5. Stability

- ✓ Motivations
- ✓ Input Output Stability
- Internal Stability for LTI System
- ✓ General Definition of Internal Stability
- Lyapunov Stability Theory
- Stability of Linear Time Varying System

Motivations

Is y(t) bounded for bounded $u(t)? \rightarrow$ IO stability Is $x_1(t)(x_2(t), \cdots)$ bounded? \rightarrow Internal stability

Linear Systems

Input Output Stability of LTI System

$$y(t) = \int_0^t g(t - \tau)u(\tau)d\tau = \int_0^t g(\tau)u(t - \tau)d\tau....(*)$$
$$u(t):bounded$$
$$|u(t)| \le u_m < \infty \quad \forall t > 0$$

Theorem 5.1

(*) is BIBO stable iff $\int_0^\infty |g(t)| dt \le M < \infty.$

Pf)

$$(\Leftarrow) |y(t)| = \left| \int_0^\infty g(\tau) u(t-\tau) d\tau \right|$$

$$\leq \int_0^\infty |g(\tau)| |u(t-\tau)| d\tau$$

$$\leq u_m \int_0^\infty |g(\tau)| d\tau \leq u_m M < \infty.$$

 (\Rightarrow) Assume $\exists t_1$ such that

$$\int_0^{t_1} |g(\tau)| d\tau = \infty.$$

Let us choose

$$u(t_1 - \tau) = \begin{cases} 1 & \text{if } g(\tau) > 0\\ -1 & \text{if } g(\tau) \le 0 \end{cases}$$
$$y(t_1) = \int_0^{t_1} g(\tau) u(t_1 - \tau) d\tau = \int_0^{t_1} |g(\tau)| d\tau = \infty$$

Note) Even if
$$\int |g(\tau)| d\tau < \infty$$
,

 $g(\tau)$ may not be bounded or may not converge to zero.

Lemma: The uniformly continuous function

satisfying $\int |g(\tau)| d\tau < \infty$, converge to zero.

i.e. $\lim_{t\to\infty} g(t) = 0$

Theorem 5.2

If g(t) is BIBO stable, for u(t) = a, $\lim_{t \to \infty} y(t) = \mathbf{g}(0)a$ for $u(t) = \sin w_0 t$, $\lim_{t \to \infty} y(t) = |\mathbf{g}(jw_0)| \sin(w_0 t + \angle \mathbf{g}(jw_0))$, where $\mathbf{g}(s)$ is Lapace transform of g(t). Pf)

 $\mathbf{g}(s) = \int_0^\infty g(\tau) e^{-s\tau} d\tau$ $u(t) = a, \ y(t) = \int_0^t g(\tau) u(t-\tau) d\tau = a \int_0^t g(\tau) d\tau$ $\lim_{t \to \infty} y(t) = a \mathbf{g}(0)$

Pf_cont)

$$u(t) = \sin w_0 t$$

$$y(t) = \int_0^t g(\tau) \sin w_0 (t - \tau) d\tau$$

$$= \int_0^t g(\tau) [\sin w_0 t \cos w_0 \tau - \cos w_0 t \sin w_0 \tau)] d\tau$$

$$= \sin w_0 t \int_0^t g(\tau) \cos w_0 \tau d\tau - \cos w_0 t \int_0^t g(\tau) \sin w_0 \tau d\tau$$

$$\mathbf{g}(jw) = \int_0^\infty g(\tau) [\cos w\tau - j \sin w\tau)] d\tau$$

$$\operatorname{Re}[\mathbf{g}(jw)] = \int_0^\infty g(\tau) \cos w\tau d\tau$$

$$\operatorname{Im}[\mathbf{g}(jw)] = -\int_0^\infty g(\tau) \sin w\tau d\tau$$

$$\lim_{t \to \infty} y(t) = \sin w_0 t \operatorname{Re}[\mathbf{g}(jw_0)] + \cos w_0 t \operatorname{Im}[\mathbf{g}(jw_0)]$$

$$= |\mathbf{g}(jw)| \sin(w_0 t + \angle \mathbf{g}(jw))$$

Theorem 5.3

A SISO system with proper rational transfer function g(s) is BIBO stable iff every pole of g(s) has a negative real part.

