6. Controllability \& observability

\checkmark Controllability
\checkmark Observability
\checkmark Canonical Decomposition
\checkmark Conditions in Jordan Form

- Discrete Time Case
\checkmark Time Varying Case

Controllability

Definition: Controllability

$\{A, B\}$ is said to be controllable if for any x_{0}, x_{f},
\exists an $u(t)$ that transfers x_{0} to x_{f} in a finite time.
Otherwise, $\{A, B\}$ is said to be uncontrollable.

x_{1} : controllable
x_{2} : uncontrollable

Controllability

Example : Uncontrollable Case

Controllability

Theorem

The followings are equivalent

1. $\{A, B\}$ is controllable
2. $W_{c}(t)=\int_{0}^{t} e^{A \tau} B B^{\prime} e^{A^{\prime} \tau} d \tau=\int_{0}^{t} e^{A(t-\tau)} B B^{\prime} e^{A^{\prime}(t-\tau)} d \tau$
is nonsingular.
3. $C=\left[B A B A^{2} B \cdots A^{n-1} B\right]$ has rank n.
4. $\left[\begin{array}{ll}A-\lambda \mathbf{I} & B\end{array}\right]$ has full row rank for all λ
5. If $\operatorname{Re}\left\{\lambda_{i}\right\}<0 \forall i$, then $A W_{c}+W_{c} A^{\prime}=B B^{\prime}$ has unique and positive definite. The solution is called
Controllability Gramian expressed as

$$
W_{c}(\infty)=\int_{0}^{\infty} e^{A \tau} B B^{\prime} e^{A^{\prime} \tau} d \tau
$$

Controllability

(Pf. $1 \leftrightarrow 2$)
(\Leftarrow) If $W_{c}(t)>0$ (nonsingular) \rightarrow controllable

$$
\begin{aligned}
& x\left(t_{1}\right)=e^{A t_{1}} x(0)+\int_{0}^{t_{1}} e^{A\left(t_{1}-\tau\right)} B u(\tau) d \tau \\
& x(0)=x_{0}, x\left(t_{1}\right)=x_{1}
\end{aligned}
$$

Let $u(t)=-B^{\prime} e^{A^{\prime}\left(t_{1}-t\right)} W_{c}^{-1}\left(t_{1}\right)\left[e^{A t_{1}} X_{0}-x_{1}\right]$
$x\left(t_{1}\right)=e^{A t_{1}} x_{0}-\int_{0}^{t_{1}} e^{A\left(t_{1}-\tau\right)} B B^{\prime} e^{A^{\prime}\left(t_{1}-\tau\right)} d \tau W_{c}^{-1}\left(t_{1}\right)\left[e^{A t_{1}} x_{0}-x_{1}\right]$
$=x_{1}$

Controllability

(Pf. $1 \leftrightarrow 2$)
(\Rightarrow) by contradiction
Assume $\{A, B\}$ is controllable but $W_{c}\left(t_{1}\right)$ is singular.
$\exists v \neq 0 \quad W_{c}\left(t_{1}\right) v=0$

$$
\begin{aligned}
& v^{\prime} W_{c}\left(t_{1}\right) v=\int_{0}^{t_{1}} v^{\prime} e^{A\left(t_{1}-\tau\right)} B B^{\prime} e^{A^{\prime}\left(t_{1}-\tau\right)} v d \tau \\
& =\int_{0}^{t_{1}}\left\|B^{\prime} e^{A^{\prime}\left(t_{1}-\tau\right)} v\right\|^{2} d \tau=0 \\
& B^{\prime} e^{A^{\prime}\left(t_{1}-\tau\right)} v=0 \forall \tau \in\left[0, t_{1}\right] \\
& x(0)=e^{-A t_{1}} v, x\left(t_{1}\right)=0 \\
& 0=v+\int_{0}^{t_{1}} e^{A\left(t_{1}-\tau\right)} B u(\tau) d \tau \\
& 0=v^{\prime} v+\int_{0}^{t_{1}} v^{\prime} e^{A\left(t_{1}-\tau\right)} B u(\tau) d \tau=v^{\prime} v
\end{aligned}
$$

This is contradict.

Controllability

(Pf. $2 \leftrightarrow 3$)
(\Rightarrow) If $W_{c}(t)$ nonsingular $\rightarrow C$ has full rank
$v^{\prime} W_{c}(t) v=0$ means $v=0 \quad \ldots . .\left(^{*}\right)$
$v^{\prime} e^{A t} B=0$
$e^{A t}=\sum_{i=0}^{n-1} \alpha_{i} A^{i} \quad$ (using minimal poly)
$v^{\prime} e^{A t} B=v^{\prime}\left[B A B \cdots A^{n-1} B\right]\left[\begin{array}{l}\alpha_{0} \\ \vdots \\ \alpha_{n-1} \\ \neq \\ 0\end{array}\right]=0 \quad \ldots . .\left({ }^{* *}\right)$
If C has not full rank,
$\exists v^{\prime} \neq 0$ that satisfy $\left({ }^{* *}\right)$, this contracts (*).
Hence C has full rank.

Controllability

(Pf. $2 \leftrightarrow 3$)
(\Leftarrow) If W_{c} singular $\rightarrow C$ does not have full rank

$$
\begin{aligned}
& \exists v^{\prime} \neq 0 \quad \ni v^{\prime} W_{c} v=0 \\
& v^{\prime}\left[B A B \cdots A^{n-1} B\right]=0 \\
& {\left[B A B \cdots A^{n-1} B\right] \text { has not full rank. }}
\end{aligned}
$$

Controllability

(Pf. $3 \leftrightarrow 4$)
(\Rightarrow) If C has full rank $\rightarrow[A-\lambda I B]$ has full rank
If not, $\exists q \neq 0$ э

$$
\begin{aligned}
& q\left[A-\lambda_{1} I B\right]=0 \\
\Rightarrow & q A=\lambda_{1} q, q B=0 \\
& q A^{2}=q A A=\lambda_{1}^{2} q, \cdots q A^{k}=\lambda_{1}^{k} q \\
& q\left[B A B \cdots A^{n-1} B\right]=\left[q B \lambda_{1} q B \cdots \lambda_{1}^{n-1} q B\right]=0
\end{aligned}
$$

C has not full rank (contradict).

Controllability

(Pf. $3 \leftrightarrow 4$)
$(\Leftarrow)[A-\lambda I B]$ has full rank $\rightarrow C$ has full rank
If $\rho[C]<n, \rho[A-\lambda I B]<n$ at some λ
By Theorem 6.6, if $\rho[C]=n-m, \exists P \neq 0$ э
$\bar{A}=P A P^{-1}=\left[\begin{array}{cc}\bar{A}_{c} & \bar{A}_{12} \\ 0 & \bar{A}_{c}\end{array}\right] \quad \bar{B}=P B=\left[\begin{array}{l}\bar{B}_{c} \\ 0\end{array}\right]$
Let $q_{1} \bar{A}_{c}=\lambda_{1} q_{1} \Rightarrow q_{1}\left(\bar{A}_{c}-\lambda_{1} I\right)=0$
Let $q=\left[\begin{array}{ll}0 & q_{1}\end{array}\right]$
$q\left[\begin{array}{ll}\bar{A}-\lambda_{1} I \bar{B}\end{array}\right]=\left[\begin{array}{ll}0 & q_{1}\end{array}\right]\left[\begin{array}{lll}\bar{A}_{c}-\lambda_{1} I & \bar{A}_{12} & \bar{B}_{c} \\ 0 & \bar{A}_{c}-\lambda_{1} I & 0\end{array}\right]=0$
$\Rightarrow \rho\left(\left[\bar{A}-\lambda_{1} I \bar{B}\right)<n\right.$
By Theorem 6.2, controllability is invariant by equivalence transformation.
$\Rightarrow \rho\left(\left[A-\lambda_{1} I B\right)<n\right.$

Controllability

(Pf. $1 \leftrightarrow 2 \leftrightarrow 5$)
$\{A, B\}$ controllable
$\Leftrightarrow p(C)=n$
\Leftrightarrow By Controllary 5.5, \exists unique $W_{c}>0$ э
$A W_{c}+W_{c} A=-B B^{\prime} . . .\left(^{*}\right)$ for A with negative real part
In addition, by Theorem 5.6,
$W_{c}(\infty)=\int_{0}^{\infty} e^{A \tau} B B^{\prime} e^{A^{\prime} \tau} d \tau$ is unique solution of $(*)$.

