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 Controllability

 Observability

 Canonical Decomposition

 Conditions in Jordan Form

 Discrete Time Case

 Time Varying Case
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Definition: Controllability

2Linear Systems

{ }

{ }

0

0

,  is said to be controllable if for any , ,

 an ( ) that transfers  to  in a finite time.

Otherwise, ,  is said to be uncontrollable.

f

f

A B x x
u t x x

A B

∃

1

2

:  controllable
:  uncontrollable

x
x
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{ }

[ ]
{ }

( ) ( )

0 0

2 1

The followings are equivalent
1. ,  is controllable 

2. ( )

    is nonsingular.

3.   has rank .

4.   has full row rank for all 

5. If Re

t tA A A t A t
c

n

i

A B

W t e BB e d e BB e d

C B AB A B A B n

A B

τ τ τ ττ τ

λ λ

λ

′ ′− −

−

′ ′= =

 =  
−

∫ ∫

I



0

0 ,  then  has unique and 
    positive definite. The solution is called  
    Controllability  Gramian expressed as

    ( ) .

c c

A A
c

i AW W A BB

W e BB e dτ τ τ
∞ ′

′ ′< ∀ + =

′∞ = ∫
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1
1 1

1 1

1
1 1 1

( )
1 0

0 1 1

( ) 1
1 0 1

( ) ( )
1 0 0

( ) If ( ) 0 (nonsingular) controllable

        ( ) (0) ( )

        (0) ,  ( )

Let   ( ) ( )

        ( )

c
tAt A t

A t t At
c

tAt A t A t

W t

x t e x e Bu d

x x x t x

u t B e W t e x x

x t e x e BB e d

τ

τ τ

τ τ

τ

−

′ − −

′− −

⇐ > →

= +

= =

 ′= − − 

′= −

∫

∫ 11
1 0 1

1

( )

               

At
cW t e x x

x

−  − 
=

(Pf. 1    2) 



Perception and Intelligence Laboratory
School of Electrical Engineering at SNU

Controllability

6Linear Systems

1
1 1

1
1

1

1

( ) ( )
1 0

2
( )

0

( )  by contradiction
        Assume { , } is controllable but ( ) is singular.
         0  ( ) 0

        ( )

                       0

  

c

c
t A t A t

c

t A t

A B W t
W t

W t e BB e d

B e d

τ τ

τ

υ υ

υ υ υ υ τ

υ τ

′− −

′ −

⇒

∃ ≠ ∋ =

′ ′ ′=

′= =

∫

∫
[ ]1

1

1
1

1
1

( )
1

1

( )

0

( )

0

       0  0,

         (0) ,  ( ) 0

         0 ( )

         0= + ( )

        This is contradict.

A t

At

t A t

t A t

B e t

x e x t

e Bu d

e Bu d

τ

τ

τ

υ τ

υ

υ τ τ

υ υ υ τ τ υ υ

′ −

−

−

−

′ = ∀ ∈

= =

= +

′ ′ ′=

∫
∫

(Pf. 1    2) 
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1

0

0
1

1

0

( ) If ( ) nonsingular   has full rank
        ( ) 0 means =0   .....(*)

        =0

          (using minimal poly)

          0  ....

c

c
At

n
At i

i
i

At n

n

W t C
W t

e B

e A

e B B AB A B

υ υ υ

υ

α

α
υ υ

α

−

=

−

−
≠

⇒ →
′ =

′

=

 
 ′ ′  = =   
  

∑

  .(**)

         If  has not full rank,
          0 that satisfy (**), this contracts (*). 
         Hence  has full rank.

C

C
υ′∃ ≠

(Pf. 2    3) 
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1

1

( ) If  singular   does not have full rank 
         0 0

         0

         has not full rank.

c

c

n

n

W C
W

B AB A B

B AB A B

υ υ υ

υ −

−

⇐ →
′ ′∃ ≠ ∋ =

′   = 
  





(Pf. 2    3) 
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[ ]

[ ]1

1
2 2

1 1

( ) If  has full rank   has full rank
        If not,  0 
                       0
                , 0

                      ,

                       

k k

n

C A I B
q
q A I B
qA q qB
qA qAA q qA q

q B AB A

λ

λ

λ

λ λ

⇒ → −

∃ ≠ ∋

− =

⇒ = =

= = =



1 1
1 1 0

         has not full rank (contradict).

nB qB qB qB

C

λ λ− −   = =   

(Pf. 3    4) 
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[ ]
[ ] [ ]

[ ]
121

1 1 1 1

( )   has full rank  has full rank
        If < ,   at some 
        By Theorem 6.6, if ,   0 

 
           

00   
        Let (

c c

c

c c

A I B C
C n A I B n

C n m P
A A B

A PAP B PB
A

q A q q A

λ
ρ ρ λ λ

ρ

λ λ

−

⇐ − →
− <

= − ∃ ≠ ∋

   
= = = =   

    
= ⇒ −
[ ]

