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What is Minimal Realization ?

 Good realization among many realizations.

2Linear Systems

 least possible dimension
(minimal dimension)

 controllable & observable
 easy to analysis (simple form)

minimal realization,
Controllable(controller) canonical form 

   Observale(observer ) canonica

∗ 
∗ 

∗
⇒

l form 
Jordan-form







 Realization problem ( IOD → SVD )
 To apply many design techniques & computational algorithms 

    for dynamical equations.
 To simulate before the system is built.
 To establish the link between SVD & IOD.

∗

∗
∗
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Minimal Realization and Coprime

Definition: Degree of proper rational transfer function 

3Linear Systems

2

For a proper rational transfer function
( )               g( ) ,
( )

If ( ) and ( ) is coprime, 
                Degree of g( ) : Degree of ( ).

1ˆWhat is the degree of  g( )  ?
2 1

N ss
D s

N s D s
s D s

ss
s s

=

=

+
=

+ +

Question:
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Minimal Realization and Coprime

4Linear Systems

Definition:

Let SISO state equation 
         
         
be realization of proper & coprime rational ftn ( ).
Then, the state equation is said to be  if
            det( ) (denominatior

x Ax Bu
y Cx Du

g s
f

sI A k

= +
= +

− =
irreducible



 of ( ))
            dim =deg ( )
where  is a nozero constant. 
The irreducible state equation is called  of  ( )

g s
A g s

k
g sminimal realization
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Controllable Canonical Form

5Linear Systems

( )( ) ( )
N sg s D s=Realization of                           

1
1

1
1

1
1

1
1

1

( )

( ) ( )( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

n
n

n n
n

n
n

n n
n

sg s e
s s

s N s y sg s
s s D s u s

D s y s N s u s
y s N s D s u s

β β
α α

β β
α α

−

−

−

−

−

+ +
= +

+ + +

+ +
= = =

+ + +
⇒ =

⇒ =









Controllable canonical-form realization

1

Introduce new variable ( ) by
( ) ( ) ( )

( ) ( ) ( ) ( ) 1 
( ) ( ) ( ) ( ) ( )

v t
v s D s u s

D s v s u s v s
y s N s v s u s D s

−=

 =
⇒ = =  
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Controllable Canonical Form

6Linear Systems

1
1

( ) 1 1
( ) ( )
( ) ( ) ( )

n n
n

v s
u s D s s s
D s v s u s

α α−= =
+ +

=


Realization of Proper Rational Functions 

Define
1 1

1
2 2

    1
1 1

1 1 1 1 1

x ( ) ( )
( )

 x( ) : : ( ),

x ( ) ( ) 1

( ) ( ) ( ) ( ) ( )
x ( ) x ( ) x ( ) x ( ) ( )

n n

n n

n

n n
n n

n n n n

s s v s s
s v s s

s v s

s v s

s v s v s sv s s v s u s
s s s s s u s

α α α
α α α

− −

− −

−
−

− −

    
    
    = = =
    
    

          
= − − − − +
= − − − − +
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Controllable Canonical Form
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In time domain
1 1 1 2 2

1
1

1

1

11 2

2

( ) ( )

( )
( )

x( ) : (s)=

( )

1
1 0 0 0
0 1 0 0 0

0 1 0 0
0 1 0 0 0

0 1 0 0

n n

n

n

n

n

n

x t x x x u t

x ss
x ss

s s v

x ss

x
x

x

x

α α α

α α α

−

−

= − − − − +

   
   
   =
   
   
    

− − −    
   
   
   

= +   
   
  
  
    










  

  

 



  

 

  

[ ]

( )    (*)

0 0 1

u t

v x








 
 


=    
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Controllable Canonical Form

8Linear Systems

[ ]

[ ]
[ ]

1

1

2

1 2

1 2

1 2

( ) ( ) ( ) ( )

( )
( )

                         

( )

                         x( )

( ) x( )

n
n i

i
i

n

n

n

n

n

y s N s v s s v s

s v s
s v s

v s

s

y t t

β

β β β

β β β

β β β

−

=

−

−

= =

 
 
 =
 
 
  

=

⇒ =

∑
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Controllable Canonical Form
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Controllability

[ ]

[ ]

1 2

1

... ... 1
1 0 0 0

0 1 0 0
LI rows  

0 1 ... 0 0
... 0 1 0 0
0 0 ... 0 1 0

has rank  regardless of C  or ( ).

n

n

s A B

s
s

s
s

s
s

n N s

α α α

β β

−

+ 
 −  
 −

= ∀ −  
 −
 

−  
=

I





 

 







( )Controllable realization from without coprimeness
( )

Controllable Canonical form

N s
D s

⇒
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Controllable Canonical Form
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Theorem 7.1

Controllable canonical form is observable iff 
( ) and  ( ) are coprime. D s N s

Pf. 

1
3 2

1 1 1 2 1 3 1 4
4 3 2

1 1 1 1 2 1 3 1 4

( ) (~ ~ )
      If ( ) and  ( ) are not coprime, there exists a  such that

             ( ) 0

             ( ) 0.

A B B A
D s N s

N

D

λ

λ β λ β λ β λ β

λ λ α λ α λ α λ α

⇒ ⇔ ⇒

= + + + =

= + + + + =
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Controllable Canonical Form
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Pf. (cont) 
3 2

1 1 1

1

43
1 2 3 4 11

32
11

12
11

1

2 2
1 1

2

3

Let us define v : [ 1] 0,
      ( ) cv 0

1 0 0 0
      Av v

0 1 0 0
0 0 1 0 1

      A v AAv Av v, ...
c

cA
      Ov

cA
cA

N
λ λ λ

λ

α α α α λλ
λλ

λ
λλ
λ

λ λ

′ = ≠
= =

 − − − −   
   
   = = =
   
   

        
= = =

 

=


 

1
2

1
3

1

cv
cv

v 0
cv
cv

This implies that O does not have full rank, i.e., not observable.

λ
λ
λ

 
 
  = =
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Controllable Canonical Form

12Linear Systems

Pf. (cont) 

1

1

1

( ) (~ ~ )
      If the state equation is not observable, then 
      by Theorem 6.O1, there exists  of A and v 0 such that

A I
                v 0.

c
      or
                 (A I)v=0 and cv

A B A B

λ
λ

λ

⇐ ⇔ ⇒

≠

− 
= 

 

−
3 2

1 1 1 2 1 3 1 4

1 1

1 1

0.

                 ( ) cv= 0.
       is a root of ( ).
      det( I A) ( ) 0.
      This implies ( ) and  ( ) are not coprime.