Note) MIMO is BIBO.

iff $g_{ij}(t)$ is BIBO stable (Theorem 5.M1, Theorem 5.M3).

Note)

Time varying system is BIBO stable iff

$$\int_{t_0}^t \left| g(t,\tau) d\tau \le M < \infty \text{ for all } t, t_0 > 0 \right|$$

Example) unity-feedback system

$$g(t) = \sum_{i=1}^{\infty} a^{i} \delta(t-i) \to |g(t)| = \sum_{i=1}^{\infty} |a|^{i} \delta(t-i)$$
$$\int_{0}^{\infty} |g(t)| dt = \sum_{i=1}^{\infty} |a|^{i} = \begin{cases} \infty & \text{if } |a| \ge 1\\ |a|/(1-|a|) < \infty & \text{if } |a| < 1 \end{cases}$$

This system is BIBO stable iff the gain *a* has a magnitude less than 1.

 $\mathbf{g}(s) = \frac{se^{-s}}{1 - ae^{-s}}$ is not rational function and Theorem 5.3 is not applicable.

Example

 \rightarrow BIBO stable even if it has positive real part eigenvalue.

 \rightarrow Internal stability (state stability is needed).

Discrete-Time Case

$$y[k] = \sum_{m=0}^{k} g[k-m]u[m]$$

Theorem 5.D.1

Discrete-time SISO system is BIBO iff g[k] is absolutely summable, i.e.,

$$\sum_{k=0}^{\infty} \left| g\left[k \right] \right| \le M < \infty$$

Theorem 5.D.2

If a discrete-time system is BIBO stable, then

1.
$$u[k] = a$$

$$\lim_{k \to \infty} y[k] = \mathbf{g}(1)a$$
2. $u[k] = \sin w_0 k$

$$\lim_{k \to \infty} y[k] \rightarrow |\mathbf{g}(e^{jw_0})| \sin(w_0 k + \angle \mathbf{g}(e^{jw_0}))$$
where $\mathbf{g}(z) = \sum_{m=0}^{\infty} g[m] z^{-m}$

Theorem 5.D.3

Discrete-time SISO system with proper rational transfer function $\mathbf{g}(z)$ is BIBO stable iff every pole has a magnitude less than 1.

Internal Stability for LTI System

Internal Stability (State Stability)

 $\dot{x}(t) = Ax(t)$ $x(t) = e^{At}x_0$

Definition : Zero-input Response of $\dot{x} = Ax$ is marginally stable or stable in the sense of Lyapunov if $|x(t)| < \infty$ for all t > 0 & all x_0 , and is asymptotically stable if $x(t) \rightarrow 0$ as $t \rightarrow \infty$

Linear System for LTI System

Theorem 5.4

- 1. The state equation is marginally stable iff all eigenvalues of A have zero or negative real part and those with zero real part are simple roots of minimal polynomial of A.
- 2. The state equation is asymptotically stable iff all eigenvalues of A have negative real part.

$$\begin{array}{c} \textcircled{1} \\ \begin{cases} \operatorname{Re}(\lambda_{i}) \leq 0 \text{ and} \\ \operatorname{Re}(\lambda_{i}) = 0 \And \overline{n_{i}} = 1 \\ \Rightarrow \text{ marginally stable} \\ (2) \text{ All } \operatorname{Re} \lambda_{i} < 0 \rightarrow \text{A.S} \end{array} \qquad e^{At} = Q e^{\hat{A}t} Q^{-1} \\ e^{\lambda_{1}t} t e^{\lambda_{1}t} \frac{1}{2}t^{2}e^{\lambda_{1}t} \\ e^{\lambda_{1}t} t e^{\lambda_{1}t} \\ e^{\lambda_{1}t} \\ e^{\lambda_{1}t} \\ e^{\lambda_{2}t} \\ & \ddots \end{array} \right] Q^{-1}$$

Perception and Intelligence Laboratory School of Electrical Engineering at SNU Internal Stability for LTI System

Example 5.4

$$\dot{x} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} x \to x(t) = c_1 + c_2 e^{-t} \le c_1$$