[ ]

( )

1

1

121
1 1

1

1

) 0
        Let 0 

         0 0
00

        
        By Theorem 6.2, controllability is invariant by 
        equivalence transformation.
       

cc

c

I
q q

A BA I
q A I B q

A I

A I B n

A

λ
λ

λ

ρ λ

ρ λ

=
=

 −
 − = =   −  

⇒ − <

⇒ −[( )1  I B n<

(Pf. 3    4) 
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{ }

0

      ,  controllable 
 ( )
 By Controllary 5.5,   unique 0 

       ...(*) for  with negative real part 
      In addition, by Theorem 5.6,

      ( )  is unique sol

c

c c

A A
c

A B
p C n

W
AW W A BB A

W e BB e dτ τ τ
∞ ′

⇔ =
⇔ ∃ > ∋

′+ = −

′∞ = ∫ ution of (*).

(Pf. 1     2     5) 
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Example 6.3
Can we apply a force to bring the platform from 
x1(0)=10, x2(0)= -1  to equilibrium with 2 seconds? 

1 1 2 22 ,x x u x x u+ = + = 
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Example 6.3 (cont)

[ ]

[ ]

0.5 0.52

0

0.5(2 )

(2 )

0.5 0.25
[ ] 2

1 1
controllable

To find control ( ) in [0, 2],

0.5
(2) 0.5 1

1

0.2162 0.3167
         

0.3167 0.4908

( ) 0.5 1

c

t

t

B AB

u t

e e
W d

e e

e
u t

e

τ τ

τ τ

ρ ρ

τ
− −

− −

− −

− −

− 
= = − 

→

     
=            
 

=  
 


= −

∫

1
1

2

0.5

10
(2)

1

      58.82 27.96

c

t t

e
W

e

e e

−
−

−

    
     −    

= − +
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Example 6.3 (cont)
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Example 6.4 
1 0 1

0 1 1

1 1
[ ] 1

1 1

x x u

B AB

uncontrollable

ρ ρ

−   
= +   −   

− 
= = − 

→



1
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Controllability indices

{ }
1

1

1 2 1 1

Define   0,1, 2

( : controllability matrix)
If ,  is controllable,

     LI columns among  columns

 

Note) If  is LD to its left-ha

k
k

n

n

k k
k p p p

j
i

U B AB A B k

U U
A B

U n n np

U b b b Ab Ab A b A b

A b

ρ

−

−

 = = 
=

⇔ = ⇔ ∃

 =  

  

    

2 1 1 2 2 1 1

2 2
2 1 1 2 2 1 1

nd-side(LHS) vectors, 

           , ,  is LD to its LHS vectors

          

Note) column search algorithm (Appendix A in 2nd Ed.)

k
i

p

p

A b k j
Ab b b Ab

A b Ab Ab A b

α α α

α α α
+

+

>

= + + +
 = + + +
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{ }

1

0 1 2

0 1 1 1

0 1 1 1

1

Define : number of LD columns in { , , }

     0
       
          0      ,
       
          

      If ,   is controlla

i i
i pr A b A b

r r r p

r r r p r r p

U U U U U

U n A B

µ µ µ

µ µ µ

µ

µ

µ
ρ ρ ρ ρ ρ

ρ

− +

− +

−

=

⇒ ≤ ≤ ≤ ≤
⇒ ∃ ∋

≤ ≤ ≤ < = = =

⇔ ∃ ∋
< < < = =

⇒ =







 

ble.
      : controllability indexµ⇒
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Rearrange of U

 

{ }
{ } { }

{ }

1 112
1 1 1 1

1 1

    , , , , ,

    max , , ,  , ,  controllability indices

If ,   is controllable

:

          min( ,  1)

where  is degree of minimal polynomial.
      

p
p p p

p p

i

b Ab A b A b b Ab A b

n A B

n n n p
p
n

µµ

µ µ µ µ µ

µ

µ

−−

=

⇒ =

≤ ≤ − +

∑

Claim

  

 

      is rank of B.p
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Pf)

1
1

1
1

1

2

i) 

ii) = + + I

    =     is LD to its LHS vectors
   

iii) The rank of increases at least one 

     whenever  increases by one,  for example,

     

n n
n

n n
n

nn p
p

A A

A B A B B
n

B AB A B

B AB A B

µ

µ µ

α α

α α
µ

µ

ρ

−

−

−

≤ ⇒ ≤

+ +
⇒ ≤

  





  

[ ] 1.

    The largest  is achieved when the rank increases just by one 
     in every increase of . i.e.,
      1  1.

B AB

p n n p

ρ

µ
µ

µ µ

 − ≥ 

+ − ≤ ⇒ ≤ − +



Perception and Intelligence Laboratory
School of Electrical Engineering at SNU

Controllability

20Linear Systems

Theorem 6.2
Controllability is invariant by any equivalence transformation.