Controllability

Example 6.3

Can we apply a force to bring the platform from $x_{1}(0)=10, x_{2}(0)=-1$ to equilibrium with 2 seconds?

Controllability

Example 6.3 (cont)

$$
\rho[B A B]=\rho\left[\begin{array}{cc}
0.5 & -0.25 \\
1 & -1
\end{array}\right]=2
$$

\rightarrow controllable
To find control $u(t)$ in $[0,2]$,

$$
\begin{aligned}
W_{c}(2) & =\int_{0}^{2}\left(\left[\begin{array}{ll}
e^{-0.5 \tau} & \\
& e^{-\tau}
\end{array}\right]\left[\begin{array}{c}
0.5 \\
1
\end{array}\right]\left[\begin{array}{ll}
0.5 & 1
\end{array}\right]\left[\begin{array}{ll}
e^{-0.5 \tau} & \\
& e^{-\tau}
\end{array}\right]\right) d \tau \\
& =\left[\begin{array}{ll}
0.2162 & 0.3167 \\
0.3167 & 0.4908
\end{array}\right] \\
u(t) & =-\left[\begin{array}{ll}
0.5 & 1
\end{array}\right]\left[\begin{array}{cc}
e^{-0.5(2-t)} & e^{-(2-t)}
\end{array}\right] W_{c}^{-1}(2)\left[\begin{array}{ll}
e^{-1} & \\
& e^{-2}
\end{array}\right]\left[\begin{array}{l}
10 \\
-1
\end{array}\right] \\
& =-58.82 e^{0.5 t}+27.96 e^{t}
\end{aligned}
$$

Controllability

Example 6.3 (cont)

Controllability

Example 6.4

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] x+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u \\
& \rho[B A B]=\rho\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]=1 \\
& \rightarrow \text { uncontrollable }
\end{aligned}
$$

Controllability

Controllability indices

Define $U_{k}=\left[B \vdots A B \vdots \cdots \vdots A^{k} B\right] k=0,1,2 \cdots$
($U=U_{n-1}$: controllability matrix)
If $\{A, B\}$ is controllable,
$\Leftrightarrow \rho U_{n-1}=n \Leftrightarrow \exists n$ LI columns among $n p$ columns
$U_{k}=\left[b_{1} b_{2} \cdots b_{p} \vdots A b_{1} \cdots A b_{p} \vdots \cdots \vdots A^{k} b_{1} \cdots A^{k} b_{p}\right]$
Note) If $A^{j} b_{i}$ is LD to its left-hand-side(LHS) vectors,
$A^{k} b_{i}, k>j$, is LD to its LHS vectors

$$
\left(\begin{array}{l}
\because A b_{2}=\alpha_{1} b_{1}+\alpha_{2} b_{2}+\cdots+\alpha_{p+1} A b_{1} \\
A^{2} b_{2}=\alpha_{1} A b_{1}+\alpha_{2} A b_{2}+\cdots+\alpha_{p+1} A^{2} b_{1}
\end{array}\right.
$$

Note) column search algorithm (Appendix A in 2nd Ed.)

Controllability

Define $r_{i}:=$ number of LD columns in $\left\{A^{i} b_{1}, \cdots, A^{i} b_{p}\right\}$

$$
\begin{aligned}
\Rightarrow & 0 \leq r_{0} \leq r_{1} \leq r_{2} \cdots \leq p \\
\Rightarrow & \exists \mu \ni \\
& 0 \leq r_{0} \leq r_{1} \quad \leq r_{\mu-1}<p, r_{\mu}=r_{\mu+1}=\cdots=p \\
\Leftrightarrow & \exists \mu \ni \\
& \rho U_{0}<\rho U_{1}<\cdots<\rho U_{\mu-1}=\rho U_{\mu}=\rho U_{\mu+1} \cdots \\
\Rightarrow & \text { If } \rho U_{\mu-1}=n,\left\{\begin{array}{ll}
A & B
\end{array}\right\} \text { is controllable. }
\end{aligned}
$$

$\Rightarrow \mu$: controllability index

Controllability

Rearrange of U

$$
\begin{aligned}
& \left\{b_{1}, A b_{1}, A^{2} b_{1} \cdots A^{\mu_{1}-1} b_{1} \vdots \cdots: b_{p}, A b_{p}, \cdots, A^{\mu_{p}-1} b_{p}\right\} \\
& \mu=\max \left\{\mu_{1}, \cdots, \mu_{p}\right\},\left\{\mu_{1}, \cdots, \mu_{p}\right\} \text { controllability indices } \\
\Rightarrow & \text { If } \sum \mu_{i}=n,\left\{\begin{array}{ll}
A & B
\end{array}\right\} \text { is controllable }
\end{aligned}
$$

Claim :

$$
\frac{n}{p} \leq \mu \leq \min (\bar{n}, n-\bar{p}+1)
$$

where \bar{n} is degree of minimal polynomial.
\bar{p} is rank of B .

Controllability

Pf)

i) $n \leq p \mu \Rightarrow \frac{n}{p} \leq \mu$
ii) $A^{\bar{n}}=\alpha_{1} A^{\bar{n}-1}+\cdots+\alpha_{\bar{n}} \mathrm{I}$
$A^{\bar{n}} B=\alpha_{1} A^{\bar{n}-1} B+\quad+\alpha_{\bar{n}} B$ is LD to its LHS vectors
$\Rightarrow \mu \leq \bar{n}$
iii) The rank of $\left[\begin{array}{llll}B & A B & \cdots & A^{\mu-1} B\end{array}\right]$ increases at least one whenever μ increases by one, for example, $\rho\left[\begin{array}{lll}B & A B & A^{2} B\end{array}\right]-\rho\left[\begin{array}{ll}B & A B\end{array}\right] \geq 1$.
The largest μ is achieved when the rank increases just by one in every increase of μ. i.e.,

$$
\bar{p}+\mu-1 \leq n \Rightarrow \mu \leq n-\bar{p}+1
$$

Controllability

Corollary 6.1
$\{A, B\}$ is controllable if f
$C_{n-\bar{p}+1}=\left[\begin{array}{llll}B & A B & \cdots & A^{n-\bar{p}} B\end{array}\right]$ has rank n.
Theorem 6.2
Controllability is invariant by any equivalence transformation.
Pf)

$$
\begin{aligned}
& C=\left[\begin{array}{lll}
B & A B & A^{n-1} B
\end{array}\right] \\
& \bar{C}=\left[\begin{array}{lll}
\bar{B} & \bar{A} \bar{B} & \bar{A}^{n-1} \bar{B}
\end{array}\right] \\
& =\left[\begin{array}{lll}
P B & P A P^{-1} P B & \cdots \\
P A^{n-1} P^{-1} P B
\end{array}\right] \\
& =P\left[\begin{array}{lll}
B & \cdots & A^{n-1} B
\end{array}\right]=P C, P: \text { nonsingular } \\
& \Rightarrow \rho(C)=\rho(\bar{C}) .
\end{aligned}
$$

Controllability

Example 6.5

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
3 & 0 & 0 & 2 \\
0 & 0 & 0 & 1 \\
0 & -2 & 0 & 0
\end{array}\right] x+\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right] u \\
& y=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] x \\
& C_{n-\bar{p}+1}=\left[\begin{array}{lll}
B & A B & A^{2} B
\end{array}\right]=\left[\begin{array}{cccccc}
0 & 0 & 1 & 0 & 0 & 2 \\
1 & 0 & 0 & 2 & -1 & 0 \\
0 & 0 & 0 & 1 & -2 & 0 \\
0 & 1 & -2 & 0 & 0 & -4
\end{array}\right] \\
& \mu=2, C_{n}=\left[\begin{array}{lll}
B & A B & A^{2} B \\
A^{3} B
\end{array}\right]
\end{aligned}
$$

Controllability

Theorem 6.3

The set of controllability indices is invariant
by any equivalence transformation and any ordering of columns in B.
Pf)
i) $\rho\left(C_{k}\right)=\rho\left(\bar{C}_{k}\right)$ by theorem 6.2
ii) $\tilde{B}=B M\left(M=p \times p\right.$ pumutation matrix, $\left.M=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\right)$

$$
\begin{aligned}
\tilde{U}_{k} & =\left[\begin{array}{ll}
\tilde{B} \cdots & A^{k} \tilde{B}
\end{array}\right] \\
& =U_{k} \frac{\operatorname{diag}\{M, M \cdots M\}}{\text { nonsingular }} \\
\Rightarrow & \mu_{k}=\rho\left(U_{k}\right)=\rho\left(\tilde{U}_{k}\right)
\end{aligned}
$$

HW 6-1

Problem 6-2, Text, p. 180

What do you have to get ?

