t x t B u d LTV LTIτ τ τ τ= Φ + Φ ⋅⋅⋅ ← +∫

x Ax Bu= +

0

0

A( ) A( )
0( ) B ( )

tt t t

t
x t e x e u d LTIτ τ τ− −= + ←∫

1
0 0

1 2

( , ) ( ) ( ) : state transition matrix 
( ) [ ( ), ( ), ..., ( )] : fundamental matrix
( ) : LI solutions of .

Expected problem for exam:
     Show that  (*) is the solution of .
    

n

i

t t X t X t
X t x t x t x t
x t x Ax Bu

x Ax Bu

−Φ =
=

= +

= +





 Find the solution of ,  where ... ,  ...x Ax Bu A B= + = =
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Solution of Discrete-time Linear Systems 

[ 1] [ ] [ ] [ ] [ ]x k A k x k B k u k+ = +

0

0

1

0 0

0 0

[ ] [ , ] [ ] [ , 1] [ ] [ ]

[ , ] [ 1]... [ ] :  state transition matrix

  for LTI.

k

m k

k k

x k k k x k k m B m u m

k k A k A k

A

−

=

−

= Φ + Φ +

Φ = −

=

∑
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Equivalence
x Ax Bu
y Cx Du
= +
= +

 x Ax Bu
y Cx Du
= +

= +

x Px=

1

1

[ ] ,  0 for LTI, 
, ,

A PA P P P
B PB C CP D D

−

−

= + =

= = =

 

1 1( ) ( )D C s A B D C s A B− −+ − = + −I I

Zero State Equivalence

 & ,  0,1, 2,m mD D CA B CA B m= = = 

( )A t 0 : constantA A=
0 1( ) ( )A tP t e X t−=

1

1

( ) & ( ) : nonsingular, continuous, bounded 
                      ( ) & ( ) : Lyapunov transformation
P t P t

P t P t

−

−→
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0
1

1

0

( ) ( )
0, ( ) ( ) ( ), ( ) ( ) ( ), ( )

A

P t X t
A B t X t B t C t C t X t D t D

−

−

=

=

= = = =

If

u
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[ ]

1

1

1 2

( ) is a proper rational matrix.

  a realization {A,B,C,D} such that ( ) ( ) .

For example

           0 0
0 0        

  ( )
is a realiz

p r p p

p

p

r

s

s C s A B D

x x u

y N N N x u

α α

−
⇔

′∃ = − +

 − −  
   

= +   
   

   
= + ∞

G

G I

I I I
I

I
G









1 2
1 2

1
1

ation of ( ).  Here,
( ) ( ) ( ).  

1( )        
( )

           ( ) .

sp

r r
sp r

r r
r

s
s s

s N s N s N
d s
d s s sα α

− −

−

= ∞ +

 = + + + 
= + + +

G
G G G

G



Realization
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