Pf)
1

1

1 1 1

1 ,  : nonsingular

( ) ( ).

n

n

n

n

C B AB A B

C B AB A B

P B PAP PB PA P PB

P B A B PC P

C Cρ ρ

−

−

− − −

−

 =  
 =  

 =  
 = = 

⇒ =





 
{ }

1

,  is controllable if

 has rank .n p
n p

A B f

C B AB A B n−
− +  =  

Corollary 6.1
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Example 6.5

 

2
1

2 3

0 1 0 0 0 0
3 0 0 2 1 0
0 0 0 1 0 0
0 2 0 0 0 1

1 0 0 0
0 0 1 0

0 0 1 0 0 2
1 0 0 2 1 0

=
0 0 0 1 2 0
0 1 2 0 0 4

2,

n p

n

x x u

y x

C B AB A B

C B AB A B A Bµ

− +

   
   
   = +
   
   −   
 

=  
 

 
 −  =    −
 − − 

 = =  
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Theorem 6.3
The set of controllability indices is invariant

by any equivalence transformation and any ordering of columns in B.

Pf)

{ }

i) ( ) ( ) by theorem 6.2
0 1

ii) =  (  pumutation matrix,  = )
1 0

   

          diag ,

                     nonsingular
    ( ) ( )

k k

k
k

k

k k k

C C

B BM M p p M

U B A B

U M M M

U U

ρ ρ

µ ρ ρ

=

 
= ×  

 
 =  

=

⇒ = =
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Problem 6-2, Text, p. 180
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Ideal candidates should have excellent mathematical and 
programming skills, outstanding research potential in machine 
learning (e.g, recurrent networks, reinforcement learning, 

evolution, statistical methods, unsupervised learning, 

the recent theoretically optimal universal problem solvers, 

adaptive robotics), and good ability to communicate results.

General intellectual ability: 
Analytical / theoretical skills: 
Programming skills: 
Experimental skills: 
Motivation: 
Written communication skills: 
Verbal communication skills: 
Ability to organise workload: 
Originality / creativity: 
Social skills: 
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{ }

[ ]
1

1

,  is said to be observable if 
for any unknown (0),   finite 0 such that 

& 0,  suffices to find (0).

A C
x t

u y t x
∃ >

∈

Definition 6.O1

Example 6.6

When 0,  0 always 
regardless of initial state (0).

unobservable

u y
x

= =

⇒
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Example 6.7

1 2When 0,  (0) 0, (0) 0,  the output ( ) 0.
There is no way to determine the initial state [ ,  0] 
form ( ) and ( ).

unobservable

u x a x y t
a

y t u t

= = ≠ = =

⇒
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Observability Matrix

( )

0

0

( )
0 0

1 1

( ) (0) ( ) ( )

(0) where ( ) ,

and ( ) ( ).

(0) (0).

If ( ) ,  ( )  (  is nonsingular).

H

tAt A t

At

t A t

At At

n n

At At

y t Ce x C e Bu d Du t

y Ce x y y t u

u C e Bu d Du t

y C
y CA

e x e x

y CA

n e n e

τ

τ

τ τ

τ τ

ρ ρ

−

−

− −

= + +

= = −

= +

   
   ′   = =
   
   
   

= =

∫

∫

Ο

Ο Ο

 



ence the solution (0) is uniquely determined. Observable.
 is called .

x ⇒
Ο Observability Matrix
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0 0

The state is observable if  the n n matrix

         ( )  

is nonsingular  0.

t A A

f

W t e C Ce d

t

τ τ τ′

×

′=

∀ >
∫

Theorem  6.4

Pf)

1 1

1
1

0

00 0

1
0 0 1 10

( ) ( )

       ( )

       [ ( )] ( ) ,  for any fixed .

At

t tA t At A t

tt A t

Ce x y t

e C Ce dtx e C y t dt

x W t e C y t dt t

′ ′

′−

⇐ =

′ ′=

′=

∫ ∫
∫
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[ ]

1

1

0 1 0

0 1

0 1 0

2

0

1

(1)

( )  ( ) is singular   is not observable.
         0 such that  ( ) 0.

        0 ( )

          

       0  0,

       ( ) 0 for (0

t A A

t A

A

A

W t x
W t

W t e C Ce d

Ce d

Ce t t

y t Ce x

τ τ

τ

τ

τ

υ υ

υ υ υ υ τ

υ τ

υ

υ

′

⇒ →
→∃ ≠ =

′ ′ ′= =

=

→ = ∀ ∈

→ = =

∫
∫

(2)
2

) 0
             ( ) (0) 0 for (0) 0
        two different initial states for ( ) 0. 
       not observable.

Ay t Ce x x
y t

τ

υ= ≠

= = =
→ ∃ =
→

Pf_continued)
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{ }

{ }

{ }
0

0 0

0

,  is controllable if  ( , ) is observable.

,  is controllable if

( )  is nonsingular for all 0.

,  is observable if

( )  is nonsingular for all 0.

