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Theorem 5.1
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Note) Even if ( )  ,

( ) may not be bounded or may not converge to zero.

g d

g

τ τ

τ

< ∞∫

2
2

1 ,  but lim ( )
tn

g t
n

∞

→∞
=
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Lemma: The uniformly continuous function 
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Theorem 5.2 

0 0 0 0

If  ( ) is BIBO stable,
for ( ) ,   lim ( ) (0)

for ( ) sin , lim ( )= ( ) sin( ( )),

where ( ) is Lapace transform of ( ).
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0
0( , )  for all , 0

t

t
g t d M t tτ τ ≤ < ∞ >∫

Theorem 5.3

Note) MIMO is BIBO.

iff ( ) is BIBO stable (Theorem 5.M1, Theorem 5.M3).ijg t
Note) 

Time varying system is BIBO stable iff

A SISO system with proper rational transfer function (s) is 
BIBO stable iff every pole of  (s) has a negative real part.

g
g
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Example) unity-feedback system

1 1

0
1

( ) ( ) ( ) ( )

                        if 1 
( )

/(1 )    if 1

This system is BIBO stable iff the gain  has a magnitude less than 1.

(s)=  is no
1

ii

i i

i

i

s

s

g t a t i g t a t i

a
g t dt a

a a a

a
se

ae

δ δ
∞ ∞

= =

∞∞

=

−

−

= − → = −

 ∞ ≥= =  − < ∞ <

−

∑ ∑

∑∫

g t rational function and Theorem 5.3 is not applicable.

Unit time 
delay

a
( )u t ( )y t
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Example

1

1

( ), 0.5 ( ) 0.5 ( ),
1,  0,  0.5,  0.5

( ) ( )
0.5( 1) 0 0.5 0.5

T

x x t y x t u t
A B C D
s C sI A B D

s

−

−

= = +

= = = =

= − +

= − + =

g



BIBO stable even if it has positive real part eigenvalue.
Internal stability (state stability is needed).

→
→
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Discrete-Time Case

[ ] [ ] [ ]
0

k

m
y k g k m u m

=

= −∑

Theorem 5.D.1

[ ]

[ ]
0

Discrete-time SISO system is BIBO 
iff  is absolutely summable, i.e.,

               
k

g k

g k M
∞

=

≤ < ∞∑
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Theorem 5.D.3
Discrete-time SISO system with proper rational transfer 
function g(z) is BIBO stable iff every pole has a magnitude less 
than 1.

Theorem 5.D.2
If a discrete-time system is BIBO stable, then  

[ ]
[ ]

[ ]
[ ]

[ ]

0 0

k

0

0k

0

1. 

    lim (1)

2. sin

     lim (e ) sin( (e ))

where  (z) z    

jw jw

m

m

u k a

y k a

u k w k

y k w k

g m

→∞

→∞

∞
−

=

=

=

=

→ +∠

=∑

g

g g

g



Perception and Intelligence Laboratory
School of Electrical Engineering at SNU

Internal Stability for LTI System

13Linear Systems

Internal Stability (State Stability)

0

( ) ( )
( ) At

x t Ax t
x t e x

=

=



Definition : Zero-input Response of             is
marginally stable or stable in the sense of Lyapunov
if               for all          & all     ,
and is asymptotically stable if 

x Ax=

( )x t < ∞ 00            t x>
( ) 0 as x t t→ →∞
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Theorem 5.4
1. The state equation is marginally stable iff all eigenvalues

of A have zero or negative real part and  those with zero
real part are simple roots of minimal polynomial of A.

2. The state equation is asymptotically  stable iff all 
eigenvalues of A have negative real part. 

1 1
1

1
1

1

2

ˆ 1

2

1

1  
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t
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t
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e te t e
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e

λ λ

λ

λ

λ
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−

−

=

 
 
 
 
 

=  
 
 
 
   



Re 0 A.Siλ < →

Re( ) 0 and
Re( ) 0 & 1

marginally stable

i

i in
λ
λ

≤
 = =
⇒

①

② All
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Example 5.4

1 2 1

2

1 2 3

0 0 0
0 0 0 ( )
0 0 1

Characteristic polynomial is ( 1)
Minimal polynomial is ( 1)