Ideal candidates should have excellent mathematical and programming skills, outstanding research potential in machine learning (e.g, recurrent networks, reinforcement learning, evolution, statistical methods, unsupervised learning, the recent theoretically optimal universal problem solvers, adaptive robotics), and good ability to communicate results.
General intellectual ability:
Analytical / theoretical skills:
Programming skills:
Experimental skills:
Motivation:
Written communication skills:
Verbal communication skills:
Ability to organise workload:
Originality / creativity:
Social skills:

Observability

Definition 6.01
$\{A, C\}$ is said to be observable if
for any unknown $x(0), \exists$ finite $t_{1}>0$ such that
$u \& y \in\left[0, t_{1}\right]$ suffices to find $x(0)$.
Example 6.6

When $u=0, y=0$ always regardless of initial state $x(0)$.
\Rightarrow unobservable

Observability

Example 6.7

When $u=0, x_{1}(0)=a \neq 0, x_{2}(0)=0$, the output $y(t)=0$.
There is no way to determine the initial state $[a, 0]$
form $y(t)$ and $u(t)$.
\Rightarrow unobservable

Observability

Observability Matrix

$$
\begin{aligned}
& y(t)=C e^{A t} x(0)+C \int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau+D u(t) \\
& \bar{y}=C e^{A t} x(0) \text { where } \bar{y}=y(t)-u_{0}, \\
& \text { and } u_{0}=C \int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau+D u(t) . \\
& {\left[\begin{array}{c}
\bar{y} \\
\bar{y}^{\prime} \\
\vdots \\
\bar{y}^{n-1}
\end{array}\right]=\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{n-1}
\end{array}\right] e^{A t} x(0)=\mathbf{O} e^{A t} x(0) .} \\
& \text { If } \rho(\mathbf{O})=n, \rho\left(\mathbf{O} e^{A t}\right)=n\left(\because e^{A t}\right. \text { is nonsingular). } \\
& \text { Hence the solution } x(0) \text { is uniquely determined. } \Rightarrow \text { Observable. } \\
& \mathbf{O} \text { is called Observability Matrix. }
\end{aligned}
$$

Observability

Theorem 6.4
The state is observable iff the $\mathrm{n} \times \mathrm{n}$ matrix

$$
W_{0}(t)=\int_{0}^{t} e^{A^{\prime} \tau} C^{\prime} C e^{A \tau} d \tau
$$

is nonsingular $\forall t>0$.
Pf)

$$
\begin{aligned}
(\Leftarrow) & C e^{A t} x_{0}=\bar{y}(t) \\
& \int_{0}^{t_{1}} e^{A^{\prime} t} C^{\prime} C e^{A t} d t x_{0}=\int_{0}^{t_{1}} e^{A^{\prime} t} C \bar{y}(t) d t \\
& x_{0}=\left[W_{0}^{t_{1}}\left(t_{1}\right)\right]^{-1} \int_{0}^{t_{1}} e^{A^{\prime} t} C \bar{y}(t) d t, \text { for any fixed } t_{1} .
\end{aligned}
$$

Observability

Pf_continued)

$(\Rightarrow) W_{0}\left(t_{1}\right)$ is singular $\rightarrow x_{0}$ is not observable.
$\rightarrow \exists v \neq 0$ such that $W_{0}\left(t_{1}\right) v=0$.
$0=v^{\prime} W_{0}\left(t_{1}\right) v=\int_{0}^{t_{1}} v^{\prime} e^{A^{\prime} \tau} C^{\prime} C e^{A \tau} v d \tau$
$=\int_{0}^{t_{1}}\left\|C e^{A \tau} v\right\|^{2} d \tau$
$\rightarrow C e^{A \tau} v=0 \forall t \in\left[0, t_{1}\right]$
$\rightarrow \bar{y}(t)=C e^{A \tau} v=0$ for $x^{(1)}(0)=v \neq 0$
$\bar{y}(t)=C e^{A \tau} x_{2}(0)=0$ for $x^{(2)}(0)=0$
$\rightarrow \exists$ two different initial states for $\bar{y}(t)=0$.
\rightarrow not observable.

Observability

Theorem 6.5 (Theorem of duality)
$\{A, B\}$ is controllable if $\left(A^{\prime}, B^{\prime}\right)$ is observable.
Pf)
$\{A, B\}$ is controllable if f
$W_{c}(t)=\int_{0}^{t} e^{A \tau} B B^{\prime} e^{A^{\prime} \tau} d \tau$ is nonsingular for all $t>0$.
$\left\{A^{\prime}, B^{\prime}\right\}$ is observable iff
$W_{0}(t)=\int_{0}^{t} e^{A \tau} B B^{\prime} e^{A^{\prime} \tau} d \tau$ is nonsingular for all $t>0$.
$W_{c}(t)=W_{0}(t)$.

Observability

Theorem 6.01 : The following statements are equivalent.

1. $\{A, C\}$ is observable.
2. $W_{0}(t)=\int_{0}^{t} e^{A^{\prime} \tau} C^{\prime} C e^{A \tau} d \tau$ is nonsingular $\forall t>0$.
3. The $n q \times n$ observability matrix $\mathbf{O}=\left[\begin{array}{c}C \\ C A \\ \vdots \\ C A^{n-1}\end{array}\right]$ has rank n.
4. The $(n+q) \times n$ matrix $\left[\begin{array}{r}A-\lambda I \\ C\end{array}\right]$ has full rank at every eigenvalue λ of A.
5. If $\operatorname{Re}\left\{\lambda_{i}(A)\right\}<0, \exists W_{0}>0$ such that
$A^{\prime} W_{0}+W_{0} A=-C^{\prime} C, W_{0}=\lim _{t \rightarrow \infty} W_{0}(t):$ Observability Gramian.

Observability

Observability index v

$$
\mathbf{O}_{n}=\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{n-1}
\end{array}\right] \rightarrow \rho \mathbf{O}_{n}=\rho\left[\begin{array}{c}
C_{1} \\
C_{2} \\
\vdots \\
C_{q} \\
\cdots \\
\vdots \\
\vdots \\
\cdots \\
C_{1} A^{n-1} \\
\vdots \\
C_{q} A^{n-1}
\end{array}\right]=\rho \mathbf{O}_{v}=\rho\left[\begin{array}{c}
C \\
\cdots \\
\vdots \\
\cdots \\
C A^{v-1} \\
\cdots
\end{array}\right]=n
$$

Observability

Linearly Independent Vectors in \mathbf{O}_{v}

$$
\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{1} A^{v_{1}-1} \\
\vdots \\
\vdots \\
c_{q} \\
\vdots \\
c_{q} A^{v_{q}-1}
\end{array}\right] \quad \begin{gathered}
\text { observability indices: } \\
\left\{v_{1} \cdots, v_{q}\right\} . \\
\text { observability index: } \\
v=\max \left(v_{1} \cdots v_{q}\right) . \\
\\
\end{gathered}
$$

Observability

Claim

$$
\begin{array}{r}
n / q \leq v \leq \min (\bar{n}, n-\bar{q}+1) \\
\text { where } \rho(C)=\bar{q} .
\end{array}
$$

Corollary 6.01
$\{A, C\}$ is observable iff

$$
O_{n-\bar{q}+1}=\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{n-\bar{q}}
\end{array}\right]=n
$$

where $\rho(C)=\bar{q}$.

Observability

Theorem 6.02
Observability property is invariant by equivalence transformstion.

Theorem 6.03
The set of observability indices of $\{A, C\}$ is invariant under equivalence transformation and any reordering of the rows of C.