( ) (

t A A
c

t A A

c

A B f A B

A B f

W t e BB e d t

A B f

W t e BB e d t

W t W t

τ τ

τ τ

τ

τ

′

′

′ ′

′= >

′ ′

′= >

=

∫

∫
).

Theorem 6.5 (Theorem of duality)

Pf)
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{ }

0 0

1

1. ,  is observable.

2. ( )  is nonsingular  0.

3. The  observability matrix  has rank .

4. The ( )  matrix  has full rank at every e
       

t A A

n

A C

W t e C Ce d t

C
CA

nq n n

CA

A I
n q n

C

τ τ τ

λ

′

−

′= ∀ >

 
 
 × =
 
 
 

− 
+ ×  

 

∫

O


{ } 0

0 0 0 0

igenvalue  of .

5. If Re ( ) 0,   0 such that
    ,  lim ( ) : bservability Gramian.

i

t

A

A W
A W W A C C W W t O

λ

λ

→∞

< ∃ >

′ ′+ = − =

Theorem 6.O1 : The following statements are equivalent.
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1

2

1 1

1
1

1

 qn n

n

n

n
q

C
C

C
C

CA
C n

CA CA

C A

C A

ν

ν

ρ ρ ρ ρ

− −

−

−

 
  
           = → = = = =              
   

 
 
 
 
 
 
   

O O O






















Observability index ν
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{ }
1

1

1
1

1

1

1

observability indices:

       , .
   

observability index:
         max( ).

   

q

q

q

q

q

c

c A

c

c A

ν

ν

ν ν

ν ν ν

−

−

 
 
 
 
 
 
  =
 
 
 
 
   













Linearly Independent Vectors in
   

νO
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Claim
min( , 1)

               where ( ) .

n n n qq
C q

ν

ρ

≤ ≤ − +

=

{ }

1

,  is observable if

              

where ( ) .

n q

n q

A C f

C
CA

O n

CA
C qρ

− +

−

 
 
 = =
 
 
 

=



Corollary 6.O1
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Theorem 6.O2

Theorem 6.O3

Observability property is invariant by equivalence transformstion. 

The set of observability indices of {A, C} is invariant 
under equivalence transformation and any reordering of the rows of C.
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Problem 6.11, in Text, p.181



Perception and Intelligence Laboratory
School of Electrical Engineering at SNU

Canonical Decomposition

37Linear Systems

Equivalence Transformation (Remind)

{ } { }

1 1

1

      
      
Let ,  where P is a nonsingular matrix. Then 
      
      
with , , , .
They are equivalent. i.e.,

     , , , , , , .

And ,   = ,  i.e

x Ax Bu
y Cx Du
x Px
x Ax Bu
y Cx Du

A PAP B PB C CP D D

A B C D A B C D

P P

− −

−

= +
= +
=

= +

= +

= = = =

↔

=C C O O





.,
Stability, Controllability, Observability are preserved.
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Theorem 6.6

1 1

1
1

1
1 1

1

1 1

If ( )

Let Q=

, 1,...,         LI column vectors in 
, 1,...,   LI  vectors to , 1,...,  .

n

n n n

i

i i

B AB A B n n

P q q q q

q i n
q i n n q i n

ρ ρ −

−
+

 = = < 
 =  

=
= + =

C

C



 

12

Then  x=Px leads to 
xx A A B

    u
xx 0 A 0

x
          y C C Du

x

cc c c

cc c

c
c c

c

     
= +     

      
 

 = +  
 





Canonical Decomposition
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1 1

1 1

1

       A :
       A : ( ) ( )
And the    dimensional subequation 
       x A x B u
       y C x Du
is controllable and has the same transfer function matrix 
as the original state equation.

c

c

c c c c

c c

n n
n n n n
n

×

− × −

= +

= +



Theorem 6.6 (continued)
where
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[ ]

1

1

1

1

1 1 1

Aq q q
Aq , 1,... ,  is linearly dependent on its LHS vectors, i.e., 
{q , 1,... } (see 6.2.1) and they are linearly independent 

on {q , 1,..., }. Hence [   ...  0...0], 1,..., .

i n i

i

i
T

i i i in

a
i n

i n

i n n a a a i n

=

=
=

= + = =



[ ] [ ]
1

1

1 1 1

12
1

A q q q q [  ]

                  AQ QA

A A
                       q , ,q q .