0 is simple root marginally stable
0 1 0
0 0 0 ( )
0 0 1

Minimal polynom

t

t

x x x t c c e c

x x x t c c t c e

λ λ
λ λ

λ

−

−

 
 = → = + ≤ 
 − 

+
+

= →

 
 = → = + + →∞ 
 − 





2ial is ( 1)
not marginally stable

λ λ +
→
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Discrete-Time Case

Theorem 5.D.4

i i

i

1. 1 and 1 with 1 marginally stable

2. 1 asymtotically stable
inλ λ

λ

≤ = = →

< →

0

[ 1] [ ]
[ ] k

x k Ax k
x k A x

+ =
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0

0 0

 is said to be equibrium point at  iff
( ) ( , )     .
e

e e

x t
x t t t x x t t= Φ = ∀ ≥

Definition (Equilibrium Point) 

[ ]
[ ]
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0 0

( ) 1
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0
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( ) ( , ) ( )

( , )  or  ( ) ( )
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0,

otherwise it may be
0.
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=
= Φ

∫Φ =
= Φ

−Φ = ∀ ≥

−Φ

=

≠

I

I



Note) 
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Definition

0

0

0 0 0

 is stable i.s.L at  if
for every 0, ( , ) 0  such that 

( , ) ( )  .

e

e e

x t f
t

x x t x t x t t
ε δ ε
δ ε ε
> ∃ >

− ≤ → − ≤ ∀ ≥

0

0 0

 is uniformly stable i.s.L [ , ) if
for every 0, ( ) 0 such that

( ) ( )  .

e

e e

x t f

x x x t x t t
ε δ ε
δ ε ε

∞
> ∃ >

− ≤ → − ≤ ∀ ≥
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Example

0

0

0

0

(6 sin 2 )

0
2 2

0 0 0 0 0
2 2

0 0 0 0 0

2 2
0 0

(6 sin 2 ) ( )

( ) ( ) exp

( )exp(6sin 6 cos 6sin 6 cos )

Define ( ) supexp(6sin 6 cos 6sin 6 cos )

supexp(12 6( ) ( ),

supexp(12

t

t
d

t t

t t

t t

x t t t x t

x t x t

x t t t t t t t t t

c t t t t t t t t t

t t t t

τ τ τ τ−

≥

≥

≥

= −

∫=

= − − − + +

= − − − + +

< + + − −

<



2
0 0

0 0

6 12 ), :

( ) ( ) ( )

T t T T t t
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+ + − = −
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0 0

0 0

0 0 0

For any given 0, if we choose
            ( , ) / ( ),
then 
            ( ) ( , ), 0

            ( ) ( ) ( )  .
This implies the system is stable i.s.L.

e e

t c t

x t x t x

x t x t c t t t

ε
δ ε ε

δ ε

ε

>
=

− ≤ =

→ < ≤ ∀ ≥

Example (cont)
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[ ]

[ ]
( )

0
(4 1)(6 )

(4 1)(6 )
0 0

On the other hand, if we choose
          2 , (2 1)

          (2 1) (2 )exp
for     
          (2 1)

          ( ) (2 ) exp ( , 2 ) .
It is not possible t

n

n

t n t n

x n x n

x n

x t x n t n

π π

π π

π π

π π

π ε

π ε δ ε π

+ −

− + −

= = +

+ =

+ <

= < ⋅ = =

0

0 0 0

o choose a single ( ) 
independent of =2 .
That is ( ) ( , ) 0 as .
This implies the system is not uniformly stable.

t n
x t t t

δ ε
π

δ ε≤ → →∞

Example (cont)
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Example: Pendulum

[ ]
[ ]

1

2

1 2

1
2 1

1 2

Let 

      

cossin ( )

0 with ( ) 0

, 0, 1, 2
0

0 , 0, 2, 4 uniformly stable eq. pt.

0 , 1, 3,       unstable eq. pt.

e

T
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T
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x
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xgx x u t
l ml
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k

x k
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=

=
=

 = − + 
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Definition 

0

0

0

0

0

(1)   is asymptotically stable at  if
      is stable i.s.L at , and

     ( ) 0 as  

  i.e.) for any ,   0  ( , , ) 0 such that
        ( )  yields

        ( )     

e

e

e

e

e

x t
x t

x t x t

and T t
x t x

x t x t t

ε γ ε γ
γ

ε

−

− − → →∞

∃ > >

− ≤

− ≤ ∀ ≥ +T

0

0

(2)  is uniformly asymptotically stable if
     is uniformly stable i.s.L. over [ , ) 
     is independent  to 

e

e

x
x t
T t

− ∞
−
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Example 

0 0

0

(1 )1 ( )  ( )  
1 1

  1)  lim ( ) 0 asymptotically stable

(1 )  2)  ( ) uniformly stable
1

t

o

x tx x t x t
t t

x t

tx x t
t

εε ε

→∞

+
= − → =

+ +

= →

+
< → < ≤ →

+



0 0
0

0

0 0 0
0 0

(1 )  3)  for ( )
1

(1 )       1 1 (1 )

      not uniformly asymptotically stable.

x tx t T
t T

x t xT t t

ε

ε ε

+
+ = <

+ +

 +  > − − = − +  
  

⇒
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Stable i.s.L.