Characteristic polynomial is $\lambda^2(\lambda + 1)$ Minimal polynomial is $\lambda(\lambda + 1)$

 $\lambda = 0$ is simple root \rightarrow marginally stable

$$\dot{x} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} x \to x(t) = c_1 + c_2 t + c_3 e^{-t} \to \infty$$

Minimal polynomial is $\lambda^2(\lambda + 1)$

 \rightarrow not marginally stable

Internal Stability for LTI System

Discrete-Time Case

x[k+1] = Ax[k] $x[k] = A^{k}x_{0}$

Theorem 5.D.4

1. $|\lambda_i| \le 1$ and $|\lambda_i| = 1$ with $\overline{n_i} = 1 \rightarrow$ marginally stable 2. $|\lambda_i| < 1 \rightarrow$ asymptotically stable

Definition (Equilibrium Point) x_{e} is said to be equibrium point at t_{0} iff $x(t) = \Phi(t, t_0) x_e = x_e \quad \forall t \ge t_0.$ Note) $\dot{x} = A(t)x(t)$ $x(t) = \Phi(t,t_0)x(t_0)$ $\Phi(t,t_0) = e^{\int_{t_0}^t A(\tau)d\tau}$ or $X(t)X^{-1}(t_0)$ $x_{a} = \Phi(t,t_{0})x_{a}$ $\left[\mathbf{I} - \Phi(t, t_0)\right] x_e = 0 \quad \forall t \ge t_0$ If all columns of $[\mathbf{I} - \Phi(t, t_0)]$ are linearly independent $x_{e} = 0,$ otherwise it may be $x_{a} \neq 0.$

Definition

$$x_e$$
 is stable i.s.L at t_0 iff
for every $\varepsilon > 0$, $\exists \delta(\varepsilon, t_0) > 0$ such that
 $||x_0 - x_e|| \le \delta(\varepsilon, t_0) \rightarrow ||x(t) - x_e|| \le \varepsilon \ \forall t \ge t_0.$

 $\begin{aligned} x_e \text{ is uniformly stable i.s.L } &[t_0,\infty) \text{ if} \\ \text{for every } \varepsilon > 0, \ \exists \ \delta(\varepsilon) > 0 \text{ such that} \\ &\|x_0 - x_e\| \le \delta(\varepsilon) \to \|x(t) - x_e\| \le \varepsilon \ \forall t \ge t_0. \end{aligned}$

Example

$$\begin{aligned} \dot{x} &= (6t\sin t - 2t)x(t) \\ x(t) &= x(t_0) \exp^{\int_{t_0}^t (6\tau\sin\tau - 2\tau)d\tau} \\ &= x(t_0) \exp(6\sin t - 6t\cos t - t^2 - 6\sin t_0 + 6t_0\cos t_0 + t_0^2) \\ \text{Define } c(t_0) &= \sup_{t \ge t_0} \exp(6\sin t - 6t\cos t - t^2 - 6\sin t_0 + 6t_0\cos t_0 + t_0^2) \\ &< \sup_{t \ge t_0} \exp(12 + 6(t + t_0) - (t^2 - t_0^2), \\ &< \sup_{t \ge t_0} \exp(12 + 6T + 12t_0 - T^2), \ T \coloneqq t - t_0 \\ &< \infty \\ &|x(t)| < |x(t_0)| c(t_0) \end{aligned}$$

Example (cont)

For any given $\varepsilon > 0$, if we choose $\delta(\varepsilon, t_0) = \varepsilon / c(t_0)$,

then

$$\begin{aligned} \left| x(t_0) - x_e \right| &\leq \delta(\varepsilon, t_0), \ x_e = 0 \\ &\rightarrow \left| x(t) \right| < \left| x(t_0) \right| c(t_0) \leq \varepsilon \ \forall t \geq t_0. \end{aligned}$$

This implies the system is stable i.s.L.