0 A

n n n n

c
n n

c

a a a=

=

 
 =   

 

   

 

{ }

{ } { }

1

1
1

A

A

Q P q q , q

 x x

   Q   x Qx,

 x x ,   : rep. of Aq  . . .

n n

i

i i i i

n

q a w r t q

−  = =  
→

↑ =

→

 





Pf)
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1

1

1 1
1

1

1

B AB

B A   BA B A   B
0 00      ...     0

A B
( ) ( )

00 0

n n
c c cc c c c

n
c c c

c

n
n n

nρ ρ

− −

 =  
 

=   − 
 

= = = 
 

C

C
C C












1 1C( I-A) B D C ( I-A ) B D (see p.160)c c cs s− −+ = +

[ ] { }
{ }

1

1

1

1
1

1

1

B PB
B

B P B QB q , ,q q
0

All columns in B AB are spaned by q q ,
as a results, B is spaned by q q .

c
n n

n

n

−

=
 

 = = =   
 

 

 



Pf_continued)
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[ ]

2

1

1 1 0 0 1
      x= 0 1 0 x+ 1 0 u      1 1 1 x

0 1 1 0 1
Since (B)=2, [B AB] is used instead of [B AB A B].

0 1 1 1
      [B AB]= 1 0 1 0 2 3 .

0 1 1 1
0 1 1

Q P 1 0 0 ,  and le
0 1 0

y

uncontrollable

ρ

ρ ρ

−

   
    =   
      

 
  = < → 
  

 
 = =  
  



[ ]1 1

t x=Px.

1 0 0 1 0
A=PAP 1 1 0 , B=PB= 0 1 ,  C=CP 1 2 1

0 0 1 0 0

− −

   
   = =   
      

Example 6.8
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Theorem 6.O6

2

1

1
2

n-1

2

2 2

C ...
CA

If ( ) ,  let Q =P= ,
...

...
CA

where 
, 1,...,         LI column vectors in 
, 1,...,   LI  vectors to , 1,...,  .

n

n

i

i i

p

pn n

p

p i n
p i n n p i n

ρ ρ −

 
   
   
   = = <
   
   
   

 

=
= + =

O

O

21

Then  x=Px leads to 
xx BA

    u
xx BA A

x
          y C 0 Du

x

oo oo

oo oo

o
o

o

     
= +     

     
 

 = +  
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2 2

2 2

2

0

       A :
       A : ( ) ( )
And the    dimensional subequation 
       x A x B u
       y C x Du
is obsevable and has the same transfer function matrix 
as the original state equation.

o

o

o o o

o o

n n
n n n n
n

×

− × −

= +

= +



Theorem 6.6 (continued)
where
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Theorem 6.7
Every state equation can be transformed into 

13

21 23 24

43

x x BA 0 A 0
xx A A A A B    u
x0 0 A 0 0x
x0 0 A A 0x

          y C 0 C 0 x Du.

      x A x B u
y C x Du.

con

co co coco

coco co co

cococo

cococo

co co

co co co co

co co

      
      
      = +      
      

           
 = + 

= +

= +
⇒











1

trollable and observable.
G(s) C ( I A ) B D.co co cos −= − +
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Kalman Decomposition 
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[ ]

[ ]

c c

c

0 0.5 0 0 0.5
1 0 0 0 0

      x x+ u      
0 0 0.5 0 0
0 0 0 1 0

      0 0 0 1 x+u.
Controllable part is 

0 0.5 0.5
      x x + u      

1 0 0

      0 0 x +u.
Controllable and observable part i

y

y

−   
   
   =
   −
   −   

=

−   
=    
   

=





s
      u.
     

y =

Example 6.9
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1
1 2

2

1 11 12 13 2 21 22

lij ij

fij i

x Jx+Bu
y Cx+Du

J 0
J diag(J ,  J )

0 J
J diag(J ,  J ,  J ),  J diag(J ,  J )
b : the row of B corresponding to the  row of J .

c : the column of C corresponding to the  column of J

last
first

=
=

 
= =  

 
= =



j.

Jordan-form Dynamical Equations.
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1

1

111

12 11

132

2

2

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0

b0 0 0 0 0 0 0 1 0
    x x b :=B0 0 0 0 0 0 0 0 1 u

b0 0 0 0 1 0 1 1 2
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 1

l
l

l

l

λ
λ

λ
λ

λ
λ

λ

   
   
   
    ← 
     = + ←     
     ←    
   
    ←  



Example 6.10

[ ]21 2b :=Bl
l

If the rows of B  are LI, {J, B} is controllable.l
i
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1

11 12 13 21

2

1 1 2 0 0 2 0
       y 1 0 1 2 0 1 1 x

1 0 2 3 1 2 2

                       

          c  c  c c

              :=C                 :=C

( ) : number of Jordan block for  , for example.
(1) 3,

f f f f

f f

ir i
r

λ

 
 =  
  
↑ ↑ ↑ ↑

      

=  (2) 1.r =

If the columns of C  are LI, {J, C} is observable.f
i
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1

2

( )

1)  JFE is controllable if  for each ,
     the rows of ( )  matrix

b
b

     B :  are linearly independent to each other.

b

2) JFE is observable if  for each ,
     the column

li

lil
i

lir i

f i
r i p

f i

×

 
 
 =
 
 
  



1 2 ( )

s of ( ) matrix

     C : c c c  are LI to each other.f
i fi fi fir i

q r i×

 =  

Theorem 6.8
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[ ]

[ ]