N
N
D

N s D s

λ β λ β λ β λ β
λ λ

λ λ

=

= + + + =

− = =
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Observable Canonical Form
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( ) ( 1)
1

( 1)
1

( )              ( ) ( )
( )

              ( ) ( ) ( ) ( )
In Time Domain
              ( ) ( ) ( )

                       ( ) ( )        (*)
Taking Laplace Transform wi

n n
n

n
n

N sy s u s
D s

D s y s N s u s

y t y t y t

u t u t

α α

β β

−

−

=

=

+ + +

= + +





th nonzero initial condition,

Observable canonical form realization
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Observable Canonical Form

14Linear Systems

Taking Laplace Transform (non-zero initial condition)

( ){ }

( ){ }
{ }

1 2 (1) ( 1)

1 2 ( 2)
1

1 2 ( 2)
1

2

( ) ( (0) (0) (0)

( ) (0) (0)

( )

( ) (0) (0)

... ...
( )

n n n n

n n n

n

n n n

n

s y s s y s y y

s y s s y y

y s

s u s s u u

u s

α

α

β

β
β

− − −

− − −

− − −

− + + +

+ − + +

+ +

= − + +

+ +

+
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Observable Canonical Form
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{ ( )
(

) }

1 (1) 2
1 1

( 1) ( 2) ( 2) ( 3) ( 3)
1 1 2 2

1 1

( ) ( ) ( ) ( ) (0) (0) (0) (0)

(0) (0) (0) (0) (0)

(0) (0)

If initial state is known, output for a ( ) is unique.
We choose stat

n n

n n n n n

n n

D s y s N s u s y s y y u s

y y u y u

y u

u t

α β

α β α β

α β

− −

− − − − −

− −

= + + + −

+ + − + − +

+ −

 

(1)
1 1 1

( 1) ( 2) ( 2)
1 1 1 1 1

e as;
x ( ) : ( )

x ( ) : ( ) ( ) ( )
                
x ( ) : ( ) ( ) ( ) ( ) ( )   (**)

n

n

n n n
n n

t y t

t y t y t u t

t y t y t u t y t u t

α β

α β α β

−

− − −
− −

=

= + −

= + − + + −
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Observable Canonical Form
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1 1 1 1 1 1

2 1 2 2 1 2 2 2

1 2 1 1 2 1 1 1

1

x
     x x    x x
     x x x x
            
     x   x x
                            (*)&(**)  x

n

n n n n n n

n n n n n n

n n n n n n

n n

y
x u x u

x u x u

x x u x u
x

α β α β
α β α β

α β α β
α β

− −

− − − −

− − − −

⇒ =
= + − ⇒ = − +
= + − ⇒ = − +

= + − ⇒ = − +
⇒ = − +

 

 



 



[ ]

1

1 1

   
0 0
1 0 0

x x1
0
1

     0 1 x

n

n n

n

u

u

y

α β
α

α β

−

−   
   −   
   ⇒ = +
   
   
   −   

=
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Observable Canonical Form
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{ } { }

{ }

Note:
   ,  does not depend on , i.e. ( )

    

,  is always observable regardless of coprime
     between ( ) & ( ) (may not be controllable if not coprime)

Observable(or observer) cano

iA C N s

C
n

s A

A C
N s D s

β

ρ
 

= − 
⇒

⇒

I

nical form.
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Minimal Realization 

18Linear Systems

( ) ( ) ( )( ) ,
( ) ( ) ( )

N s N s R sg s
D s D s R s

= =

Coprime Fractions

If ( ) and ( ) are coprime, controllable or observable 
realization of ( ) ( ) / ( ) is minimal realization.

D s N s
g s N s D s=

{ } is a minimal realization of ( ) iff
{ } is controllable and { } is observable or iff
             dim deg ( ).

d g s

g s=

A, b, c,
A, b A, c

A

Theorem 7.2
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Minimal Realization 

19Linear Systems

( )
     If { } is not controllable or { } is not observable,
     the state equation can be reduced by Theorem 6.6 and 6.O6.
     Thus { ,  , } is not minimal.d

⇒
A, b A, c

A, b c

Pf. of Theorem 7.2
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Minimal Realization 

20Linear Systems

Pf. of Theorem 7.2

1

( )
     If { ,  , } is controllable and observable, then  (OC) .
     However, if { ,  , } is not minimal, there exists 
     a realization of ( ) { ,  , } with .     By Theorem 4.1,

 

d n
d

g s d n n

ρ
⇐

=

<

A, b c
A, b c

A, b c

1

1

1 1 2( 1)

1

               ,  0,1, 2,...

...

     OC ...
... ... ... ...

...

           O C   has rank .
      This is contracts to

m m

n

n

n n n

n n

m

n n

−

−

− − −

= =

  
  
    = =    
  
    

= <

cA b cA b
c cb cAb cA b

cA cAb
b Ab A b

cA cA b cA b

 that { ,  , } is controllable and observable.dA, b c
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Minimal Realization 

21Linear Systems

All minimal realization of ( ) are equivalent. g s
Theorem 7.3

Pf.

1 1 1

1 1

Let  { ,  , } and { ,  , } are minimal,
      OC OC  and  OAC OAC 
      A O OACC  PAP ,
where P O O CC ( OC OC).

d d

− − −

− −

= =

= =

= = ← =

A, b c A, b c

Note:

If  { ,  , } is minimal (controllable and observable),
      Asymptotically stability BIBO stability

d
⇔

A, b c
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Computing Coprime Fractions
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( )( )
( )

N sg s
D s

=

Computing Coprime Fractions

( ) ( )
( ) ( )

If deg ( ) deg ( ),  ( ) and ( ) are not coprime.

N s N s
D s D s

D s D s D s N s

=

<

( )( ( )) ( ) ( ) 0D s N s N s D s− + =

2 3 4
0 1 2 3 4

2 3 4
0 1 2 3 4

2 3
0 1 2 3

2 3
0 1 2 3

( )

( )

( )

( )

D s D D s D s D s D s

N s N N s N s N s N s

D s D D s D s D s

N s N N s N s N s

= + + + +

= + + + +

= + + +

= + + +
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Computing Coprime Fractions
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0 0

1 1 0 0 0

2 2 1 1 0 0 1

3 3 2 2 1 1 0 0 1

4 4 3 3 2 2 1 1 2

4 4 3 3 2 2 2

4 4 3 3 3

4 4 3

0 0 0 0 0 0
0 0 0 0

0 0

0 0
0 0 0 0
0 0 0 0 0 0

D N N
D N D N D
D N D N D N N
D N D N D N D N D
D N D N D N D N N

D N D N D N D
D N D N N

D N D

 − 
  
  
   −
  
   =   −
  
  
   −  
     

  

  

  

  

  

  

  

  

0

By Coefficient Comparison, := S (Sylvester resultant)  

D(s) and N(s) are coprime iff S is nonsingular  

LI vectors Primary dependent N-column
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Computing Coprime Fractions
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3 2

4 3 2

( ) 6 3 20
( ) 2 7 15 16 10

N s s s s
D s s s s s

+ + −
=

+ + + +

Example 7.1
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Computing Coprime Fractions
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0

1

1

2

2

3

3

10 20 0 0 0 0 0 0
16 3 10 20 0 0 0 0
15 1 16 3 10 20 0 0
7 6 15 1 16 3 10 20

0
2 0 7 6 15 1 16 3
0 0 2 0 7 6 15 1
0 0 0 0 2 0 7 6
0 0 0 0 0 0 2 0

N
D
N

D
N

D
N

D

−  − 
  −   
  − −
  −    =   −
  
  
   −  
     

  

  

  

  

  

  

  

  

LI vectors
Primary dependent N-column

Example 7.1 (cont)
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Computing Coprime Fractions
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[ ]
0 0 1 1 2 2

2 2

3 2

4 3 2 2

This monic null vector equals 

              

               4 2 3 2 0 1  .