HW 6-2

Problem 6.11, in Text, p. 181

Canonical Decomposition

Equivalence Transformation (Remind)

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x+D u
\end{aligned}
$$

Let $\bar{x}=P x$, where P is a nonsingular matrix. Then

$$
\dot{\bar{x}}=\bar{A} \bar{x}+\bar{B} u
$$

$$
y=\bar{C} \bar{x}+\bar{D} u
$$

$$
\text { with } \bar{A}=P A P^{-1}, \bar{B}=P B, \bar{C}=C P^{-1}, \bar{D}=D \text {. }
$$

They are equivalent. i.e.,

$$
\{A, B, C, D\} \leftrightarrow\{\bar{A}, \bar{B}, \bar{C}, \bar{D}\} .
$$

And $\overline{\mathbf{C}}=P \mathbf{C}, \overline{\mathbf{O}}=\mathbf{O} P^{-1}$, i.e.,
Stability, Controllability, Observability are preserved.

Canonical Decomposition

Canonical Decomposition
Theorem 6.6

$$
\begin{aligned}
& \text { If } \rho(\mathrm{C})=\rho\left[\begin{array}{llll}
B & A B & \cdots & A^{n-1} B
\end{array}\right]=n_{1}<n \\
& \text { Let } \mathrm{Q}=P^{-1}=\left[\begin{array}{lll}
q_{1} \cdots q_{n_{1}} & q_{n_{1}+1} \cdots q_{n}
\end{array}\right] \\
& q_{i}, \quad i=1, \ldots, n_{1} \quad \text { LI column vectors in } \mathbf{C} \\
& q_{i}, \quad i=n_{1}+1, \ldots, n \\
& \text { LI vectors to } q_{i}, \quad i=1, \ldots, n_{1} .
\end{aligned}
$$

Then $\overline{\mathrm{x}}=\mathrm{Px}$ leads to

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{\mathbf{x}}_{c} \\
\dot{\overline{\mathbf{X}}}_{\bar{c}}
\end{array}\right] } & =\left[\begin{array}{cc}
\overline{\mathbf{A}}_{c} & \overline{\mathbf{A}}_{12} \\
\mathbf{0} & \overline{\mathbf{A}}_{\bar{c}}
\end{array}\right]\left[\begin{array}{c}
\overline{\mathbf{X}}_{c} \\
\overline{\mathbf{X}}_{\bar{c}}
\end{array}\right]+\left[\begin{array}{c}
\overline{\mathbf{B}}_{c} \\
\mathbf{0}
\end{array}\right] \mathbf{u} \\
\mathbf{y} & =\left[\begin{array}{ll}
\overline{\mathbf{C}}_{c} & \overline{\mathbf{C}}_{\bar{c}}
\end{array}\right]\left[\begin{array}{c}
\overline{\mathbf{X}}_{c} \\
\overline{\mathbf{X}}_{\bar{c}}
\end{array}\right]+\mathbf{D u}
\end{aligned}
$$

Canonical Decomposition

Theorem 6.6 (continued)
where

$$
\begin{aligned}
& \overline{\mathrm{A}}_{c}: n_{1} \times n_{1} \\
& \overline{\mathrm{~A}}_{\bar{c}}:\left(n-n_{1}\right) \times\left(n-n_{1}\right)
\end{aligned}
$$

And the n_{1} dimensional subequation

$$
\begin{aligned}
& \dot{\overline{\mathrm{x}}}_{c}=\overline{\mathrm{A}}_{c} \overline{\mathrm{x}}_{c}+\overline{\mathrm{B}}_{c} \mathrm{u} \\
& \mathrm{y}=\overline{\mathrm{C}}_{c} \overline{\mathrm{x}}_{c}+\mathrm{Du}
\end{aligned}
$$

is controllable and has the same transfer function matrix as the original state equation.

Canonical Decomposition

Pf)

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{P}^{-1}=\left[\mathrm{q}_{1} \cdots \mathrm{q}_{n_{1}} \cdots \mathrm{q}_{n}\right] \\
& \left\{n_{i}\right\} \mathrm{x} \xrightarrow{\mathrm{~A}} \dot{\mathrm{x}} \\
& \mathrm{Q} \uparrow \mathrm{x}=\mathrm{Q} \overline{\mathrm{x}}, \\
& \left\{q_{i}\right\} \overline{\mathrm{x}} \xrightarrow{\mathrm{~A}} \dot{\mathrm{x}}, \bar{a}_{i}: \text { rep. of } \mathrm{Aq}_{i} \text { w.r.t. }\left\{\mathrm{q}_{i}\right\} \\
& \mathrm{Aq}_{i}=\left[\begin{array}{lll}
\mathrm{q}_{1} & \cdots & \mathrm{q}_{n}
\end{array}\right] \bar{a}_{i}
\end{aligned}
$$

$\mathrm{Aq}_{i}, i=1, \ldots n_{1}$, is linearly dependent on its LHS vectors, i.e., $\left\{\mathrm{q}_{i}, i=1, \ldots n_{1}\right\}$ (see 6.2.1) and they are linearly independent on $\left\{\mathrm{q}_{i}, i=n_{1}+1, \ldots, n\right\}$. Hence $\bar{a}_{i}^{T}=\left[\begin{array}{lll}\bar{a}_{i 1} & \ldots & \bar{a}_{i n_{1}}\end{array} 0 \ldots 0\right], i=1, \ldots, n_{1}$.

$$
\begin{aligned}
\mathrm{A}\left[\begin{array}{lll}
\mathrm{q}_{1} & \cdots & \mathrm{q}_{n}
\end{array}\right] & =\left[\begin{array}{lll}
\mathrm{q}_{1} & \cdots & \mathrm{q}_{n}
\end{array}\right]\left[\begin{array}{llll}
\bar{a}_{1} & \cdots & \bar{a}_{n_{1}} & \cdots \\
\bar{a}_{n}
\end{array}\right] \\
\mathrm{AQ} & =\mathrm{Q} \overline{\mathrm{~A}}
\end{aligned}
$$

$$
=\left[\begin{array}{ll}
\mathrm{q}_{1}, \cdots, \mathrm{q}_{n_{1}} & \cdots \mathrm{q}_{n}
\end{array}\right]\left[\begin{array}{cc}
\overline{\mathrm{A}}_{c} & \overline{\mathrm{~A}}_{12} \\
0 & \overline{\mathrm{~A}}_{\bar{c}}
\end{array}\right]
$$

Canonical Decomposition

Pf_continued)

$$
\left.\begin{array}{l}
\overline{\mathrm{B}}=\mathrm{PB} \\
\mathrm{~B}=\mathrm{P}^{-1} \overline{\mathrm{~B}}=\mathrm{Q} \overline{\mathrm{~B}}=\left[\mathrm{q}_{1}, \cdots, \mathrm{q}_{n_{1}}\right.
\end{array} \cdots \mathrm{q}_{n}\right]\left[\begin{array}{c}
\overline{\mathrm{B}}_{c} \\
0
\end{array}\right]
$$

All columns in [$\left.\begin{array}{lll}\mathrm{B} & \mathrm{AB} & \cdots\end{array}\right]$ are spaned by $\left\{\begin{array}{lll}\mathrm{q}_{1} & \cdots & \mathrm{q}_{n_{1}}\end{array}\right\}$, as a results, B is spaned by $\left\{\begin{array}{lll}\mathrm{q}_{1} & \cdots & \mathrm{q}_{n_{1}}\end{array}\right\}$.

$$
\begin{aligned}
& \overline{\mathbf{C}}=\left[\begin{array}{lll}
\overline{\mathrm{B}} & \overline{\mathrm{~A}} \overline{\mathrm{~B}} & \cdots
\end{array}\right] \\
&=\left[\begin{array}{lllll}
\overline{\mathrm{B}}_{c} & \overline{\mathrm{~A}}_{c} \overline{\mathrm{~B}}_{c} \cdots \overline{\mathrm{~A}}_{c}^{n_{1}-\overline{\mathrm{B}}_{c}} & \cdots & \overline{\mathrm{~A}}_{c}^{n-1} \overline{\mathrm{~B}}_{c} \\
0 & 0 & \cdots & 0 & \cdots \\
\hline
\end{array}\right] n-n_{1} \\
&=\left[\begin{array}{lll}
\overline{\mathbf{C}}_{c} & \overline{\mathrm{~A}}_{c}^{n} \overline{\mathrm{~B}}_{c} & \cdots \\
0 & 0 & 0
\end{array}\right] \cdots \rho(\overline{\mathbf{C}})=\rho\left(\overline{\mathbf{C}}_{c}\right)=n_{1} \\
& \overline{\mathrm{C}}(\mathrm{sI}-\overline{\mathrm{A}})^{-1} \overline{\mathrm{~B}}+\overline{\mathrm{D}}=\overline{\mathrm{C}}_{c}\left(\mathrm{sI}-\overline{\mathrm{A}}_{c}\right)^{-1} \overline{\mathrm{~B}}_{c}+\mathrm{D}(\text { see p.160) }
\end{aligned}
$$