Example (cont) On the other hand, if we choose $t_0 = 2n\pi, t = (2n+1)\pi$ $x[(2n+1)\pi] = x(2n\pi) \exp^{(4n+1)(6-\pi)\pi}$ for $x[(2n+1)\pi] < \varepsilon$ $x(t_0) = x(2n\pi) < \varepsilon \cdot \exp^{-((4n+1)(6-\pi)\pi)} = \delta(\varepsilon, t_0 = 2n\pi) .$ It is not possible to choose a single $\delta(\varepsilon)$ independent of $t_0 = 2n\pi$. That is $|x(t_0)| \leq \delta(\varepsilon, t_0) \to 0$ as $t_0 \to \infty$. This implies the system is not uniformly stable.

Example: Pendulum

Definition

(1) x_e is asymptotically stable at t_0 if $-x_e$ is stable i.s.L at t_0 , and $-\|x(t) - x_e\| \to 0$ as $t \to \infty$ i.e.) for any $\overline{\varepsilon}$, $\exists \gamma > 0$ and $T(\overline{\varepsilon}, \gamma, t_0) > 0$ such that $\|x(t_0) - x_e\| \le \gamma$ yields $\|x(t) - x_e\| \le \overline{\varepsilon} \quad \forall t \ge t_0 + T$

(2) x_e is uniformly asymptotically stable if

- $-x_e$ is uniformly stable i.s.L. over $[t_0,\infty)$
- T is independent to t_0

Example

$$\dot{x} = -\frac{1}{1+t}x(t) \quad \to x(t) = \frac{x_0(1+t_0)}{1+t}$$

1)
$$\lim_{t \to \infty} x(t) = 0 \rightarrow \text{asymptotically stable}$$

2)
$$\|x_o\| < \varepsilon \rightarrow \|x(t)\| < \frac{\varepsilon(1+t_0)}{1+t} \le \varepsilon \rightarrow \text{uniformly stable}$$

3) for
$$\|x(t_0+T)\| = \frac{x_0(1+t_0)}{1+t_0+T} < \varepsilon$$

$$T > \frac{x_0(1+t_0)}{\varepsilon} - 1 - t_0 = \left(\left(\frac{x_0}{\varepsilon} - 1\right)(1+t_0)\right)$$

 \Rightarrow not uniformly asymptotically stable.

Perception and Intelligence Laboratory School of Electrical Engineering at SNU

Asymptotically Stable i.s.L.

γ

 $\overline{\mathcal{E}}$

 t_0

 $t_0 t_0 + T(\overline{\varepsilon}) t_0 + T(\overline{\varepsilon})$

Problem: Determine the eigenvalues and stability of the eq. and discuss the relation between eigenvalues and stability of the time varying system.

$$\dot{x}(t) = \begin{bmatrix} -1 & e^{2t} \\ 0 & -1 \end{bmatrix} x(t)$$

Lyapunov Theory

Definition: class *K* functions [Hahn, 1967]

Function $\alpha(r): \mathbb{R}^+ \to \mathbb{R}^+$ belongs to class K if

 $-\alpha(0)=0$

- continuous
- strictly increasing.

Definition: locally positive definite functions

Continuous function $V(x,t): B_h \subset \mathbb{R}^n \times \mathbb{R}_+ \to \mathbb{R}_+$ is l.p.d.f. if for some $h, \alpha \in K$ $\begin{cases} V(x,t) \ge \alpha(||x||) \ \forall \ x \in B_h \subset \mathbb{R}^n, \ B_h \coloneqq \{x | x \in \mathbb{R}^n, ||x|| < h\} \\ V(o,t) = 0. \end{cases}$

In case of $B_h = R^n$, V(x,t) is globally p.d.f.

Definition: Descrescent Function

 $V(x,t) \text{ is descrescent if} \\ \exists \ \alpha(\cdot) \in K \text{ such that} \\ V(x,t) \le \alpha(||x||), \forall x \in \mathbb{R}^n, t \ge 0$

Example

Theorem (Lyapunov Stability Theorem)