Thus we have ( ) 4 3 0   ( ) 2 2
and 

6 3 20 3 4               .
2 7 15 16 10 2 2

N D N D N D

N s s s D s s s

s s s s
s s s s s s

′ − − − 
= −

= − + + ⋅ = + +

+ + − −
=

+ + + + + +

Example 7.1 (cont)
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Computing Coprime Fractions
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deg ( ) number of linearly independent -columns :g s N µ= =
Theorem 7.4

0 0 1 1

The coefficients of a coprime fraction ( ) ( ) / ( ) is given by

         

g s N s D s

N D N D N Dµ µ

=

′ − − − 

Consider an  matrix M. 
Then there exists an  orthonornal matrix Q such that
        ,
where R is an  triangular matrix and 

 with LI columns in order from left to right.
        

n m
n n

ρ ρ

×

×

=

QM = R 
upper

M R
M = QR 1,  :  QR decomposition.− ′= = ←Q Q Q

QR Decomposition for column searching of S
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Computing Coprime Fractions
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25.1 3.7 20.6 10.1 11.6 11.0 4.1 5.3
0 20.7 10.3 4.3 7.2 2.1 3.6 6.7
0 0 10.2 15.6 20.3 0.8 16.8 9.6
0 0 0 8.9 3.5 17.9 11.2 7.3

 
0 0 0 0 5.0 0 12.0 15.0
0 0 0 0 0 0 2.0 0
0 0 0 0 0 0 4.6 0
0 0 0 0 0 0 0 0

− − − − 
 − − − − 
 − − − −
 − − − =  − − −
 

− 
 −
 
  

R

Example 7.1

Primary dependent N-column
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Computing Coprime Fractions
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0
0 0
0 0 0

 
0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

d x x x x x x x
n x x x x x x

d x x x x x
n x x x x

d x x
x
d

 
 
 
 
 
 =  
 
 
 
 
  

R

Primary dependent N-column

2µ =
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HW 7-1
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[ ]

1 2
2

1 2

1 2
1 2

   Consider
( )                 ( ) :
( )

   and its realization
1

                     
1 0 0

   Show that the state equation is observable if and only if the

s N sg s
s s D s

u y

β β
α α

α α
β β

+
= =

+ +

− −   
= + =   
   

x x x

 
   Sylvester resultant of ( ) and ( ) is nonsingular.D s N s
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u

y
=
=

x Ax + b
cx



Balanced Realization

If the system is controllable, observable, and asymptotically stable,
there exist 0, 0 such that
             
and
             .

c o

c c

o o

> >
′ ′

′ ′

W W
AW + W A = -bb

AW + W A = -cc

Balanced Realization
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Different Minimal Realization has different                 . 

2

3 18( )
3 18

sg s
s s

+
← =

+ +

2 2

0.5 0 0.5 0
 and 

0 0 1c oα α
   

= =   
   

W W

Balanced Realization

 and c oW W

[ ]

1 4 1
4 2 2

1 2  

u

y

α
α α

α

− −   
=    −   
= − −

x x +

x



0.25 0
0 1c o

 
=  
 

W W

0.5 0
 for =1 Balanced Realization

0 1c o α
 

= = ← 
 

W W
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Balanced Realization
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Let { } and { , , } be minimal and equivalent, 
let  and  be the product of their controllability 
and observability Grammians.

 and  are similar and their eigenvalues are all
real a

c o c o

c o c o

A, b, c A  b  c
W W W W

W W W W
nd positive.  

Theorem 7.5
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Balanced Realization
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-1 -1A = PAP      b = Pb      c = cP

Pf. of Theorem 7.5

and
c c

o o

′ ′

′ ′

AW + W A = -bb

A W + W A = -c c

1

1 1

( )
which implies

( ) ( )

c c

c c

−

− −

′ ′ ′ ′ ′

′ ′ ′ ′+ = −

-1

-1 -1

PAP W + W P A P = -Pbb P

AP W P P W P A bb
1

1 1

1 1 1

( )  or 

 or ( )

( )  

c c c c

o o o o

c o c o c o similar

−

− −

− − −

′ ′= =

′ ′= =

′ ′= = →

-1W P W P W PW P

W P W P W P W P

W W P W P P W P P W W P
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Balanced Realization
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2 2 2det( ) det( ) det( )c o o oσ σ σ′ ′− = − = −I W W I R RW I RW R

By Theorem 3.6, since  is symmetric and positive definite,

          : ,
where  is not orthogonal but nonsingular.

c

c ′ ′ ′= 1 2 1 2

W

W Q DQ = Q D D Q = R R
R

2

1 2

of any minimal realization is similar ,
where diag( , , , ) andnσ σ σ

Σ
Σ =

c oW W  
 1 2 0nσ σ σ≥ ≥ ≥ >

This implies that  and  have the same eigenvalues.
Since  is symmetric and positive definite,
all eigenvalues are real and positive. (Q.E.D.)

c o o

o

′
′

W W RW R
RW R

Pf. of Theorem 7.5 (cont)

Note:
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Balanced Realization
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Theorem 7.6

For any dimensional minimal equation {A, b, c},
there exists an equivalence transformation x Px such that
             .
This is called a  .

c o

n

balanced realization

−
=

= =W WΣ

Pf. Theorem 7.6

1 1 2 1 2 1  or ( )− − −′ ′ ′= =P R UΣ P Σ U R
1 2 1 1 1 2( ) ( )c c c c

− −′ ′ ′ ′= = = ← =W PW PΣU R W R UΣΣW R R
1 2 1 2 2( )o o o o
− −′ ′ ′ ′ ′= = = ← =-1 -1W (P ) W PΣ U RW RUΣ Σ RW R UΣ U

2

 :real and symmetric

:

c

o

o orthonormal

′=
′

′ ′→ = ∑ ←

W R R
R W R

R W R U U U
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Balanced Realization
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[ ]

1 11 12 1 1

2 21 22 2 2

1 2  

u

y

       
= +       

       
=

x A A x b
x A A x b

c c x





1 2diag( , )c o= =W WΣΣ

1 11 1 1

1 .
u

y
= +
=

x A x b
c x



2

2

If    , ,  it is called input-normal realization. 

If    , ,  it is called output-normal realization.
Balanced realization can be used in  .

c o

c o

system reduction

= =

= =

W I WΣ

WΣ W I

Note:

2 1If  is much smaller than ,  
the reduced one is close to the original one. 
Σ Σ
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{ }

1
0 1

1
1
1

0

1 1

1 2 2

( )

(0) (1) ( )
                                            (infinite series)

( ), 0,1, : Markov Parameters

(0)
(1) (0)
(2) (1) (0)

(

n n
n

n n
n

n

s sg s
s s

h h s h n s

h i i

h
h h
h h h

h n

β β β
α α

β
α β
α α β

−

−

− −

+ + +
=

+ + +

= + + + +

=

=
= − +
= − − +





 





1 2

1 2

......(*)

) ( 1) ( 2) (0)

( ) ( 1) ( 2) ( ), 1, 2,
n n

n

h n h n h
h n i h n i h n i h i i

α α α β

α α α








= − − − − − + 
+ = − + − − + − − =



 

Realization from the Hankel matrix
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Hankel matrix (m n order)
(1) (2) ( )
(2) (3)

(m,n):=

( ) ( 1) ( 1)
               (!! (0) is not involved)

h h h n
h h

h m h m h m n
h

×

 
 
 
 
 + + − 

T
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Proper transfer function  ( ) has degree  if
( , ) ( , )   , 1, 2,3

g s n f
n n n k n l n k lρ ρ= + + = ∀ =T T

Theorem

Pf)

1

( ) If deg ( )

        ( ) ( ) (  are not involved)

        for 1, 2,
       ( 1)th row of ( 1, ) can be written as
             a L.C. of  rows of ( , )
       ( , ) ( 1,

n

j k
j

g s n

h n i h n i j

i
n n

n n
n n

α β

ρ ρ

=

⇒ =

+ = − + −

=
→ + + ∞

∞
→ ∞ = + ∞

∑

T
T

T T



)
       ( , ) ( 1, ),  1, 2,
       ( , ) ( , )

n i n i i
n

ρ ρ
ρ ρ

→ + ∞ = + + ∞ =
→ ∞ = ∞ ∞

T T
T T
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{ }

{ }
1

       ( , ) ( /    satisfying)
       ( , ) ( , )  ,
( ) ( , ) ( , )

        implies   

        ( ) ( )