Canonical Decomposition

Example 6.8

$$
\dot{\mathrm{x}}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] \mathrm{x}+\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right] \mathrm{u} \quad y=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right] \mathrm{x}
$$

Since $\rho(B)=2,[B \quad A B]$ is used instead of $\left[B A B \quad A^{2} B\right]$.
$\rho[\mathrm{B} A B]=\rho\left[\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1\end{array}\right]=2<3 \rightarrow$ uncontrollable.

$$
\mathrm{Q}=\mathrm{P}^{-1}=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \text {, and let } \overline{\mathrm{x}}=\mathrm{Px}
$$

$$
\overline{\mathrm{A}}=\mathrm{PAP}^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \overline{\mathrm{B}}=\mathrm{PB}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right], \overline{\mathrm{C}}=\mathrm{CP}^{-1}=\left[\begin{array}{lll}
1 & 2 & 1
\end{array}\right]
$$

Canonical Decomposition

Theorem 6.06

$$
\text { If } \rho(\mathbf{O})=\rho\left[\begin{array}{c}
\mathrm{C} \\
\mathrm{CA} \\
\ldots \\
\mathrm{CA}^{\mathrm{n}-1}
\end{array}\right]=n_{2}<n \text {, let } \mathrm{Q}^{-1}=\mathrm{P}=\left[\begin{array}{c}
p_{1} \\
\ldots \\
p_{n_{2}} \\
\ldots \\
p_{n}
\end{array}\right] \text {, }
$$

where

$$
\begin{array}{ll}
p_{i}, \quad i=1, \ldots, n_{2} & \text { LI column vectors in } \mathbf{O} \\
p_{i}, \quad i=n_{2}+1, \ldots, n & \text { LI vectors to } p_{i}, \quad i=1, \ldots, n_{2} .
\end{array}
$$

Then $\overline{\mathrm{x}}=\mathrm{Px}$ leads to

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{\mathbf{X}}_{o} \\
\dot{\overline{\mathbf{X}}}_{\bar{o}}
\end{array}\right] } & =\left[\begin{array}{ll}
\overline{\mathbf{A}}_{o} & \\
\overline{\mathbf{A}}_{21} & \overline{\mathbf{A}}_{\bar{o}}
\end{array}\right]\left[\begin{array}{l}
\overline{\mathbf{X}}_{o} \\
\overline{\mathbf{X}}_{\bar{o}}
\end{array}\right]+\left[\begin{array}{l}
\overline{\mathbf{B}}_{o} \\
\overline{\mathbf{B}}_{\bar{o}}
\end{array}\right] \mathrm{u} \\
\mathbf{y} & =\left[\begin{array}{ll}
\overline{\mathbf{C}}_{o} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\overline{\mathbf{X}}_{o} \\
\overline{\mathbf{X}}_{\bar{o}}
\end{array}\right]+\mathrm{Du}
\end{aligned}
$$

Canonical Decomposition

Theorem 6.6 (continued)
where

$$
\begin{aligned}
& \overline{\mathrm{A}}_{o}: n_{2} \times n_{2} \\
& \overline{\mathrm{~A}}_{\bar{o}}:\left(n-n_{2}\right) \times\left(n-n_{2}\right)
\end{aligned}
$$

And the n_{2} dimensional subequation

$$
\begin{aligned}
& \dot{\overline{\mathrm{x}}}_{o}=\overline{\mathrm{A}}_{o} \overline{\mathrm{x}}_{o}+\overline{\mathrm{B}}_{0} \mathrm{u} \\
& \mathrm{y}=\overline{\mathrm{C}}_{o} \overline{\mathrm{x}}_{o}+\mathrm{Du}
\end{aligned}
$$

is obsevable and has the same transfer function matrix as the original state equation.

Canonical Decomposition

Theorem 6.7
Every state equation can be transformed into

$$
\begin{aligned}
& {\left[\begin{array}{c}
\dot{\mathbf{X}}_{c o} \\
\dot{\mathbf{X}}_{c \bar{o}} \\
\dot{\overline{\mathbf{X}}}_{\bar{c} o} \\
\dot{\mathbf{X}}_{\overline{c o}}
\end{array}\right]=\left[\begin{array}{cccc}
\overline{\mathrm{A}}_{c o} & 0 & \overline{\mathrm{~A}}_{13} & 0 \\
\overline{\mathrm{~A}}_{21} & \overline{\mathrm{~A}}_{c \bar{o}} & \overline{\mathrm{~A}}_{23} & \overline{\mathrm{~A}}_{24} \\
0 & 0 & \overline{\mathrm{~A}}_{\overline{c o}} & 0 \\
0 & 0 & \overline{\mathrm{~A}}_{43} & \overline{\mathrm{~A}}_{\overline{c o}}
\end{array}\right]\left[\begin{array}{l}
\overline{\mathbf{X}}_{c o} \\
\overline{\mathbf{X}}_{c \bar{o}} \\
\overline{\mathbf{X}}_{\overline{c o}} \\
\overline{\mathbf{X}}_{\overline{c o}}
\end{array}\right]+\left[\begin{array}{l}
\overline{\mathbf{B}}_{c o} \\
\overline{\mathbf{B}}_{c \bar{o}} \\
0 \\
0
\end{array}\right] \mathbf{u}} \\
& \mathrm{y}=\left[\begin{array}{llll}
\overline{\mathrm{C}}_{c o} & 0 & \overline{\mathrm{C}}_{\bar{c} o} & 0
\end{array}\right] \overline{\mathrm{x}}+\mathrm{Du} . \\
& \dot{\overline{\mathbf{x}}}_{c o}=\overline{\mathrm{A}}_{c o} \overline{\mathbf{X}}_{c o}+\overline{\mathrm{B}}_{c o} \mathbf{u} \\
& \mathrm{y}=\overline{\mathrm{C}}_{c o} \overline{\mathbf{x}}_{c o}+\mathrm{Du} . \\
& \Rightarrow \text { controllable and observable. } \\
& \mathrm{G}(\mathrm{~s})=\overline{\mathrm{C}}_{c o}\left(\mathrm{sI}-\overline{\mathrm{A}}_{c o}\right)^{-1} \overline{\mathrm{~B}}_{c o}+\mathrm{D} .
\end{aligned}
$$

Canonical Decomposition

Kalman Decomposition

Canonical Decomposition

Example 6.9

$$
\begin{aligned}
& \dot{\mathrm{x}}=\left[\begin{array}{cccc}
0 & -0.5 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & -0.5 & 0 \\
0 & 0 & 0 & -1
\end{array}\right] \mathrm{x}+\left[\begin{array}{c}
0.5 \\
0 \\
0 \\
0
\end{array}\right] \mathrm{u} \\
& y=\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right] \mathrm{x}+\mathrm{u} .
\end{aligned}
$$

Controllable part is

$$
\begin{aligned}
& \dot{\mathrm{x}}_{\mathrm{c}}=\left[\begin{array}{cc}
0 & -0.5 \\
1 & 0
\end{array}\right] \mathrm{x}_{\mathrm{c}}+\left[\begin{array}{c}
0.5 \\
0
\end{array}\right] \mathrm{u} \\
& y=\left[\begin{array}{ll}
0 & 0
\end{array}\right] \mathrm{x}_{\mathrm{c}}+\mathrm{u} .
\end{aligned}
$$

Controllable and observable part is

$$
y=\mathrm{u} .
$$

Conditions in J ordan Form

J ordan-form Dynamical Equations.

$$
\begin{aligned}
& \dot{x}=J x+B u \\
& y=\operatorname{Cx}+D u \\
& J=\operatorname{diag}\left(J_{1}, J_{2}\right)=\left[\begin{array}{cc}
J_{1} & 0 \\
0 & J_{2}
\end{array}\right] \\
& J_{1}=\operatorname{diag}\left(J_{11}, J_{12}, J_{13}\right), J_{2}=\operatorname{diag}\left(J_{21}, J_{22}\right)
\end{aligned}
$$

$\mathrm{b}_{1 \mathrm{ij}}$: the row of B corresponding to the last row of J_{ij}.
$\mathrm{c}_{\mathrm{fij}}$: the column of C corresponding to the first column of J_{ij}.