[ ]

1

111

211

11

1 112

12

1 2 121

1 2 21

1 11 12

I A B n,  for all .
For 

0 1 b
0 1 b

0 b
I A B 0 1 b

0 b
1 b

b

I A B b  and b  is LI.

i

l

l

l

l ln

ρ λ λ
λ

λ

λ λ
λ λ

ρ λ

− =

− 
 − 
 
 − = − 
 
 

− − 
 − 

− = ↔







Pf)
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Discrete-Time State Equation

{ }

[ ]

[ ]

[ ]

1

0

1

1. ,  is controllable 

2.  1 ( ) ( ) :  matrix

     is nonsingular

3. has rank 

4.   =  

5. If ( ) 1,   0 such that
      
    .

n
m m

dc
m

n
d

i dc

dc dc

dc dc

A B

W n A BB A n n

B AB A B n

A B n

A W
W AW A BB
W W

ρ λ λ

λ

−

=

−

′ ′− = ×

 =  
− ∀

< ∃ >

′ ′− =

= ∞

∑

C

I



Theorem 6.D1
The followings are equivalent to each other;
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[ ] [ ] [ ]

[ ] [ ]
[ ]

[ ]

[ ]

1
1

0

1

1

1

0

1
0

0

( )  is unique
By Theorem 3.8

( ) 1

( )

n
n n m

m

n n

d

d

n
d dc

n

x n A x A Bu m

u n
x n A x B AB A B

u

x
n

B
B A

n W n B A B n

B A

ρ

ρ ρ ρ

−
− −

=

−

−

−

= +

 −
  − =    
  

=
= ↔

′ 
 ′ ′  = ↔ − = =   
 ′ ′ 

∑

C u
C u

C

 





Note)
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{ }

[ ]
1

0

1

1. ,  is observable 

2.  1 ( ) ( ) :  matrix

     is nonsingular

 
3. has rank , 4. =  ( )

...     

5. If ( ) 1,   0 such that

    ,

n
m m

do
m

d

n

i dc

do do

A C

W n A C C A n n

C
CA A

n n A
C

CA

A W

W A W A C C

λ
ρ λ

λ

−

=

−

′ ′− = ×

 
  −  = ∀    
 
 

< ∃ >

′ ′− =

∑

I
O

[ ]  .do doW W= ∞

Theorem 6.DO1
The followings are equivalent to each other;
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Controllability to the origin & reachability

[ ] [ ] [ ]

0

0

0

 Controllability from any x  to any x

 Controllability from any x 0 to x =0

 Controllability from any x =0 to any x 0 

 reachability
0 1 0 0

  x 1 0 0 1  x 0 u
0 0 0 0

  ( ) 0 :  not cont

f

f

f

d

k k k

ρ

⋅

⋅ ≠

⋅ ≠

=

   
   + = +   
      

=C

[ ] [ ]3

rollable

  x 3 x 0 0 controllable to originA= =
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Controllability after sampling

[ ] [ ] [ ]

[ ] [ ]
[ ] [ ]
1 2

2 1 1
x 1 x u

0 0 0

x 0 ,  x 0

u 0 2 x 1 0
controllable to origin
not reachable

( ) 1d

k k k

α β

α β

ρ

−   
+ = +   

   
= =

= + → =

=C

[ ]
[ ] [ ] [ ]

0

Ax( ) Bu( )
u u( ) u( ) for ( 1)

x 1 Ax Bu

A ,B B MB
TAT At

x t t
k kT t kT t k T

k k k

e e dt

= +

= = ≤ < +

+ = +

= = =∫





Perception and Intelligence Laboratory
School of Electrical Engineering at SNU

Discrete Time Case

58Linear Systems

{ }
{ }

Suppose ,  is controllable. 

Sufficient condition for ,  to be controllable is that 

Im 2  for 1, 2, 

whenever Re 0.

For single input case, the condition is necessary as well.

i j

i j

A B

A B

m T mλ λ π

λ λ

 − ≠ = 

 − = 



Theorem 6.9

1 2

( )
1 1

( )
2 2

1 2

1 2

1 2

  
Let 

  
If Im[ ] 2 2 , then  =      

         ,  
        

j T

j T

T TT T

j e
j e

m T T m

e e e e

α β

α β

λ λα α

λ α β λ

λ α β λ
λ λ β π π β

λ λ
λ λ

+

−

 = + =


= − =
− = =

= = = =

→ =

Note) 
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[ ]

A B

1

2

1

A B

1

2
1 2

1

0
controllable
A B

0

0 Since 

A B 1
0

n

n

I n

I n

λ
λ

ρ λ

λ

λ
λ λ λ

ρ λ

λ

   
   
   
    →

− =   
   
     

   
   
    =
    →

 − = −     
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1

1

1

1

2

2

1 * *
1 0 * *

0 1
A  B

1 1
1 * *

0 1 0
                                                    controllable

λ
λ

λ
λ

λ
λ

   
   