        If we find using

        ( ) (

j

n

j
j

i

n n o w n n
n n n k n l n k l

n n n k n l n

h n i h n i j

g s h i

ρ
ρ ρ

ρ ρ

α

α

β
=

→ ∞ = ∃ <
→ = + + = ∀

⇐ = + + =

∃ ∋

+ = − ⋅ + −

=

∑

T
T T

T T



  (*)

0
1

1

)

       deg ( )

n
i n

n n
i o n

ss
s s

g s n

β β
α α

∞
−

−
=

+ +
=

+ + +
→ =

∑ 
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1 1

1 1 2 2 1
1 1 4 2 4
1 3 8 6 6

5 1 4 10 1
7 1 2 10 4

1 1 1 2 2 1
2 1 3 1 0 2 2

:4 1 3 1 0 2 2
2 1 3 1 0 6 3
1 1 6 0 0 8 5

T

k T T T

− − − 
 − − 
 = − − −
 − 
 − 

− − −   
   −   
   = = =− −
   
   
      

Row Searching Algorithm, Appendix A in 2nd Ed.
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2 1 1 2

3

4 2 2

1 0 1 1 2 2 1
0 1 3 1 0 2 2

:1 1 0 0 0 0 0
1 1 0 2 0 4 1
2 1 0 2 0 4 1

1 1 1 2 2 1
3 1 0 2 2
0 0 0 0 0

1 0 2 0 4 1
1 1 0 0 0 0 0

k T T T

k I

k T T

− − −   
   
   
   = = =−
   − −   
   − −   

=

− − −   
   
   
   = =
   −   
   −   
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4 3 2 1

1

2

1

1

1

2
1 2 ( 1)

:

If -th row is 
 

dependent row, 0

1 0 0 0 0
.. 1 0 0
.. 0
.. .. .. 1

1 0 0 0 0

i

n

j i

i ij j i
j

j i
ij

i ij j
j

i i i i

n

k k k k k
a
a

i
kT

a

a

a k a a
k

k
a k a

a
a

k k k

a

= −

= −

−

=

 
 
 
 = ⇒

= 
 
  

  = + = 
 = ⇒
 

= − 
 

 
 
   =   
 
 

∑

∑
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{ }

{ }

{ }

1 1 1 1

1 2 2 3

1

1

Consider s.e. , , ,

( ) ( ) ( )

, , ,  is a realization of ( ) if

(0) & ( )    1, 2,

Realization:
, , , ( ) ( ) ( ) ( )

i

i i

A B C D

g s D C sI A B D s C I s A B
D CBs CABs CA Bs

A B C D g s f

D h h i CA B i

A B C D h i CA B g s h i s g s

− − − −

− − −

−

− −

= + − = + −

= + + +

⇒

= = =

← = ← = ←∑
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{ }

( ) ( )

( , )Here, ( ) , , ,  realization
( )Let ( ) ,  deg ( )
( )

may not be coprime        deg ( )
Determine deg ( ) (Hankel matrix Rank check)

(1) ( )
( 1, )   rows

1( 1) (2 )

H n ng s A B C D
N sg s D s n
D s

g s n
g s
h h n

n n LI
nh n h n

σ

→

= =

≤

 
 + =     ++ 

T  

[ ]

  rows
where  can be determined by row searching algorithm,

( 1) ... (2 )  is primary dependent row.

LD

h h

σ
σ

σ σ

−

+
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[ ]1 2

1 2

:  If ( ) & ( ) are coprime, 
           otherwise  .
          1 0 0 ( 1, ) 0
           If ,  ( 1) ( ) ( 1) ... (1)
           , 1, ,

           If ,  ( 1)

n

i n i

Note D s N s n
n

a a a n n
n h n h n h n h

a i n

n h

σ

σ
σ

σ α α α
α

σ σ

−

=
<

→ + =

= + = − − − − −
→ = =

< + = −

T 



1
( )   

           , 1, ,

i
i

i n i

a h i

a i n

σ

α
=

−→ ≠ =

∑
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[ ]
1 2

Claim:
0 1 0 (1)

0 1 (2)
0

, 

0 0 0 1
( )

1 0 0 ,             (0)
is controllable & observable.

h
h

A B

a a a h

C D h
σ σ

   
   
   
   

= =   
   
   
   
− − −      

= =
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1 2

2

Since ( ) ( 1) ( 2) ( )
                                                                   1, 2,3

(2) (3) ( 1)
(4) ( 2)

,

( ) ( 2) (

k

h i a h i a h i a h i
i

h h h k
h h k

AB A B A B

h i h h k

σσ σ σ

σ σ σ

+ = − + − − + − −
=

+   
    +   = = =
   
   + + +   









  

[ ]( )

{ }

2

)

1 0

(1), (2), (3)
, , ,  is realization of ( )

C

CB h CAB h CA B h
A B C D g s

 
 
 
 
 
 

=

⇒ = = =

⇒
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1

1

Controllability matrix

( , ) controllable

Observability matrix
1

1
observable

1
If A is realized by , {A,B} is not controllable,
but {A,C} is observable. 

B AB A B

C
CA

CA
n

σ

σ

σ σ

σ

−

−

  = ⇒ 

   
   
   = ⇒
   
   
   

>
→

T

 

Observability Realization
( , ) .σ σ =T OC
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[ ]

1

On the other hand,
0 1
1 0 0

1
, 

0 1 0

(1) ( )

a

A B

a

C h h
σ

σ

−   
   
   
   

= =   
   
   
   

−      
=
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1

1

1 0
0 1
0 0
0
0 0 1

( , )

Always controllable  Controllability Realization
( , ) .

C B AB A B

C
CA

O

CA

σ

σ

σ σ

σ σ

−

−

 
 
 

   ⇒ = =   
 
  

 
 
 = =
 
 
 

→ →
=

T

T OC
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1 2

1 (1) ... ( )
( , ) : ... ... ... ...

( ) ... (2 )

(2) ... ( 1)
             ... ... ...

( 1) ... (2 1)

( , ) ( , )
, ,

If we know ,  we can det

h h

a a a h h

h h

h h

σ σ σ

σ
σ σ

σ σ

σ

σ σ

σ σ σ σ
σ σ σ σ

σ

− −

−

   
   = =    
   − − −   

+ 
 =  
 + + 
=

1

T OAC

AT T
A = T( ) T( )







ermine .A
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2

4 3 2

1 2 3 4 5 6

1

4 2 6( )
2 2 2 3 1

       0 2 3 2 2 3.5 ...
0 2 3 2
2 3 2 2

(4,4) ,    (4, 4) 3 deg ( )
3 2 2 3.5
2 2 3.5 ...

2 3 2 0 2 3
(3,3) (3,3) 3 2 2 2 3 2

2 2 3.5 3 2

s sg s
s s s s
s s s s s s

g sρ σ

− − − − − −

−

− −
=

+ + + +
= + − − + + +

− − 
 − − = = = =
 − −
 − 

− − − 
 = = − − − − 
 − − − 

T T

A T T

1 0 1 0
0 0 1

2 0.5 1 0
[0 2 3] , [1 0 0]b c

−
   
   =   
   − −   

′= − =

Example 7.2
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[ ]

1

1

2

3

3 2 1

3 2 1

Without calculating (3,3) (3,3),  by row searching algorothm
1 0 0 0 0
... 1 0 0 0

(4,3)
... ... 1 0 0

1 0

1 (4,3) 0,  by transpose,

0 2 3 2
(3,4) 2 3 2 2

3 2 2 3.5

c
c
c

a a a

a a a

−

≠   
   ≠   =
   ≠
   

  
=

− − 
 = − − 
 − − 

T T

T

T

T a



3

2

1

0

1
 is null vector of (3, 4).

a
a
a

 
 
  =
 
 
 

a T

Example 7.2 (cont)
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1/ 2 1/ 2

1/ 2 1/ 2

1 1

1/ 2 1/ 2

1/ 2 1/ 2

1/ 2 1/ 2

( , ) .
( , )

 and .
( , ) ( , )

( , ) .