Conditions in J ordan Form

Example 6.10

$$
\dot{\mathrm{x}}=\left[\begin{array}{ccccccc}
\lambda_{1} & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & \lambda_{1} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \lambda_{1} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \lambda_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \lambda_{2} & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & \lambda_{2} & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & \lambda_{2}
\end{array}\right] \mathrm{x}+\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \underset{\mathrm{u}}{\leftarrow} \leftarrow\left[\begin{array}{l}
\mathrm{b}_{111} \\
\mathrm{~b}_{122} \\
\mathrm{~b}_{113}
\end{array}\right]:=\mathrm{B}_{1}^{l}
$$

If the rows of B_{i}^{l} are $\mathrm{LI},\{\mathrm{J}, \mathrm{B}\}$ is controllable.

Conditions in J ordan Form

$$
\left.\begin{array}{c}
\mathrm{y}=\left[\begin{array}{lllllll}
1 & 1 & 2 & 0 & 0 & 2 & 0 \\
1 & 0 & 1 & 2 & 0 & 1 & 1 \\
1 & 0 & 2 & 3 & 1 & 2 & 2
\end{array}\right] \mathrm{x} \\
\uparrow \\
\uparrow
\end{array} \uparrow \uparrow \begin{array}{c}
\uparrow \\
\mathrm{c}_{f 11} \mathrm{c}_{f 12}
\end{array} \mathrm{c}_{f 13}\right]\left[\mathrm{c}_{f 21}\right] .
$$

$r(i)$: number of Jordan block for λ_{i}, for example.
$r(1)=3, r(2)=1$.

If the columns of C_{i}^{f} are LI, $\{\mathrm{J}, \mathrm{C}\}$ is observable.

Conditions in J ordan Form

Theorem 6.8

1) JFE is controllable iff for each i, the rows of $r(i) \times p$ matrix

$$
\mathrm{B}_{i}^{l}:=\left[\begin{array}{c}
\mathrm{b}_{l i 1} \\
\mathrm{~b}_{l i 2} \\
\vdots \\
\mathrm{~b}_{\operatorname{lir}(i)}
\end{array}\right] \text { are linearly independent to each other. }
$$

2) JFE is observable iff for each i, the columns of $q \times r(i)$ matrix
$\mathrm{C}_{i}^{f}:=\left[\begin{array}{llll}\mathrm{C}_{f i 1} & \mathrm{c}_{f i 2} & \cdots & \mathrm{C}_{f i r(i)}\end{array}\right]$ are LI to each other.

Conditions in J ordan Form

Pf)

$$
\rho[\lambda \mathrm{I}-\mathrm{A} \vdots \mathrm{~B}]=\mathrm{n}, \text { for all } \lambda_{i} .
$$

For λ_{1}
$\left[\lambda_{1} \mathrm{I}-\mathrm{A} \vdots \mathrm{B}\right]=\left[\begin{array}{ccccccc}0 & -1 & & & & & \\ & 0 & -1 & & & & \mathrm{~b}_{111} \\ & & 0 & & & & \\ & & 0 & -1 & & & \mathrm{~b}_{211} \\ & & & 0 & & & \mathrm{~b}_{111} \\ & & & & \lambda_{1}-\lambda_{2} & -1 & \mathrm{~b}_{112} \\ & & & \lambda_{1}-\lambda_{2} & \mathrm{~b}_{l 21}\end{array}\right]$
$\rho\left[\lambda_{1} \mathrm{I}-\mathrm{A} \vdots \mathrm{B}\right]=n \leftrightarrow \mathrm{~b}_{l 11}$ and b_{112} is LI.

Discrete Time Case

Discrete-Time State Equation

Theorem 6.D1
The followings are equivalent to each other;

1. $\{A, B\}$ is controllable
2. $W_{d c}[n-1]=\sum_{m=0}^{n-1}(A)^{m} B B^{\prime}\left(A^{\prime}\right)^{m}: n \times n$ matrix
is nonsingular
3. $\mathbf{C}_{d}=\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right]$ has rank n
4. $\rho[A-\lambda \mathbf{I} B]=n \forall \lambda$
5. If $\left|\lambda_{i}(A)\right|<1, \exists W_{d c}>0$ such that
$W_{d c}-A W_{d c} A^{\prime}=B B^{\prime}$
$W_{d c}=W_{d c}[\infty]$.

Discrete Time Case

Note)

$$
\begin{aligned}
& x[n]=A^{n} x[0]+\sum_{m=0}^{n-1} A^{n-1-m} B u[m] \\
& x[n]-A^{n} x[0]=\left[\begin{array}{llll}
B & A B & \cdots & A^{n-1} B
\end{array}\right]\left[\begin{array}{c}
u[n-1] \\
\vdots \\
u[0]
\end{array}\right] \\
& \bar{x}=\mathbf{C}_{d} \mathbf{u} \\
& \rho\left(\mathbf{C}_{d}\right)=n \leftrightarrow \mathbf{u} \text { is unique }
\end{aligned}
$$

By Theorem 3.8

$$
\rho\left(\mathbf{C}_{d}\right)=n \leftrightarrow \rho W_{d c}[n-1]=\rho\left[\begin{array}{lll}
B & \cdots & A^{n-1} B
\end{array}\right]\left[\begin{array}{c}
B^{\prime} \\
B^{\prime} A^{\prime} \\
\vdots \\
B^{\prime}\left(A^{\prime}\right)^{n-1}
\end{array}\right]=n
$$

Discrete Time Case

Theorem 6.DO1

The followings are equivalent to each other;

1. $\{A, C\}$ is observable
2. $W_{d o}[n-1]=\sum_{m=0}^{n-1}\left(A^{\prime}\right)^{m} C^{\prime} C(A)^{m}: n \times n$ matrix is nonsingular
3. $\mathbf{O}_{d}=\left[\begin{array}{c}C \\ C A \\ \ldots \\ C A^{n-1}\end{array}\right]$ has rank n, 4. $\rho\left[\begin{array}{c}A-\lambda \mathbf{I} \\ C\end{array}\right]=n \forall \lambda(A)$
4. If $\left|\lambda_{i}(A)\right|<1, \exists W_{d c}>0$ such that $W_{d o}-A^{\prime} W_{d o} A=C^{\prime} C, \quad W_{d o}=W_{d o}[\infty]$.

Discrete Time Case

Controllability to the origin \& reachability

- Controllability from any x_{0} to any x_{f}
- Controllability from any $\mathrm{x}_{0} \neq 0$ to $\mathrm{x}_{f}=0$
- Controllability from any $\mathrm{x}_{0}=0$ to any $\mathrm{x}_{f} \neq 0$
$=$ reachability
$x[k+1]=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right] x[k]+\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right] u[k]$
$\rho\left(\mathbf{C}_{d}\right)=0$: not controllable
$\mathrm{x}[3]=A^{3} \mathrm{x}[0]=0$ controllable to origin

Discrete Time Case

$$
\begin{aligned}
& \mathrm{x}[k+1]=\left[\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right] \mathrm{x}[k]+\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \mathrm{u}[k] \\
& \mathrm{x}_{1}[0]=\alpha, \mathrm{x}_{2}[0]=\beta \\
& \mathrm{u}[0]=2 \alpha+\beta \rightarrow \mathrm{x}[1]=0 \\
& \text { controllable to origin } \\
& \text { not reachable } \\
& \rho\left(\mathbf{C}_{d}\right)=1
\end{aligned}
$$

Controllability after sampling

$$
\begin{aligned}
& \dot{x}=\mathrm{Ax}(t)+\mathrm{Bu}(t) \\
& \mathrm{u}[k]=\mathrm{u}(k T)=\mathrm{u}(t) \text { for } k T \leq t<(k+1) T \\
& \overline{\mathrm{x}}[k+1]=\overline{\mathrm{A}} \overline{\mathrm{x}}[k]+\overline{\mathrm{B}} \mathrm{u}[k] \\
& \overline{\mathrm{A}}=e^{A T}, \overline{\mathrm{~B}}=\int_{0}^{T} e^{A t} d t \mathrm{~B}=\mathrm{MB}
\end{aligned}
$$