If \exists a continuously differentiable function V(x,t) such that $\dot{x} = f(x,t), \quad f(0,t) = 0 \quad (x(t) = 0 \text{ is equilibrium point})$ $\alpha_1(||x||) \leq V(x,t) \leq \alpha_2(||x||) \quad \forall x \in B_{\gamma} \text{ (or } x \in \mathbb{R}^n)$ $\dot{V} = \frac{dV}{dt} + \frac{dV}{dx} f(x,t) \leq -\alpha_3(||x||)$ $(\equiv \alpha_3(||x||) \leq -\dot{V})$

then x(t) = 0 is (globally) uniformly asymptotically stable. *Note* :

> $\alpha_1(\|x\|) \le V(x,t), \ \alpha_3(\|x\|) \le -\dot{V} \Rightarrow \text{asymptotically stable}$ $\alpha_1(\|x\|) \le V(x,t), \ 0 \le -\dot{V} \Rightarrow \text{marginally stable (i.s.L)}$

V(x,t)	$-\dot{V}(X,t)$	stability
p.d.f., descrescent	p.d.f.	G. U. A. S
I.p.d.f., descrescent	l.p.d.f.	U. A. S
l.p.d.f.,	l.p.d.f	A. S
I.p.d.f., descrescent	≥0 locally	U S i.s.L.
l.p.d.f.,	≥0 locally	S i.s.L.
p.d.f.,	p.d.f.	G. A. S
p.d.f.,	≥0	G. S i.s.L.
p.d.f., descrescent	≥0	G. U S i.s.L.

Lemma : Barbalat's Lemma: (convergence)

If a real valued function g(t) is uniformly continuous $\forall t \ge 0$ &

$$\lim_{t \to \infty} \int_0^t g(\tau) d\tau < \infty,$$

then $\lim_{t \to \infty} g(t) = 0.$

Theorem : boundedness & convergence set

Suppose f(x,t) is locally Lipschitz on $B_r \times R_+$

Let V(x,t) be continuously differentiable function such that

 $\alpha_1(\|x\|) \le V(x,t) \le \alpha_2(\|x\|)$ (l.p.d.f. & descreasent)

and $\dot{V} \leq -W(x) \leq 0$

Assume \dot{V} is uniformly continuous ($\equiv \ddot{V}$ is bounded) Then solutions of

 $\dot{x} = f(x,t), \ \|x(t_0)\| \le \alpha_2^{-1}(\alpha_1(r))$

are bounded, i.e.

 $||x|| \le r$, and $W(x(t)) \to 0$ as $t \to \infty$.

Brief bf)

$$l = \min_{\|x\|=r} (V(x)) = \max_{\|x\|=\delta} (V(x))$$

$$\Rightarrow \|x(t_0)\| \le \delta \Rightarrow \|x\| \le r$$

$$\alpha_1(r) = \min_{\|x\|=r} (V(x,t)) = \max_{\|x\|=\delta} (V(x,t)) = \alpha_2(\delta)$$

$$\Rightarrow \delta = \alpha_2^{-1}(\alpha_1(r))$$

$$\therefore \|x(t_0)\| \le \delta = \alpha_2^{-1}(\alpha_1(r))$$

$$\Rightarrow \|x\| \le r$$

Brief bf(continued)

Since V(x,t) is decrescent, V(x,t) is bounded for bounded x, hence $\lim_{t\to\infty} V(x,t) = \lim_{t\to\infty} \int_0^t \dot{V}(\tau) d\tau < \infty$. Since \dot{V} is uniformly continuous $\lim_{t\to\infty} \dot{V}(t) = 0 \le -\lim_{t\to\infty} W(x) \le 0$ $\lim_{t\to\infty} W(x) = 0$ If $W(x) \in K$, $W(x) = 0 \rightarrow x = 0$. Hence $\lim_{t\to\infty} x(t) = 0$ ($x(t) \rightarrow 0$, A. S.)

Example

$$\dot{x}_1 = x_2 + cx_1(x_1^2 + x_2^2)$$
$$\dot{x}_2 = -x_1 + cx_2(x_1^2 + x_2^2)$$

Is this system stable ? How can we determine the stability?