Balanced  Realization

σ σ

σ σ

σ σ σ σ

σ σ

− −

− −

=

′ ′= =

′= =

= → =

′=

′ ′= =

′ ′= =
→

T OC
T KΛL KΛ Λ L
O KΛ C Λ L
T OAC A O T C
AΛ K T LΛ

CCΛ L LΛ Λ
O OΛ KKΛ Λ

 



Balanced Form
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2
1 2 3

3 2
1 2 3

3

2

3 2 1 1

Realizations of g(s)  (assume coprime)

Controllable form                                Observable form 
0 1 0 0 0

0 1 , 0        1 0
1 0 1

s s
s s s
β β β
α α α

α
α

α α α α

+ +
=

+ + +

−     
    = = = −    
    − − − −    

A B A

[ ] [ ]

3

2

1

3 2 1

3

2

1

,            

,       (0)        0 0 1 ,       (0)

Controllability form                            Observability form 
0 0 1
1 0 ,          0
0 1 0

D h D h

β
β
β

β β β

α
α
α

 
  =  
    

= = = =

−   
  = − =  
  −  

B

C C

A B

[ ] [ ]
3 2 1

0 1 (1)
        0 1 , (2)

(3)

(1) (2) (3) ,  (0)      1 0 0 ,       (0)

h
h
h

h h h D h D h

α α α

   
    = =    
    − − −    

= = = =

A B

C C
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[ ]

[ ]
2

Show that the two state equations
2 1 1

            2 2
0 1 0

and 
2 0 1

            2 0
1 1 2

are realizations of (2s+2)/(s 2).
Are they minimal realization?
Are they algeb

u y

u y

s

   
= + =   
   

   
= + =   − −   

− −

x x x

x x x





raically equavalent?
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ˆDegree of  a proper rational matrix ( )
is defined as the degree of Least Common Denominator (LCD) 

ˆof all coprime minors of  ( ).

G s

G s

Definition: MIMO case
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Example

1

1 1
1 1ˆ ( )

1 1
1 1

s sG s

s s

 
 + +=  
 
 + + 

1

1 1The minors of order 1 : , ,
1 1

The minors of order 2 : 0      
LCM of denominators 1 ( )

ˆ( ) 1        

s s

s s

Gδ

+ +

= + = ∆

⇒ =
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2

2 1
1 1ˆ ( )

1 1
1 1

s sG s

s s

 
 + +=  
 
 + + 

Example

2

2

2

1The minors of order 1 : 
( 1)

1The minors of order 2 : 
( 1)

  LCM of denominators ( 1)
ˆ ( ) 2        

s

s
s

Gδ

+

+

⇒ = +

⇒ =



Perception and Intelligence Laboratory
School of Electrical Engineering at SNU

Degree of Transfer Matrices

62Linear Systems

1 1
1 ( 1)( 2) 3ˆ ( )

1 1 1
1 ( 1)( 2)

1 1 minors :  entries

( 1)
( 1)( 1)( 2)

( 4)2 2 minors : (all should be coprime)
( 1)( 3)

3
( 1)( 2)( 3)

LCD of all minors ( 1)

s
s s s ss

s s s s

s
s s s

s s
s s s

s s s s
s s

 
 + + + + =
− 

 + + + 
×

+
+ + + 
+

× ⇐+ + 



+ + + 
= +

G

( 2)( 3)
ˆ( ) 4

s s

δ

+ +

⇒ =G

Example 7.5
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{ } is a minimal realization of ( ) iff
{ } is controllable and { } is observable or iff
             dim deg ( ).

s

s=

A, B, C, D G
A, B A, C

A G

Minimal Realizations-Matrix Case

Theorem 7.M2
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( ) If not controllable or observable, There exists a zero state
        equivalent equation with lesser dimension which is not minimal.
( ) If not minimal,  {A, B, C, D} with ,Theorem 4.1 implies
  

n n

⇒

⇐ ∃ <

                     for 0,1, 2,...
                                     (*)
        where , , ,  are, respectly, , , ,  and .
        Using Sylvester inequility
         

m m

n n

n n

m
OC O C

O C O C nq n n np nq n n np

= =

=

× × × ×

CA B CA B

          ( ) ( ) ( ) min( ( ), ( ))
        which is proved in [6], and  ( ) ( ) ,  we have ( ) .
        From (*), ( ) ( ) . 
        This implies {A, B, C, D} is not cont

n n n n n n

n n n n

n n

O C n O C O C
O C n O C n

OC O C n n

ρ ρ ρ ρ ρ
ρ ρ ρ

ρ ρ

+ − ≤ ≤

= = =

= = <
rollable or observable.

The remaining part will be given in the remainder of this chapter.

Pf. of Theorem 7.M2
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1 1

Consider two minimal realizations {A, B, C, D} and {A, B, C, D}.
                
                
               ( ) ( ) : P
                
                

OC OC
O OCC O OCC
O O O O CC CC

O C O C
O O CC

− −

=

′ ′ ′ ′=

′ ′ ′ ′= =

=

′ ′

A A
A

1 1 1                ( ) ( ) PAP
This shows {A, B, C, D} and {A, B, C, D} are equivalent.
                

O O CC
O O O O CC CC− − −

′ ′=

′ ′ ′ ′= =

A
A A

Theorem 7.M3
All minimal realizations of G(s) are equivalent.

Pf. 
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2

2

4 10 3
2 1 2( ) , ( ) (2 1)( 2)

1 1
(2 1)( 2) ( 2)

Minimal realization has 3-dimension. 
6-dim. in (4.39) and 4-dim. in (4.44) are not minimal.
By Matlab, [am,bm,cm,dm]=minreal(a,b,c,d);

s
s ss s s s

s s s

− 
 + + = ∆ = + +
 
 + + + 

G

Exmaple 7.6 

0.8625 4.0897 3.2544 0.3218 0.5305
0.2921 3.0508 1.2709 0.0459 0.4983
0.0944 0.3377 0.5867 0.1688 0.0840

0 0.0339 35.5281 2 0
0 2.1031 0.5720 0 0

− − −   
   = − + −   
   − − −   

−   
= +   − −   

x x u

y x u





Perception and Intelligence Laboratory
School of Electrical Engineering at SNU

Matrix Polynomial Fractions

67Linear Systems

[ ][ ]

1

1

1

1

( ) ( ) ( )
7.5 can be expressed as a  

1 0 0
1

( ) 0 ( 1)( 2) 0
1 1 3

0 0 ( 3)

( ) ( ) ( ) is called a  .

( ) ( ) ( ) ( ) ( )

        ( ) (

s s s
Example right fraction

s
s s

s s s
s

s s

s s s left fraction

s s s s s

s s

−

−

−

−

=

+ 
   = + +   − +   + 

=

=

=

G N D

G

G D N

G N R N R

N R 1 1 1) ( ) ( ) ( ) ( )
Right (left) fraction is not unique.
Right (left) coprime fraction is needed.