0t

ε

0( , )tδ ε

( ) ex t x−

Uniformly Stable i.s.L.

ε
( )δ ε

0t

( ) ex t x−

0t

0t

0( , )tδ ε′
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Asymptotically Stable i.s.L.

Uniformly Asymptotically Stable i.s.L.

ε
γ

0t

( ) ex t x−

0 0( , )t T tε+0t 0 0( , )t T tε′+

ε
γ

0t

( ) ex t x−

0 ( )t T ε+0t 0 ( )t T ε+
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Problem: Determine the eigenvalues and stability of the eq.
and discuss the relation between eigenvalues and 
stability of the time varying system. 

21
( ) ( )  

0 1

te
x t x t

 −
=  − 
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Lyapunov Theory

Function ( ) :  belongs to class K  if
    (0) 0
    continuous
    strictly increasing.   

r R Rα
α

+ +→
− =
−
−

Definition: class K functions [Hahn, 1967]

( )rα

r
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Definition:  locally positive definite functions

{ }

Continuous function ( , ) :  is 
. . . . if  for some ,

( , ) ( )  x  , : ,

( , ) 0.

In case of , ( , ) is  . . .
 

n
h

n n
h h

n
h

V x t B R R R
l p d f h K

V x t x B R B x x R x h

V o t

B R V x t globally p d f

α

α

+ +⊂ × →
∈

 ≥ ∀ ∈ ⊂ = ∈ <


=
=
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Definition: Descrescent Function

( , ) is descrescent if
 ( )   such that
( , ) ( ), , 0n

V x t
K

V x t x x R t
α

α
∃ ⋅ ∈

≤ ∀ ∈ ≥
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Example
2

2

2

( , )
g.p.d.f. descrescent

( , ) , 0

( , ) ( 1)        : g.p.d.f.

( , )            : descrescent

T

T

t

V x t x x x

V x t x Mx M

V x t t x

V x t e x−

= = 


= > 

= +

=
22( , ) sin ( ) : l.p.d.f. , descrescent in { | }

(not K-class ftn bound because not strictly increasing)

hV x t x B x x π= = <

2α

1α
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Theorem (Lyapunov Stability Theorem)

1 2

3

If  a continuously differentiable function ( , ) such that
           ( , ), (0, ) 0 ( ( ) 0 is equilibrium point)

           ( ) ( , ) ( )   (or )

           ( , ) ( )

n

V x t
x f x t f t x t

x V x t x x B x R
dV dVV f x t x
dt dx

γα α

α

∃
= = =

≤ ≤ ∀ ∈ ∈

= + ≤ −





3

1 3

1

           ( ( ) )
then  ( ) 0 is (globally) uniformly asymptotically stable.

:
          ( ) ( , ),  ( ) asymptotically stable

          ( ) ( , ),  0 marginally stable (i.s.L)

x V
x t

Note
x V x t x V

x V x t V

α

α α

α

≡ ≤ −

=

≤ ≤ − ⇒

≤ ≤ − ⇒
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stability

p.d.f., descrescent p.d.f. G. U. A. S

l.p.d.f., descrescent l.p.d.f. U. A. S

l.p.d.f., l.p.d.f A. S

l.p.d.f., descrescent ≥0 locally U.   . S   i.s.L.

l.p.d.f., ≥0 locally S   i.s.L.

p.d.f., p.d.f. G. A. S

p.d.f., ≥0 G. S   i.s.L. 

p.d.f., descrescent ≥0 G. U.   . S   i.s.L. 

( , ) V x t ( , ) V X t− 
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Lemma : Barbalat’s Lemma: (convergence) 

0

If a real valued function ( ) is uniformly continuous 0 &

           lim ( ) ,

 then lim ( ) 0.

t

t

t

g t t

g d

g t

τ τ
→∞

→∞

∀ ≥

< ∞

=
∫
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Theorem : boundedness & convergence set

1 2

Suppose ( , ) is locally Lipschitz on 
Let ( , ) be continuously differentiable function such that
       ( ) ( , ) ( ) (l.p.d.f. & descrescent)

and  ( ) 0
Assume  is uniformly continuo

rf x t B R
V x t

x V x t x

V W x
V

α α

+×

≤ ≤

≤ − ≤



1
0 2 1

us (  is bounded)
Then solutions of 
       ( , ), ( ) ( ( ))
are bounded, i.e.
      ,
and ( ( )) 0 as .