Discrete Time Case

Theorem 6.9
Suppose $\{A, B\}$ is controllable.
Sufficient condition for $\{\bar{A}, \bar{B}\}$ to be controllable is that
$\left|\operatorname{Im}\left[\lambda_{i}-\lambda_{j}\right]\right| \neq 2 \pi m / T$ for $m=1,2, \cdots$
whenever $\operatorname{Re}\left[\lambda_{i}-\lambda_{j}\right]=0$.
For single input case, the condition is necessary as well.
Note) $\begin{cases}\lambda_{1}=\alpha+j \beta & \bar{\lambda}_{1}=e^{(\alpha+j \beta) T} \\ \lambda_{2}=\alpha-j \beta & \bar{\lambda}_{2}=e^{(\alpha-j \beta) T}\end{cases}$
If $\operatorname{Im}\left[\lambda_{1}-\lambda_{2}\right]=2 \beta=2 m \pi / T$, then $T=m \pi / \beta$

$$
\begin{aligned}
& \bar{\lambda}_{1}=e^{\lambda_{1} T}=e^{\alpha T}, \bar{\lambda}_{2}=e^{\lambda_{2} T}=e^{\alpha T} \\
& \rightarrow \bar{\lambda}_{1}=\bar{\lambda}_{2}
\end{aligned}
$$

Discrete Time Case

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
\lambda_{1} & & \mathrm{~A} & & \\
& \lambda_{2} & & 0 & \\
& & \ddots & & \\
& 0 & & \ddots & \\
& & & & \lambda_{n}
\end{array}\right]\left[\begin{array}{c}
\mathrm{B} \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\vdots
\end{array}\right] \rightarrow \begin{array}{c}
\text { controllable } \\
\rho\left[\begin{array}{ll}
\mathrm{A}-\lambda_{1} I & \mathrm{~B}
\end{array}\right]=n \\
\\
\\
\\
\\
\\
\bar{\lambda}_{1} \\
\\
\bar{\lambda}_{2}
\end{array}} \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

Discrete Time Case

Pf. of Theorem 6.9

Controllability is invariant by ET
\rightarrow can be proved by J ordan form

$$
\mathrm{A}=\left[\begin{array}{cccccc}
\lambda_{1} & 1 & & & & \\
& \lambda_{1} & 1 & & 0 & \\
& & \lambda_{1} & & & \\
& & & \lambda_{1} & & \\
& & & & \lambda_{2} & 1 \\
& & 0 & & & \lambda_{2}
\end{array}\right] \mathrm{B}=\left[\begin{array}{cc}
* & * \\
* & * \\
0 & 1 \\
1 & 1 \\
* & * \\
1 & 0
\end{array}\right]
$$

Discrete Time Case

Pf. of Theorem 6.9 (cont.)

$\bar{B}=\mathbf{M B}=\mathbf{M}\left[\begin{array}{c}* \\ 01 \\ 11 \\ * \\ 10\end{array}\right]$

Discrete Time Case

Pf. of Theorem 6.9 (cont.)

$$
\text { If } \begin{gathered}
I_{m}\left[\lambda_{i}-\lambda_{j}\right] \neq 2 \pi m / T \text { for } \operatorname{Re}\left[\lambda_{i}-\lambda_{j}\right]=0, \\
e^{\lambda_{1} T} \neq e^{\lambda_{2} T}
\end{gathered}
$$

If M is nonsingular, $\{\bar{A}, \bar{B}\}$ is controllable.
To show M is nonsingular,

$$
\begin{aligned}
m_{i i} & =\int_{0}^{T} e^{\lambda_{i} \tau} d \tau= \begin{cases}\left(e^{\lambda_{i} T}-1\right) / \lambda_{i} & \text { for } \lambda_{i} \neq 0 \\
T & \text { for } \lambda_{i}=0\end{cases} \\
& \neq 0,
\end{aligned}
$$

if $2 \beta_{i} T \neq 2 \pi m\left(\because m_{i i}=0\right.$ only for $\left.\alpha_{i}=0 \& \beta_{i} T=\pi m\right)$.

Discrete Time Case

Example 6.12

Consider

$$
g(s)=\frac{s+2}{s^{3}+3 s^{2}+7 s+5}=\frac{s+2}{(s+1)(s+1+j 2)(s+1-j 2)}
$$

Using (4.41), the state equation is

$$
\begin{aligned}
& \dot{\mathrm{x}}=\left[\begin{array}{ccc}
-3 & -7 & -5 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \mathrm{x}+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] u \\
& y=\left[\begin{array}{ccc}
0 & 1 & 2
\end{array}\right] \mathrm{x} \\
& \left|\lambda_{i}-\lambda_{j}\right|=2,4 \rightarrow T \neq 2 \pi \mathrm{~m} / 2=\pi \mathrm{m} \text { and } T \neq 2 \pi \mathrm{~m} / 4=0.5 \pi \mathrm{~m} .
\end{aligned}
$$

The second condition includes the first one.
The discretized equation is controllable iff $T \neq 0.5 \pi m$.

Time Varying Case

LTV State Equation

$$
\begin{aligned}
& \dot{x}=A(t) x(t)+B(t) u(t) \\
& y=C(t) x(t)
\end{aligned}
$$

Theorem 6.11
$\{A(t), B(t)\}$ is controllable at t_{o} iff
\exists a finite $t_{1}>t_{0}$ such that

$$
W_{c}\left(t_{0}, t_{1}\right)=\int_{t_{0}}^{t_{1}} \Phi\left(t_{1}, \tau\right) B(\tau) B^{\prime}(\tau) \Phi^{\prime}\left(t_{1}, \tau\right) d \tau
$$

is nonsingular, where $\Phi(t, \tau)$ is the state transition matrix.

Time Varying Case

Pf. of Theorem 6.11
(\Leftarrow)
$W_{c}\left(t_{0}, t_{1}\right)$ is nonsingular $\rightarrow\{A(t), B(t)\}$ is controllable at t_{o}

$$
\mathrm{x}\left(t_{1}\right)=\Phi\left(t_{1}, t_{0}\right) \mathrm{x}_{0}+\int_{t_{0}}^{t_{1}} \Phi\left(t_{1}, \tau\right) B(\tau) u(\tau) d \tau
$$

We claim that the input

$$
\mathrm{u}(t)=-B^{\prime}(t) \Phi^{\prime}\left(t_{1}, t\right) W_{c}^{-1}\left(t_{0}, t_{1}\right)\left[\Phi\left(t_{1}, t_{0}\right) \mathrm{x}_{0}-\mathrm{x}_{1}\right]
$$

will transfer x_{0} to x_{1}. Then

$$
\begin{aligned}
\mathrm{x}\left(t_{1}\right) & =\Phi\left(t_{1}, t_{0}\right) \mathrm{x}_{0}-\int_{t_{0}}^{t_{1}} \\
& \Phi\left(t_{1}, \tau\right) B(\tau) B^{\prime}(\tau) \Phi^{\prime}\left(t_{1}, \tau\right) d \tau \\
& \cdot W_{c}^{-1}\left(t_{0}, t_{1}\right)\left[\Phi\left(t_{1}, t_{0}\right) \mathrm{x}_{0}-\mathrm{x}_{1}\right] \\
&
\end{aligned}
$$

Time Varying Case

Pf. of Theorem 6.11 (cont.)

(\Rightarrow) (By contraction)
$W_{c}\left(t_{0}, t_{1}\right)$ is nonsingular $\leftarrow\{A(t), B(t)\}$ is controllable at t_{o} Assume $W_{c}\left(t_{0}, t_{1}\right)$ be singular even if controllable,
$\exists v \neq 0$ such that $W_{c}\left(t_{0}, t_{1}\right) v=0$, so

$$
\begin{aligned}
v^{\prime} W_{c}\left(t_{0}, t_{1}\right) v & =\int_{t_{0}}^{t_{1}} v^{\prime} \Phi\left(t_{1}, \tau\right) B(\tau) B^{\prime}(\tau) \Phi^{\prime}\left(t_{1}, \tau\right) v d \tau \\
& =\int_{t_{0}}^{t_{1}}\left\|B^{\prime}(\tau) \Phi^{\prime}\left(t_{1}, \tau\right) v\right\|^{2} d \tau=0, \quad \forall \tau \text { in }\left[t_{0}, t_{1}\right] .
\end{aligned}
$$

This implies $B^{\prime}(\tau) \Phi^{\prime}\left(t_{1}, \tau\right) v=0, \forall \tau$ in $\left[t_{0}, t_{1}\right]$.
If controllable, $\exists u(t)$ that transfer $\mathrm{x}_{0}=\Phi\left(t_{0}, t_{1}\right) v$ to $\mathrm{x}_{1}=0$. i.e.,

$$
0=\Phi\left(t_{1}, t_{0}\right) \Phi\left(t_{0}, t_{1}\right) v+\int_{t_{0}}^{t_{1}} \Phi\left(t_{1}, \tau\right) B(\tau) u(\tau) d \tau .
$$

Its premultiplication by v^{\prime} yields

$$
0=v^{\prime} v+\int_{t_{0}}^{t_{1}} v^{\prime} \Phi\left(t_{1}, \tau\right) B(\tau) u(\tau) d \tau=v^{\prime} v
$$

This contradicts $v \neq 0$.