The candidate for Lyapunov function

$$V(x) = x_1^2 + x_2^2, \leftarrow \text{p.d.f and decrescent.}$$
$$\dot{V} = 2c(x_1^2 + x_2^2)^2.$$
If $c = 0, \dot{V} = 0$, and therefore $x_e = 0$ u.s..
If $c < 0, \dot{V} \le -\alpha(||x||)$, and therefore $x_e = 0$ g.u.a.s..
If $c > 0, \dot{V} \ge \alpha(||x||)$, and therefore $x_e = 0$ unstable.

Linear Systems

Example

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = -x_2 - e^{-t} x_1$

Is this system stable ? How can we determine the stability?

The candidate for Lyapunov function

$$V(x) = x_1^2 + x_2^2,$$

$$\dot{V} = -2x_2^2 + 2x_1x_2(1 - e^{-t}).$$

We can not say anything.

$$V(x) = x_1^2 + e^t x_2^2,$$

$$\dot{V} = -e^t x_2^2.$$

If $c = 0, \dot{V} \le 0$, and therefore $x_e = 0$ stable i.s.L.

Problem

$$\dot{x}_1 = -2x_1 + x_1x_2 + x_2$$
$$\dot{x}_2 = -x_1^2 - x_1$$

Determine the stability and discuss the convergence property.

Theorem 5.5

Re $\{\lambda_i(A)\} < 0$ if *f* for any $N' = N > 0, \exists$ unique M = M' > 0such that A'M + MA = -N.

Pf)

$$(\Leftarrow) \quad M > 0 \rightarrow \operatorname{Re} \left\{ \lambda_i \right\} < 0$$

$$V(x) = x'Mx > 0, \text{ decrescent}$$

$$\dot{V}(x) = \dot{x}'MX + x'M\dot{x}$$

$$= x'A'Mx + x'MAx$$

$$= -x'Nx \leq -\lambda_m(N) \|x\|^2$$
By Lyapunov Theorem,

$$\lim_{t \to \infty} x = 0.$$
By Theorem 5.4, Re $\left\{ \lambda_i(A) \right\} < 0.$

$$(\Rightarrow) \quad \operatorname{Re} \left\{ \lambda_i \right\} < 0 \rightarrow M > 0$$
Re $\left\{ \lambda_i(A) \right\} + \operatorname{Re} \left\{ \lambda_j(A) \right\} \neq 0 < 0$

Pf_continued)

 $\Rightarrow A'M + MA = -N \text{ has unique solution (see Section 3.7)}$ $M = \int_0^\infty e^{A't} N e^{At} dt \text{ is solution.}$ $(\because A'M + MA = \int_0^\infty A' e^{A't} N e^{At} dt + \int_0^\infty e^{A't} N e^{At} A dt$ $= \int_0^\infty \frac{d}{dt} (e^{A't} N e^{At}) dt = e^{A't} N e^{At} \Big|_{t=0}^\infty = -N)$ and $N = \overline{N'N}$ (\because N is symetric) $\Rightarrow x'Mx = \int_0^\infty x' e^{A't} \overline{N'N} e^{At} x dt = \int_0^\infty \left\| \overline{N} e^{At} x \right\|_2^2 dt > 0.$ $\Rightarrow M > 0.$

Linear Systems

Corollary 5.5

 $\operatorname{Re}\left\{\lambda_{i}(A)\right\} < 0 \text{ if } f$

for any given $m \times n$ matrix \overline{N} with m < n, together with the property

rank(O):=rank
$$\begin{bmatrix} \overline{N} \\ \overline{N}A \\ \dots \\ \overline{N}A^{n-1} \end{bmatrix} = n$$
 (full column rank)

where O is an $nm \times n$ matrix, the Lyapunov equation

$$A'M + MA = -\overline{N'}\overline{N} = -N$$

has an unique $M = M' > 0$.

Linear Systems

Pf) Since $N = \overline{N'N}$ is positive semidefinite,

 $\exists x \neq 0$ such that $Ne^{At}x = 0$ in $[0, \infty)$. Hence

$$x'Mx = \int_0^\infty x'e^{A't}\overline{N}'\overline{N}e^{At}xdt = \int_0^\infty \left\|Ne^{At}x\right\|_2^2 dt \ge 0.$$
$$\Rightarrow M \ge 0.$$

By derivative of $Ne^{At}x = 0$,

$$\begin{bmatrix} \bar{N} \\ \bar{N}A \\ \\ \bar{N}A^{n-1} \end{bmatrix} e^{At} x = \mathbf{O}e^{At} x = \mathbf{0}.$$

If O has full rank, x = 0. This implies there is no $x \neq 0$ such that $Ne^{At}x = 0$ in $[0, \infty)$. $\Rightarrow M > 0$ if O has full rank.