V

x f x t x t r

x r
W x t t

α α−

≡

= ≤

≤

→ →∞
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Brief bf)

0

1 2

1
2 1

1
0 2 1

min( ( )) max( ( ))

   ( )
( ) min( ( , )) max( ( , )) ( )

   ( ( ))

( ) ( ( ))

      
  

x r x

x r x

l V x V x

x t x r
r V x t V x t

r
x t r

x r

δ

δ

δ
α α δ

δ α α

δ α α

= =

= =

−

−

= =

⇒ ≤ → ≤

= = =

⇒ =

∴ ≤ =

⇒ ≤
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0

Since ( , ) is decrescent,
( , ) is bounded for bounded ,  hence

       lim ( , ) lim ( ) .

Since  is uniformly continuous
       lim ( ) 0 lim ( ) 0

       lim ( ) 0

If ( ) ,  

t

t t

t t

t

V x t
V x t x

V x t V d

V
V t W x

W x

W x K

τ τ
→∞ →∞

→∞ →∞

→∞

= < ∞

= ≤ − ≤

=

∈

∫ 




 ( ) 0 0.
Hence lim ( ) 0 ( ( ) 0, . .)

t

W x x
x t x t A S

→∞

= → =
= →

Brief bf(continued)
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2 2
1 2 1 1 2

2 2
2 1 2 1 2

           ( )

           ( )
Is this system stable ? How can we determine the stability?

x x cx x x
x x cx x x
= + +

= − + +





Example

2 2
1 2

2 2 2
1 2

The candidate for Lyapunov function 
           ( ) + , p.d.f and decrescent.

           2 ( + ) .

If 0, 0,  and therefore 0 u.s..

If 0, ( ),  and therefore 0 g.u.a.s..

If 0,

e

e

V x x x
V c x x

c V x

c V x x

c V

α

= ←

=

= = =

< ≤ − =

>







 ( ),  and therefore 0 unstable.ex xα≥ =



Perception and Intelligence Laboratory
School of Electrical Engineering at SNU

Lyapunov Stability  Theory 

39Linear Systems

1 2

2 2 1

           

           
Is this system stable ? How can we determine the stability?

t

x x
x x e x−

=

= − −





Example

2 2
1 2
2

2 1 2

2 2
1 2

2
2

The candidate for Lyapunov function 
           ( ) ,

           2 2 (1 ).
We can not say anything.
           ( ) ,

           .

If 0, 0,  and therefore 0 stab

t

t

t

e

V x x x
V x x x e

V x x e x
V e x

c V x

−

= +

= − + −

= +

= −

= ≤ =





 le i.s.L.
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1 1 1 2 2
2

2 1 1

           2

           
Determine the stability and discuss the convergence property.

x x x x x
x x x
= − + +

= − −





Problem
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Theorem 5.5

{ }Re ( ) 0 if
for any 0,  unique 0
such that .

i A f
N N M M

A M MA N

λ <

′ ′= > ∃ = >
′ + = −
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Pf)
{ }

2

( )   0 Re 0
         ( ) 0,  decrescent
         ( )
                

                ( )
          By Lyapunov Theorem,
                 lim 0.

         

i

m

t

M
V x x Mx
V x x MX x Mx

x A Mx x MAx

x Nx N x

x

λ

λ

→∞

⇐ > → <

′= >

′ ′= +
′ ′ ′= +

′= − ≤ −

=



 

{ }
{ }
{ } { }

 By Theorem 5.4, Re ( ) 0.

( )  Re 0 0

         Re ( ) Re ( ) 0 0

i

i

i j

A

M

A A

λ

λ

λ λ

<

⇒ < → >

+ ≠ <
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Pf_continued) 

0

0 0

00

 has unique solution (see Section 3.7)

      is solution.

     (   

                      ( )  = )

     and 

A t At

A t At A t At

A t At A t At

t

A M MA N

M e Ne dt

A M MA A e Ne dt e Ne Adt

d e Ne dt e Ne N
dt

N N N

∞ ′

∞ ∞′ ′

∞ ∞′ ′

=

′⇒ + = −

=

′ ′+ = +

= = −

′=

∫
∫ ∫

∫



2

20 0

(  is symetric)

      0.

0.