   
   

= =   
   
   
   

     

Pf. of Theorem 6.9
Controllability is invariant by ET 
→ can be proved by Jordan form



Perception and Intelligence Laboratory
School of Electrical Engineering at SNU

Discrete Time Case

61Linear Systems

1 1 1

1 1

1

1

2 2

1

2 2
0

A
0

0

*
01

B MB M 11
*

10

T T T

T T

T

T

T T

T

e Te T e
e Te

e
e

e Te
e

λ λ λ

λ λ

λ

λ

λ λ

λ

 
 
 
 

=  
 
 
 
  

 
 
 
 = =
 
 
  

Pf. of Theorem 6.9 (cont.)
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{ }
1 2

0

If 2  for Re =0,

                    .

If  M is nonsingular, ,  is controllable.

To show M is nonsingular,

( 1)  for 0
                 for 0

 

i
i

m i j i j

T T

TT i i
ii

i

I m T

e e

A B

e
m e d

T

λ λ

λ
λτ

λ λ π λ λ

λ λ
τ

λ

   − ≠ −   
≠

 − ≠= = 
=

∫
   0,        

if 2 2  ( 0 only for 0 & ).i ii i iT m m T mβ π α β π
≠

≠ = = =

Pf. of Theorem 6.9 (cont.)
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[ ]

3 2

Consider    
2 2    g( )  

3 7 5 ( 1)( 1 2)( 1 2)
Using (4.41), the state equation is

3 7 5 1
    x 1 0 0 x 0

0 1 0 0

    0 1 2 x
    | | 2, 4 2 / 2  and 2 / 4 0.5 .

The 
i j

s ss
s s s s s j s j

u

y
T m m T m mλ λ π π π π

+ +
= =

+ + + + + + + −

− − −   
   = +   
      

=

− = → ≠ = ≠ =



second condition includes the first one.
The discretized equation is controllable iff 0.5 .T mπ≠

Example 6.12
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{ }

1

0

1 0

0 1 1 1

( ), ( )  is controllable at  if
 a finite  such that

       ( , ) ( , ) ( ) ( ) ( , )

is nonsingular,
where ( , ) is the state transition matrix.

o

t

c t

A t B t t f
t t

W t t t B B t d

t

τ τ τ τ τ

τ

∃ >

′ ′= Φ Φ

Φ

∫

LTV State Equation

Theorem 6.11

( ) ( ) ( ) ( )
( ) ( )

x A t x t B t u t
y C t x t
= +
=
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{ }
1

0

0 1

1 1 0 0 1

1
1 0 1 1 0

( )
      ( , ) is nonsingular ( ), ( )  is controllable at  

             x( ) ( , )x ( , ) ( ) ( )

      We claim that the input
             u( ) ( ) ( , ) ( , )[ ( , )x

c o

t

t

c

W t t A t B t t

t t t t B u d

t B t t t W t t t t

τ τ τ τ

−

⇐

→

=Φ + Φ

′ ′= − Φ Φ

∫

1

0

0 1

0 1

1 1 0 0 1 1

1
0 1 1 0 0 1

1

x ]
      will transfer x  to x . Then 

             x( ) ( , )x ( , ) ( ) ( ) ( , )

                                               ( , )[ ( , )x x ]
                    x .

t

t

c

t t t t B B t d

W t t t t

τ τ τ τ τ

−

−

′ ′= Φ − Φ Φ

⋅ Φ −
=

∫

Pf. of Theorem 6.11
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{ }0 1

0 1

0 1

( ) (By contraction)
       ( , ) is nonsingular ( ), ( )  is controllable at  
       Assume ( , ) be singular even if controllable,
             0 such that ( , ) 0,  so

             

c o

c

c

W t t A t B t t
W t t

v W t t v

v W

⇒
←

∃ ≠ =

′ 1

0

1

0

0 1 1 1

2
1 0 1

1 0 1

( , ) ( , ) ( ) ( ) ( , )

                                ( ) ( , ) 0,  in [ , ].

      This implies ( ) ( , ) 0,  in [ , ].
      If controllable,  ( ) that

t

c t
t

t

t t v v t B B t vd

B t v d t t

B t v t t
u t

τ τ τ τ τ

τ τ τ τ

τ τ τ

′ ′ ′= Φ Φ

′ ′= Φ = ∀

′ ′Φ = ∀
∃

∫
∫

1

0

1

0

0 0 1 1

1 0 0 1 1

1

 transfer x ( , )  to x 0. i.e.,

             0 ( , ) ( , ) ( , ) ( ) ( ) .

      Its premultiplication by  yields 
             0 ( , ) ( ) ( ) .