ˆˆIf ( ) ( ) ( )   and   ( ) ( ) ( ),  
( ) is called   .

s s s s

s s s s s s
s common right devider

− − −=
→
→

= =

R D N D

D D R N N R
R

Matrix Polynomial Fractions

( ) ( ) ( ) 
:   of  
:   of  
:   of ( )
:   of ( )

s s s
left devider
right devider
right multiple s
left multiple s

=A B C
B A
C A
A B
A C
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2 10 12 1 2 1
,  ,  

12 1 0 3
s ss s s s s

s ss
+   + + − + +  

     −+     

Definition 7.2 A square polynomial matrix M(s) is called a 
unimodular matrix if its determinant is nonzero and 
independent of s  

Examples of unimodular matrix

[ ]1 2 1 2det ( )det ( ) det ( ) ( ) 0s s s s c= = ≠M M M M

Products of unimodular matrices are clearly unimodular.

Inverse of unimodular matrix is unimodular.
1 1det ( )det ( ) det ( ) ( ) det 1s s s s− − = = = M M M M I
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Definition 7.3 A square polynomial matrix R(s) is a greatest 
common right divider (gcrd) of D(s) and N(s) if 
1) R(s) is common right divider  (crd) of D(s) and N(s) 
2) R(s) is left multiple of every crd of D(s) and N(s) 
If a gcrd is a unimodular, D(s) and N(s) are right coprime.

Left coprime can be defined in a similar manner.

Greatest common right(left) devider M( ) is unimodular in 
         ( ) ( )M( ), ( ) ( )M( ) or
         ( ) M( ) ( ), ( ) M( ) ( ),
where det M( ) is independent of .   

r r r r

l l l l

s
s s s s s s
s s s s s s

s s

= =

= =

N N D D
N N D D
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1 1

right coprime left coprime
 ( ) ( ) ( ) ( ) ( )

Characteristic polynomial det ( ) det ( )
deg ( ) deg  det ( ) deg det ( )

r r l l

r l

r l

s s s s s

s s
s s s

− −= =

⇒ = =
⇒ = =

G N D D N

D D
G D D

Definition 7.4:

[ ][ ]

[ ]

11

1 1

1

1

1

1

( ) ( ) ( ) ( ) ( ) ( ) ( )
Define ( ) ( ) ( ),  ( ) ( ) ( )
det ( ) det ( ) ( ) det ( )det ( )
deg det ( ) deg det ( ) deg det ( )
If ( ) is unimodular, deg det ( ) deg det ( )
Then ( ) and 

s s s s s s s
s s s s s s

s s s s s
s s s

s s s
s

−−= =

= =

= =

= +
=

G N D N R D R
D D R N N R

D D R D R
D D R

R D D
D N1( ) are right coprime.s



Perception and Intelligence Laboratory
School of Electrical Engineering at SNU

Matrix Polynomial Fractions

71Linear Systems

3

2

1 2

Degree of polynimial vector: the highest power in all entries.
( ) degree of ith column of ( ) :   
( ) degree of ith row of ( ) :   

1 2 5 1
( )

1 0
1, 3,

ci

ri

c c

s s column degree
s s row degree

s s s
s

s s

δ
δ

δ δ

=
=

 + − + −
=  − 

→ = =

M M
M M

M

3 1 20, 3, 2c r rδ δ δ= = =

Column and Row Reducedness
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A nonsingular polynomial matrix ( )degree is 
column reduced if
             deg det ( ) .
It is row reduced if
             deg det ( ) .

:

             (

s

s sum of all column degrees

s sum of all row degrees

Example

s

=

=

M

M

M

M
2

2

3 2
1 2

1 2

3 2 2 1
)

3

             (s) 5 3 deg (s) 2 1
                                              
                                              deg (s) 2 2
 

c c

r r

s s s
s s s

s s s
column reduced

δ δ

δ δ

 + +
=  + − 

∆ = − + + ⇒ ∆ = + = +
→
⇒ ∆ ≠ + = +

                                             not row reduced→

Definition 7.5 
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2

( ) can be expressed as
                    ( ) ( ) ( )

:

3 2 2 10
                    ( )

1 1 3 00

                                    nonsingular column reduced
 ca

hc c lc

s
s s s

Example
ss

s
ss

or

= +

    
= +    −    

↔

M
M M H M

M



2

2

n be expressed as
                    ( ) ( ) ( )

:

3 0 2 2 10
                    ( )

1 0 30

                                                    singular not row r

r hr lrs s s
Example

s ss
s

s ss

= +

+     
= +     −    

↔

M H M M

M

 educed
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1 1   ( ) ( ) (  ) ( ) ( )
             right coprime    left coprime
   ( ) :  column reduced, ( ) :  row reduced

   deg ( )  sum of column degrees of ( )
                  sum of row degrees of (

s s s s s

s s

s s
s

− −= =

⇒
=

=

G N D D N

D D

G D
D

[ ]
12 2

1

)
If G( ) is strictly proper, then 
    ( ) ( ),  1, 2,...
The converse is not necessarily true, ex,

1 2 1 2 1    ( ) ( ) 1 2
1 11 1

The reason is that ( ) is not column re

ci ci

s
s s i

s s s s ss s
s

s

δ δ

−

−

< =

   − − − − +
= =   +   

N D

N D

D duced.
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Theorem 7.8

[ ]
1

If ( ) is column reduced, then 
     ( ) ( ) is proper (strictly proper) iff
     ( ) ( )    ( ) ( )  for 1, 2,3,...

Necessity part follows from the preceding examples.
To show suffici

ci ci ci ci

s
s s

s s s s iδ δ δ δ

−

≤ < =

D
N D

N D N D

1

1

11 1 1

1

ency,
     ( ) ( ) ( ) ( ) ( ) ( )

     ( ) ( ) ( ) ( ) ( ) ( )

     ( ) : ( ) ( ) ( ) ( ) ( ) ( )
     lim ( )

 

hc c lc hc lc c c

hc c lc hc lc c c

hc lc c hc lc c

hc hcx

s s s s s s
s s s s s s

s s s s s s s
s

−

−

−− − −

−

→∞

 = + = + 
 = + = + 

   = = + +   
=

D D H D D D H H
N N H N N N H H

G N D N N H D D H
G N D

1      is nonsingular since column reduced

      0 for ( ) ( )

hc

hc ci ci

proper
s s

strictly proper
δ δ

−

⇒
= <

⇒

D

N N D

Pf.
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Corollary 7.8

1
If ( ) is row reduced, then 
     ( ) ( ) is proper (strictly proper) iff
     ( ) ( )    ( ) ( )  for 1, 2,3,...ri ri ri ri

s
s s
s s s s iδ δ δ δ

−

 ≤ < = 

D
D N

N D N D
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2

2

Find the characteristic polynomials and degrees of 
the following proper rational matrix of

1 3 1
( 1) 2 5

          ( ) . 
1 1 1

( 3) 4
Use two methods: minors and column degrees.
You ma

s
s s s

s
s

s s s

+ 
 + + + =

+ 
 + + 

G

y use Matlab for coprime fraction.
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Computing Matrix Coprime Fractions
1

1

1 1

For the given left fraction ( ) ( ),  
not necessarily left coprime, 
we can find  the right coprime fraction ( ) ( )
        ( ) ( ) ( ) ( ) ( )
        ( ) ( ) ( ) ( )
        ( )( ( ))

s s

s s
s s s s s
s s s s
s s

−

−

− −= =

=

− +

D N

N D
G D N N D
N D D N
D N N

2 3 4
0 1 2 3 4

2 3 4
0 1 2 3 4

2 3
0 1 2 3

2 3
0 1 2 3

( ) ( )
where 
        ( )

        ( )

        ( )