A t At At

N

x Mx x e N Ne xdt Ne x dt

M

∞ ∞′′ ′ ′→ = = >

⇒ >
∫ ∫




Perception and Intelligence Laboratory
School of Electrical Engineering at SNU

Lyapunov Stability Theory 

44Linear Systems

Corollary 5.5

{ }

1

Re ( ) 0 if

for any given  matrix  with ,  together with the property

       rank( ):=rank (full column rank)
...

where  is an  matrix, the Lyapunov equation
       

i

n

A f

m n N m n

N
NA

n

NA
nm n

A M

λ

−

<

× <

 
 
 Ο =
 
 
  

Ο ×

′ + ' .
has an unique 0.

MA N N N
M M
= − = −

′= >
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Pf) 

2

20 0

1

Since  is positive semidefinite,
  0  such that 0 in [0, ). Hence

      0.

0.  
By derivative of 0 ,

    O 0.

If O

At

A t At At

At

At At

n

N N N
x Ne x

x Mx x e N Ne xdt Ne x dt

M
Ne x

N
NA

e x e x

NA

∞ ∞′

−

′=

∃ ≠ = ∞

′ ′ ′= = ≥

⇒ ≥

=

 
 
  = =
 
 
  

∫ ∫

 has full rank, 0. This implies 
there is no 0  such that 0 in [0, ).

0 if O has full rank.   

At

x
x Ne x

M

=

≠ = ∞
⇒ >
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Problem 5.21 in the Text P. 142
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Discrete-Time Case

Theorem 5.D5

( ) 1 if  for any  0 or 0 & 
with full rank O, the discrete Lyapunov equation 
          
has unique symmetric solution  0. 

i A f N N N N N m n

M A MA N
M

λ ′< > = ≥ = ×

′− =
>
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b.pf)

0

1

0 0

1

1 0

If 1,  the solution

     = ( )  is well defined.

     (  ( ) ( )

     ( ) ( ) )

      Since 0, for 
      
           

i

m m

m

m m m m

m m

m m m m

m m

M A NA

A NA A A NA

N A NA A A NA N

N A
N M A MA

λ

υ λυ
υ υ υ υ υ υ

∞

=

∞ ∞
+

= =

∞ ∞
+

= =

∗ ∗ ∗

⇒ <

′

′ ′ ′−

′ ′ ′= + − =

> =

′= −

∑

∑ ∑

∑ ∑



 

2

     
                (1 ) 0
      0 0.

M M
M

M M

υ υ λ υ υλ
λ υ υ

υ υ
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∗

∗

= −

= − >

> → >
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Pf) 0 0

0 0

0 0 0 0

0

0 0
0

( ) ( , ) , 
        ( ) ( , )( )
        ( ) ( , ) ( )
        for any ,   ( ) 0 such that

        ( ) ( ) .
( )

( ) by contradiction, it can be e

e e

e e

e e e

e e

x t t x t t
x t x t t x x
x t x t t x x K t x x

t

x x t x t x
K t

ε δ
ε δ ε

⇐ = Φ ∀ ≥
− = Φ −

− ≤ Φ − ≤ −

∃ >

− ≤ = → − ≤

⇒ asily shown.

Theorem

0

0

0 0 0

0

 of ( )  is stable i.s.L at  if
 ( )

           ( , ) ( )   ,
and  is uniformly stable i.s.L if  is independent of .

e

e

x x A t x t f
K t

t t K t t t
x K t

=
∃ ∋

Φ ≤ < ∞ ∀ ≥





Perception and Intelligence Laboratory
School of Electrical Engineering at SNU

Stability of Linear Time Varying System

50Linear Systems

Theorem

[ ]

2 0

0

0 0 0

0

1 2
(

0 1

Zero state of ( )  is asymptotically stable at 
   if  ( , ) ( ) & ( , ) 0 as .

And it is uniformly asymptotically stable over ,
    if   0 such that 

         ( , ) K t t

x A t x t
f t t K t t t t

t
f K K

t t K e− −

=

Φ ≤ < ∞ Φ → →∞

∞

∃ > >

Φ ≤



)
0 .t t∀ ≥

AS →
0

0( )  ( ) ( , ) ( ) ( )
t

t
BIBO y t C t B u dτ τ τ τ τ← = Φ∫

Note
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Theorem 5.7
Marginal and asymptotical stabilities are invariant 
under any Lyapunov transformation.

Pf)

1 1 1

1

1

By Lyapunov transformation,    
    ( ) ( ) ( )
    ( , ) ( ) ( ) ( ) ( ) ( ) ( )
                                     ( ) ( , ) ( )
Since ( ) and ( ) is bounded, ( , ) is bounded.

X t P t X t
t X t X P t X t X P

P t t P
P t P t t

τ τ τ τ
τ τ

τ

− − −

−

−

=

Φ = =

= Φ

Φ
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