      This contrad

t

t

t

t

t t v

t t t t v t B u d

v
v v v t B u d v v

τ τ τ τ

τ τ τ τ

= Φ =

= Φ Φ + Φ

′

′ ′ ′= + Φ =

∫

∫
icts 0.v ≠

Pf. of Theorem 6.11 (cont.)
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Controllability condition without 

0

1

Define ( ) ( )

           ( ) ( ) ( ) ( )m m m

M t B t
dM t A t M t M t
dt+

=

= − +

( , )t τΦ

{ }

[ ]
1 0

0 1 1 1 1 1

Let ( ), ( ) be ( 1) times continuously differentiable. 
( ), ( )  is controllable at  if

there exists a finite  such that
          ( ) ( ) ( ) .

o

n

A t B t n
A t B t t

t t
M t M t M t nρ −

−

>

=

Theorem 6.12
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[ ] [ ]1 1 1

1 0 0

1 1

1 1

( , ) ( ) ( , ) ( ) ( , ) ( )

( , ) ( ) ( ) ( )

( , ) ( )

( , ) ( ) ( , ) ( )
m

mm

dt t B t t t B t t t B t
t t dt

dt t A t M t M t
dt

t t M t

t t B t t t M t
t

∂ ∂
Φ = Φ +Φ

∂ ∂
 = Φ − +  

= Φ

∂
Φ = Φ

∂



2 2

2 2

1
2 2

( , ) ( , ) ( )

( , ) ( ) ( , )

( , ) ( , )

t t t t A t
t

t t A t t t
t

t t t t −

∂
Φ = −Φ

∂
∂ Φ = Φ∂

Φ = Φ

2 2( , ) ( ) ( , ) ( )
m

mm t t B t t t M t
t
∂

Φ = Φ
∂

Claim

Pf)
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[ ]

1

0

0 1

0 1 1 0

0 1

0 1 1 1

1

(not controllable ,..., )
Assume  ( , ) be singular  .
        0  such that 
      ( , ) 0

      ( , ) ( , ) ( , )

                         ( ) ( , )

n

c

c
t

c t

M M n
W t t t t

W t t

W t t t BB t d

B t

ρ

υ
υ

υ υ υ τ τ υ τ

τ τ υ

−→ <

∀ ≥
∃ ≠

=

′ ′ ′ ′= Φ Φ

′ ′= Φ

∫
1

0

2 0.
t

t
dτ =∫

Pf)  (By contraction)
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[ ]

[ ]

[ ]

1 0 1

1

1

1 0 1

1

0 1

This implies 
         ( ) ( , ) 0 
        ( , ) ( ) 0.
By times derivatives, 
        ( , ) ( ) 0
        ( , ) ( ) ( ) 0.
Since ( , ) 0,
         ( ) ( )    fo

m

n

n

B t t t
t B

m
t M

t M M
t

M M n

τ τ υ τ
υ τ τ

υ τ τ
υ τ τ τ

υ τ
ρ τ τ

−

−

′ ′Φ = ∀ ∈

′Φ =
−
′Φ =

′⇒ Φ =

′Φ ≠

<



 0r all .tτ >

Pf)  (cont.)
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[ ]

0

2
1 0 0 2 1 1

2

0 1 2

Consider 
1 0 0

         x 0 1 x 1 .
0 0 1

We have M [0 1 1]  and compute
1

         M A( )M M 0 ,   M A( )M M .
1

The determinant of 

        M M M

t
t u
t

t
d dt t t
dt dt

t t

−   
   = − +   
      

′=

−   
   = − + = = − + =   
   − −   



2

2

2

0 1
1 0
1 1

is 1. This implies the system is controllable at every .

t
t

t t

t t

− 
 =  
 − − 

+

Example 6.13
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2

2

c 0

Consider 
1 0 1

         x x controllable by Corollary 6.8.
0 2 1

How about the following time varying case:

1 0
         x x

0 2

Controllability Grammian is 

         W ( , )

t

t

t

u

e
u

e

e
t t

   
= + →   
   

  
= +   
   

=





3
0 0

3 4
0 0

0

( ) ( )
.

( ) ( )
Its determinant is zero for all , , hence uncontrollable.

t

t t

t t e t t
e t t e t t

t t

 − −
 − − 

Example 6.14
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{ }

1

0

1 0

0 1 1 1

( ), ( )  is controllable at  if
 a finite  such that

       ( , ) ( , ) ( ) ( ) ( , )

is nonsingular.

o

t

o t

A t C t t f
t t

W t t t C C t dτ τ τ τ τ

∃ >

′ ′= Φ Φ∫

Theorem 6.O11

{ }
1 0

0 1

1 1

1 1

Let ( ), ( ) be ( 1) times continuously differentiable. 
( ), ( )  is observable at  if

there exists a finite  such that
N ( )
N ( )

          ,
...

N ( )

o

n

A t C t n
A t C t t

t t
t
t

n

t

ρ

−

−

>

 
 
  =
 
 
  

Theorem 6.O12

0

1

where N ( ) ( )

           N ( ) N ( ) ( ) N ( ).m m m

t C t
dt t A t t
dt+

=

= +
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Problem 6.21 in Text P. 183
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