        ( )

s s

s s s s s

s s s s s

s s s s

s s s s

=

= + + + +

= + + + +

= + + +

= + + +

D 0

D D D D D D

N N N N N N

D D D D D

N N N N N
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00 0

01 1 0 0

12 2 1 1 0 0

13 3 2 2 1 1 0 0

24 4 3 3 2 2 1 1

24 4 3 3 2 2

34 4 3 3

34 4

:

−   
   
   
   −
   
   =    −
   
  
  −  
    

ND N 0 0 0 0 0 0
DD N D N 0 0 0 0
ND N D N D N 0 0

DD N D N D N N N
SM

ND N D N D N N N
D0 0 D N D N N N
N0 0 0 0 D N N N

D0 0 0 0 0 0 N N

  

  

  

  

  

  

  

  

:  Generalized resultant: 8 4( )
: , : , : , :i i i i

q q p
q q q p p p q p

=






× +

× × × ×

0

S
D N D N



Perception and Intelligence Laboratory
School of Electrical Engineering at SNU

Matrix Polynomial Fractions

80Linear Systems

Example 7.7

2

1

2

1

4 10 3
2 1 2( )

1 1
(2 1)( 2) ( 2)

(2 1)( 2) 0
( )

0 (2 1)( 2)

(4 10)( 2) 3(2 1)
        : ( ) ( )

2 ( 1)(2 1)

s
s ss

s
s s s

s s
s

s s

s s s
s s

s s s

−

−

− 
 + + =

+ 
 + + + 

+ + 
=  + + 

− + + 
× = + + + 

G

G

D N
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2

3 2

2 3

2

2

2 3

2 5 2 0
( )

0 2 9 12 4

2 0 5 0 2 0 0 0
0 4 0 12 0 9 0 2

4 2 20 6 3
( )

2 2 3 1

20 3 2 6 4 0 0 0
2 1 1 3 0 2 0 2

By Matlab,
     [q, r] qr(S) S

s s
s

s s s

s s s

s s s
s

s s s

s s s

 + +
=  + + + 

       
= + + +       
       

 − − +
=  + + + 

− −       
= + + +       
       

= →

D

N

qr=
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1 0 0
0 2 0
0 0 1
0 0 0 2
0 0 0 0 1
0 0 0 0 0 2
0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

d x x x x x x x x x
d x x x x x x x x x

n x x x x x x x x x
n x x x x x x x x

d x x x x x x x
d x x x x x x

r
n x x x x x

x x x
d x x

d x

 
 
 
 
 
 
 
 
 =  
 
 
 
 
 
 
 
  

r1

z1=null(s1), z1b=z1/z1(8) for making monic vector

Primary dependent n2 vector

s1
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1 0 0
0 2 0
0 0 1
0 0 0 2
0 0 0 0 1
0 0 0 0 0 2
0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

d x x x x x x x x x
d x x x x x x x x x

n x x x x x x x x x
n x x x x x x x x

d x x x x x x x
d x x x x x x

r
n x x x x x

x x x
d x x

d x

 
 
 
 
 
 
 
 
 =  
 
 
 
 
 
 
 
  

r2

z2=null(s2), z2b=z2/z2(10) for making monic vector

Primary dependent n1 vector

s2
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11 12
0 0
21 22

0 0 0
11 12
0 0
21 220
0 0

11 12
1 1

1 21 22
1 1

11 12
1 1

1 21 22
2 2

11 12
2 22
21 22
2 2

11 12
2 2 2

21 22
2 2

...

n n

n n

d d

d d

n n
n n

d d
d d
n n
n n

d d
d d

 − −
 

−  − − 
   
   
   
   
  − − 
 −  

− −   =   
   
   
  
  − −−  − −  
    

 

N

D

N

D

N

D









10 7
0.5 1
1 1
0 2
1 4
0 0

2.5 2
0 1
2 0

0 0
1 0
0 0

 
 
− − 
 
 
 
 

− 
 
 =
 
 
 

  
−  

  
  
  
  
  

z1b=z1/z1(8)

z2b=z2/z2(10)
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2

2

2

2

1 1 2.5 2 1 0
( )

0 2 0 1 0 0

2.5 1 2 1
0 2

10 7 1 4 2 0
( )

0.5 1 0 0 0 0

2 10 4 7
0.5 1

s s s

s s s
s

s s s

s s s

     
= + +     
     
 + + +

=  + 
− − −     

= + +     
     
 − − −

=  
 

D

N

1

1 2

(2 5)( 2) 4 7 ( 2)( 0.5) 2 1
( )

0.5 1 0 2
2, 1, deg det ( ) 2 1 3

s s s s s s
s

s
column degrees sµ µ

−− + − + + +   
=    +   
= = = + =

G

D
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deg ( ) deg det ( )

total number of linearly independent -columns in S
is s

N

µ= =

=
∑G D

0 0 1
1 0 0
0 1 0

 
 =  
  

P

[ ][ ] 11 1ˆˆ( ) ( ) ( ) ( ) ( ) ( ) ( )
The columns of ( ) ( ) can be arbitrarily permutated.

s s s s s s s
s s

−− −= = =G N D N P D P N D
N D

Note:
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1

1 2

1

Let G(s)= ( ) ( ) be a left fraction,not necessarily left coprime
Let , 1, 2,..., ,  be the number of linearly independent .
           deg ( )

A right coprime fraction (s) ( )

i i

p

s s
i p N columns

s

s

µ
µ µ µ

−

−

= −
= + + +

D N

G

N D



 can be obtained by computing
 monic null vectors using   formed from 

each primary dependent  and its LHS LI columns.i

p p matrices
N column−

The column-degree coefficient matrix  
can be a unit upper trangular matrix.

1 2
           :

0 1
 Realization will be nicer.

hc

hc column echelon form 
=  
 

→

D

D

Theorem 7.M4

Note:
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1

1

0 0 1 1 2 2 3 3

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0

Compute a left coprime fraction (s) (s) 
from a right fraction (s) (s)

       

:

−

−

 − − − − = 

=

D N
N D

N D N D N D N D T 0

D D D D D 0 0 0
N N N N N 0 0 0

0 D D D D D 0 0
0 N N N N N 0 0

T
0 0 D D D D D 0
0 0 N

  

       

       

1 2 3 4

0 1 2 3 4

0 1 2 3 4

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

N N N N 0

0 0 0 D D D D D
0 0 0 N N N N N

       

Dual:
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Corollary 7.M4
1

1 2

1

Let G(s)= (s) ( ) be a right fraction,not necessarily right coprime
Let , 1, 2,..., ,  be the number of linearly independent  in T.
           deg ( )

A left coprime fraction ( )

i i

q

s
v i q N rows

s v v v

s

−

−

= −
= + + +

N D

G

D N



( ) can be obtained by computing
 monic null vectors using   formed from 

each primary dependent  and its preceeding LI rows.