Problem 5.21 in the Text P. 142

Discrete-Time Case

Theorem 5.D5

 $|\lambda_i(A)| < 1$ if *f* for any N > 0 or $N = \overline{N'N} \ge 0$ & $\overline{N} = m \times n$ with full rank O, the discrete Lyapunov equation M - A'MA = N

has unique symmetric solution M > 0.

b.pf) \Rightarrow If $|\lambda_i| < 1$, the solution $M = \sum_{m=1}^{\infty} (A')^m NA^m$ is well defined. $(:: \sum_{m=0}^{\infty} (A')^m NA^m - A' \sum_{m=0}^{\infty} (A')^m NA^{m+1}$ $= N + \sum_{1}^{\infty} (A')^{m} N A^{m} - A' \sum_{1}^{\infty} (A')^{m} N A^{m+1} = N)$ Since N > 0, for $A\nu = \lambda \nu$ $v^* N v = v^* M v - v^* A' M A v$ $= \upsilon^* M \upsilon - \lambda^* \upsilon^* M \upsilon \lambda$ $=(1-\lambda^2)\upsilon^*M\upsilon>0$ $v^*Mv > 0 \rightarrow M > 0.$

Stability of Linear Time Varying System

Theorem

$$\begin{aligned} x_e & \text{of } \dot{x} = A(t)x \text{ is stable i.s.L at } t_0 \text{ iff} \\ \exists K(t_0) \ni \\ & \left\| \Phi(t, t_0) \right\| \leq K(t_0) < \infty \ \forall t \geq t_0, \end{aligned}$$

and x_e is uniformly stable i.s.L if K is independent of t_0 .

Pf) (
$$\Leftarrow$$
) $x_e = \Phi(t, t_0) x_e, \forall t \ge t_0$
 $x(t) - x_e = \Phi(t, t_0) (x_0 - x_e)$
 $\|x(t) - x_e\| \le \|\Phi(t, t_0)\| \|x_0 - x_e\| \le K(t_0) \|x_0 - x_e$
for any ε , $\exists \delta(t_0) > 0$ such that
 $\|x_0 - x_e\| \le \frac{\varepsilon}{K(t_0)} = \delta(t_0) \rightarrow \|x(t) - x_e\| \le \varepsilon.$
(\Rightarrow) by contradiction, it can be easily shown

 (\Rightarrow) by contradiction, it can be easily shown.

Stability of Linear Time Varying System

Theorem

Zero state of $\dot{x} = A(t)x$ is asymptotically stable at t_0 if $\|\Phi(t,t_0)\| \le K(t_0) < \infty \& \|\Phi(t,t_0)\| \to 0$ as $t \to \infty$. And it is uniformly asymptotically stable over $[t_0,\infty]$ if $\exists K_1 > K_2 > 0$ such that $\|\Phi(t,t_0)\| \le K_1 e^{-K_2(t-t_0)} \quad \forall t \ge t_0$.

Note

$$AS \nearrow BIBO \leftarrow y(t) = \int_{t_0}^t C(\tau) \Phi(\tau, t_0) B(\tau) u(\tau) d\tau$$

Stability of Linear Time Varying System

Theorem 5.7

Marginal and asymptotical stabilities are invariant under any Lyapunov transformation.

Pf)

By Lyapunov transformation,

$$\overline{X}(t) = P(t)X(t)$$

$$\overline{\Phi}(t,\tau) = \overline{X}(t)\overline{X}^{-1}(\tau) = P(t)X(t)X^{-1}(\tau)P^{-1}(\tau)$$

$$= P(t)\Phi(t,\tau)P^{-1}(\tau)$$

Since P(t) and $P^{-1}(t)$ is bounded, $\overline{\Phi}(t,\tau)$ is bounded.