Time Varying Case

Controllability condition without $\Phi(t, \tau)$
Define $M_{0}(t)=B(t)$

$$
M_{m+1}(t)=-A(t) M_{m}(t)+\frac{d}{d t} M_{m}(t)
$$

Theorem 6.12
Let $A(t), B(t)$ be ($n-1$) times continuously differentiable.
$\{A(t), B(t)\}$ is controllable at t_{o} if
there exists a finite $t_{1}>t_{0}$ such that

$$
\rho\left[\begin{array}{llll}
M_{0}\left(t_{1}\right) & M_{1}\left(t_{1}\right) & \cdots & M_{n-1}\left(t_{1}\right)
\end{array}\right]=n .
$$

Time Varying Case

Claim $\quad \frac{\partial^{m}}{\partial t^{m}} \Phi\left(t_{2}, t\right) B(t)=\Phi\left(t_{2}, t\right) M_{m}(t)$
Pf) $\frac{\partial}{\partial t}\left[\Phi\left(t_{1}, t\right) B(t)\right]=\frac{\partial}{\partial t}\left[\Phi\left(t_{1}, t\right)\right] B(t)+\Phi\left(t_{1}, t\right) \frac{d}{d t} B(t)$

$$
=\Phi\left(t_{1}, t\right)\left[-A(t) M_{0}(t)+\frac{d}{d t} M_{0}(t)\right]
$$

$$
=\Phi\left(t_{1}, t\right) M_{1}(t)
$$

$$
\frac{\partial^{m}}{\partial t^{m}} \Phi\left(t_{1}, t\right) B(t)=\Phi\left(t_{1}, t\right) M_{m}(t)
$$

$$
\begin{aligned}
& \frac{\partial}{\partial t} \Phi\left(t_{2}, t\right)=-\Phi\left(t_{2}, t\right) A(t) \\
& \left\{\begin{array}{l}
\frac{\partial}{\partial t} \Phi\left(t, t_{2}\right)=A(t) \Phi\left(t, t_{2}\right) \\
\Phi\left(t_{2}, t\right)=\Phi\left(t, t_{2}\right)^{-1}
\end{array}\right.
\end{aligned}
$$

Time Varying Case

Pf) (By contraction)
(not controllable $\rightarrow \rho\left[M_{0}, \ldots, M_{n-1}\right]<n$)
Assume $W_{c}\left(t_{0}, t_{1}\right)$ be singular $\forall t_{1} \geq t_{0}$.
$\exists v \neq 0$ such that
$W_{c}\left(t_{0}, t_{1}\right) v=0$
$v^{\prime} W_{c}\left(t_{0}, t_{1}\right) v=\int_{t_{0}}^{t_{1}} v^{\prime} \Phi\left(t_{1}, \tau\right) B B^{\prime} \Phi^{\prime}\left(t_{1}, \tau\right) v d \tau$
$=\int_{t_{0}}^{t_{1}}\left\|B^{\prime}(\tau) \Phi^{\prime}\left(t_{1}, \tau\right) v\right\|^{2} d \tau=0$.

Time Varying Case

Pf) (cont.)
This implies

$$
\begin{aligned}
& B^{\prime}(\tau) \Phi^{\prime}\left(t_{1}, \tau\right) v=0 \forall \tau \in\left[\begin{array}{ll}
t_{0} & t_{1}
\end{array}\right] \\
& v^{\prime} \Phi\left(t_{1}, \tau\right) B(\tau)=0
\end{aligned}
$$

By m - times derivatives,

$$
\begin{aligned}
& v^{\prime} \Phi\left(t_{1}, \tau\right) M_{m}(\tau)=0 \\
& \Rightarrow v^{\prime} \Phi\left(t_{1}, \tau\right)\left[M_{0}(\tau) \quad \cdots \quad M_{n-1}(\tau)\right]=0
\end{aligned}
$$

Since $v^{\prime} \Phi\left(t_{1}, \tau\right) \neq 0$,

$$
\rho\left[M_{0}(\tau) \quad \cdots \quad M_{n-1}(\tau)\right]<n \quad \text { for all } \tau>t_{0} .
$$

Time Varying Case

Example 6.13

Consider

$$
\dot{\mathrm{x}}=\left[\begin{array}{ccc}
t & -1 & 0 \\
0 & -1 & t \\
0 & 0 & t
\end{array}\right] \mathrm{x}+\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] u
$$

We have $\mathrm{M}_{0}=\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]^{\prime}$ and compute

$$
\mathbf{M}_{1}=-\mathrm{A}(t) \mathbf{M}_{0}+\frac{d}{d t} \mathbf{M}_{0}=\left[\begin{array}{c}
1 \\
0 \\
-t
\end{array}\right], \quad \mathbf{M}_{2}=-\mathrm{A}(t) \mathbf{M}_{1}+\frac{d}{d t} \mathbf{M}_{1}=\left[\begin{array}{c}
-t \\
t^{2} \\
t^{2}-1
\end{array}\right]
$$

The determinant of

$$
\left[\begin{array}{lll}
\mathrm{M}_{0} & \mathrm{M}_{1} & \mathrm{M}_{2}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & -t \\
1 & 0 & t^{2} \\
1 & -t & t^{2}-1
\end{array}\right]
$$

is $t^{2}+1$. This implies the system is controllable at every t.

Time Varying Case

Example 6.14

Consider

$$
\dot{\mathrm{x}}=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \mathrm{x}+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u \rightarrow \text { controllable by Corollary 6.8. }
$$

How about the following time varying case:

$$
\dot{\mathrm{x}}=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \mathrm{x}+\left[\begin{array}{c}
e^{t} \\
e^{2 t}
\end{array}\right] u
$$

Controllability Grammian is

$$
\mathrm{W}_{\mathrm{c}}\left(t_{0}, t\right)=\left[\begin{array}{ll}
e^{2 t}\left(t-t_{0}\right) & e^{3 t}\left(t-t_{0}\right) \\
e^{3 t}\left(t-t_{0}\right) & e^{4 t}\left(t-t_{0}\right)
\end{array}\right]
$$

Its determinant is zero for all t_{0}, t, hence uncontrollable.

Time Varying Case

Theorem 6.011
$\{A(t), C(t)\}$ is controllable at t_{o} if f
\exists a finite $t_{1}>t_{0}$ such that

$$
W_{o}\left(t_{0}, t_{1}\right)=\int_{t_{0}}^{t_{1}} \Phi^{\prime}\left(t_{1}, \tau\right) C^{\prime}(\tau) C(\tau) \Phi\left(t_{1}, \tau\right) d \tau
$$

is nonsingular.
Theorem 6.012
Let $A(t), C(t)$ be ($n-1$) times continuously differentiable.
$\{A(t), C(t)\}$ is observable at t_{o} if
there exists a finite $t_{1}>t_{0}$ such that

$$
\rho\left[\begin{array}{c}
\mathrm{N}_{0}\left(t_{1}\right) \\
\mathrm{N}_{1}\left(t_{1}\right) \\
\ldots \\
\mathrm{N}_{n-1}\left(t_{1}\right)
\end{array}\right]=n, \quad \text { where } \mathrm{N}_{0}(t)=C(t) \quad\left[\begin{array}{l}
\\
\end{array} \quad \mathrm{N}_{m+1}(t)=\mathrm{N}_{m}(t) A(t)+\frac{d}{d t} \mathrm{~N}_{m}(t) .\right.
$$

Problem 6.21 in Text P. 183