The    can be also defined. 

i

s
q q matrices

N rows

row echelon form

−

Note:
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Realizations from Coprime Fractions

1

2

1

2

1

4

2

1 3

2

1

( ) ( ) ( )

00
( ) :

00

00
0
01 0

( ) :
1 00
0
0 10 1

s s s

ss
s

ss

ss
s
s

s
s

s

µ

µ

µ

µ

−

−

−

=

   
= =   

  
   
   
   
   

= =   
   
   
   

     

G N D

H

L

 

 

1

1 1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

s s s s
s s s s s s
s s s

−

− −

=

= → =
=

y N D u
v D u D v u
y N v
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1

2

1

1
1

2

3
1 11

2
2 11

3 11

4 11

52

62

0

( )1 0
( ) ( ) ( )

( )0

0 1

( )( )
( )( )
( )( )

: ( )
( )( )
( )( )
( )( )

s

v s
s s s

v ss

x s vs v s
x s vs v s
x s vsv s

t
x s vv s
x ssv s
x sv s

µ

µ

−

−

 
 
 
   

= =    
  

 
 
  

   
   
   
   

= = → =   
   
   
   

     

x L v

x

 

 







2

2

v
v

 
 
 
 
 
 
 
 
  

Define state variables
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(3)
1 1 2 1 3 1 4 1

5 2 6 2

( ) ( )    ( ) ( )    ( ) ( )    ( ) ( )
( ) ( )     ( ) ( )

x t v t x t v t x t v t x t v t
x t v t x t v t

= = = =
= =

 



[ ]

2 1 3 2 4 3 6 5

1 5

1 1

1 1

111 112 113 114 1211

            
To develope  and ,

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

:

hc hc

hc hc

hc

hc lc

hc lc

lc

lc

lc

x x x x x x x x
x x

s s s
s s s s

s s s s s

s s s s

α α α α α α

− −

− −

−

= = = =

= +

+ =

+ =

= − +

=

D D H D L
D H D L v u

H v D D L v D u

H v D D x D u

D D

   

122

211 212 213 214 221 222

121 1
:

0 1hc

b

α α α α α α

−

 
 
 

 
=  
 

D



Perception and Intelligence Laboratory
School of Electrical Engineering at SNU

Realizations from Coprime Fractions

93Linear Systems

1 111 112 113 114 121 122

5 211 212 213 214 221 222

12

1 111 112 113 114 121 122 12

5 211 212 213 214 221 222

111 112 113 114

( )
( )

( )

1
 ( )

0 1

1
0 1

( )

sx s
s

sx s

b
s

x b
x

s

α α α α α α
α α α α α α

α α α α α α
α α α α α α

β β β β

   
= −   

   
 

+  
 

     
= − +     

    

=

x

u

x u

N





121 122

211 212 213 214 221 222

111 112 113 114 121 122

211 212 213 214 221 222

( )

( ) ( )

s

s s

β β
β β β β β β

β β β β β β
β β β β β β

 
 
 
 

=  
 

L

y x
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111 112 113 114 121 122 12

211 212 213 214 221 222

111 112 113 114 121 122

211 212 2

1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

0 1
0 0 0 0 1 0 0 0

bα α α α α α

α α α α α α

β β β β β β
β β β

− − − − − −   
   
   
   
   = +   
   
   
− − − − − −   
      

=

x x u

y










        







13 214 221 222β β β
 
 
 

x


Controllable canonical form
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2

2

12

4 10 3
2 1 2( ) : ( ) ( )

1 1
(2 1)( 2) ( 2)

12 3
2 0 2 1 2

1 10 0
(2 1)( 2) ( 2)

6 12 9 2.5 1 2 1
( )

0.5 1 0 2

sp

sp

s
s ss s

s
s s s

s s
s

s s s

s s s s
s

s

−

− 
 + + = = ∞ +

+ 
 + + + 

 −   + + = +  +  
 + + + 

− − −  + + + 
=    +   

G G G

G

Example 7.8
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2

1
1

1

0
0

( )        ( ) 1 0
0

0 1

1 2 2.5 1 1
( ) ( ) ( )

0 1 0 0 2

6 12 9
( ) ( )

0 0.5 1

1 2 1 2
0 1 0 1

1 2 2.5 1 1 2.5 1 3
0 1 0 0 2 0 0 2

hc

hc lc

s
s

s s
s

s s s

s s

−
−

−

 
   = =       
   

= +   
   
− − − 

=  
 

−   
= =   
   

− −     
= =     
     

H L

D H L

N L

D

D D
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2.5 1 3 1 2
1 0 0 0 0

0 0 2 0 1

6 12 9 2 0
0 0.5 1 0 0

− − −   
   
   = +
   
   −   
− − −   

= +   
   

x x u

y x u







     







Observable canonical form can be obtained by using
Left coprime fraction.
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[ ] [ ]

1 1 1

Let { } be a minimalrealization
        ( ) ( ) ( ) ( ) ( )
which implies

1 1Adj( ) ( ) Adj( ( ))
det( ) det ( )

1 Adj( ( )) ( )
det ( )

deg ( ) deg det ( ) deg det ( ) dim

s s s s s

s s s
s s

s s
s

s s s

− − −− + = =

− + =
−

 =  

∗ = = =

A, B, C, D
C I A B D N D D N

C I A B D N D
I A D

D N
D

G D D

1 2 3

Proof of Theorem 7.M2
characteristic polynomial of ( ) det ( ) det ( ) det( )
the set of column degrees of ( ) the set of controllable indices of ( )
the set of row degrees of ( ) the

s k s k s k s
s

s

←

∗ = = = −
∗ =

∗ =

A
G D D I A
D A, B

D  set of observability indices of ( )A, C

Note:



Perception and Intelligence Laboratory
School of Electrical Engineering at SNU

HW 7-4

99Linear Systems

2

3 2

2

Find a right coprime fraction of 

1 2 1

         ( )
2 2

and then a minimal realization.

s s
s ss

s
s s

 + +
 
 =

+ 
  

G
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1 2 3( ) (1) (2) (3)
(1) (2) (3) ( )
(2) (3) (4) ( 1)
(3) (4) (5) ( 2)

( ) ( 1) ( 2) (2 1)

(2) (3) (4) ( 1)
(3) (4) (5) ( 2)
(4) (5) (6) ( 3)

(

s s s s
r

r
r

r r r r

r
r
r

r

− − −= + + +

 
 + 
 = +
 
 
 + + − 

+
+

= +

G H H H
H H H H
H H H H

T H H H H

H H H H

H H H H
H H H H

T H H H H

H









    











    

1 1

1) ( 2) ( 3) (2 )

   and    
                                        ( ) ( )
                                                 

r r r

OC O C O C O O CC
O O O C CC

O C

− −

+ +

 
 
 
 
 
 
 + + + 

′ ′ ′ ′= = → =

′ ′ ′ ′→ =

=

H H H

T T A T A
A T

T



 





Realizations from Matrix Markov Parameters
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A strictly proper rational matrix (s) has degree  iff
the matrix  has rank .

n
n

G
T

Theorem 7.M7
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1 2 1 2

1 2 1 2

11 2 1 2 1 2

1 2

By singular value decomposition,

      

Choosing nonsingular part ( dim),
      :
         and    
      ( ) ( )
      
      

n
OC

O C
O
O
C

−+

+ −

+

  ′=  
 

−
′ ′= = =

′= =

′ ′ ′ ′ =  
′=

Λ0
T K L

0 0

T KΛL KΛΛL
KΛΛL

ΛK KΛΛK
ΛK

1 2

1 2 1 2

1 2 1 2

      
      first  columns of 
      first  rows of 
      
      

Balanced realization

O C
p C
q O

O O
CC

−

+ +
=
=
=
=
′ ′= =
′ ′= =

←

LΛ
A T
B
C

ΛK KΛΛ
ΛL LΛΛ
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Degree of transfer function
Coprimeness and minimal realization
Computing Coprime fraction (Sylvester matrix)
Controllable form, Observable form
Controllability form, Observability form (from Henkel Matrix)
Balanced realization

Degree of transfer function matrix, Unimodular
Greatest common right divisor, Left(right) multiple 
column(row) degree, column(row) reduced, 
Coprimeness of transfer function matrix, 
Computing Right(Left) coprime fraction
Minimum realizations(controllable/Observable/Balanced-Henkel)
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