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Theorem 8.1

2 3

The pair ( , ),  for any 1  real constant vector ,
is controllable if and only if ( , ) is controllable.
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Example 8.1
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Example 8.2
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Theorem 8.2
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Consider the state equation in (8.1) with 4 
and the characteristic polynomial
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1 1 1
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Theorem 8.3

If the -dimensional state equation in (8.1) is controllable,
then by the state feedback , where  is a 1  real 
constant vector, the eigenvalues of   can arbitrarily be 
assigned provided tha

n
u r n= ×- kx k

A - bk
t complex conjugate eigenvalues are 

assigned in pairs.
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Example 8.3
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Let the desired eigenvalues be 1.5 0.5  and 1
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[ ]
0

Find  to minimize the objective function

       ( ) ( ) ( ) ( )J t t t t dt

Optimal Control Theory

∞
′= +

→
∫

k

x Qx u Ru

How to determine the desired eigenvalues?
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Consider controllable ( , ). Find  such that
( ) has any set of desired eigenvalues that
contains no eigenvalues of .
1. Select an  matrix  that has the set of 
   desired eigenvalues. 
2. Select 

n n×

A b k
A - bk

A
F

1

1

an arbitrary 1  vector  such that ( , ) is observable.
3. Solve the unique  in the Lyapunov equation .
4. Compute the feedback gain .

:
( )     or      is simil
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Note
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−

×

− =

=

→

k F k
T AT TF bk

k kT

A - bk T = TF  A - bk = TFT A - bk ar to .F

Solving the Lyapunov Equation

Procedure 8.1
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4 3 2
1 2 3

    If  and  have no eigenvalues in common, 
    then the unique solution  of  is nonsingular
    if and only if ( ) is controllable and ( ) is observable.

    ( )
Proof :

s s s s sα α α∆ = + + + +

A F
T AT - TF = bk

A,b F,k

4
4 3 2

1 2 3 4
4 3 2
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    ( ) 0

    ( )
    Since A and F have no common eigenvalues,  ( ) 0.
    If   is eigenvalue of ,  ( ) is eigenvalue of ( )(Problem 3.19)
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Theorem 8.4
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1. Find the state feedback gain for the state equation
1 1 2 1

                       0 1 1 0
0 0 1 1

    so that the resulting system has eigenvalues 2 and 1 .
    Use the method you 

u

j

−   
   = +   
      

− − ±

x x

think is the simplest by hand to carry out. 

HW 8-1

2. Consider a system with thransfer function
( 1)( 2)                        ( ) .

( 1)( 2)( 3)
    Is it possible to change the transfer function to 

1                        ( )
3

    by the st

f

s sg s
s s s

g s
s

− +
=

+ − +
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ate feedback? Is the resulting system BIBO stable?
    Is it asymptotically stable?



Perception and Intelligence Laboratory
School of Electrical Engineering at SNU

Regulation and Tracking

22Linear Systems

Regulation : to find out the state feedback gain
                    so that  the output decay to zero.
Tracking : to find out the state feedback control ( )
                    so that ( ) approaches 

u t
y t to ( )

By stabilizing control  for ( ) 0,
Zero input response 
        ( ) (0)
will decay to zero. The regulation can be easily achieved. 
For tracking , we need a feedforward gain  as

t

r t a
u r t

y t ce

p

=
= − =
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kx

x
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3 2

1 2 3 4 4
4 3 20
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4
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4

          ( ) ( ) .
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                     lim

    ,  where  should not be zero.
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p
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Regulation and Tracking
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Robust tracking:
     When the parameter of the transfer function is perturbed,
     the feedforward gain  may not yield the exact tracking. 
    nonrobust robust design is required.
Disturbance rejecti

p
→ →

on:
     
     
     To design the controller so that the output track the step 
     response even with the presence of a disturbance ( ).

u w
y

w t

= + +
=

x Ax b b
cx



Robust Tracking and Disturbance Rejection
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[ ]
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Robust Tracking and Disturbance Rejection
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[ ]

-1If ( , ) is controllable and if ( )   has no zero at
0, then all eigenvalues of the A-matrix in (8.29) can be assigned

arbitrarily by selecting a feedback gain 
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Theorem 8.5
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4

2 3 4

2 3

2 2
1 1 2 1 1 2 2

It is enough to show that 

             
0 0

is controllable if only if 0(the plant has no zero at 0).
We prove for 4. 

0
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s
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Proof of Theorem 8.5
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1

2

The rank of a matrix does not change by elementary operations.
Adding the second row multiplied  to the last row, and 
adding the third row multiplied  to the last row, and 
adding the fourth row mul

β
β

3

2 2
1 1 2 1 1 2 2 1 3 15

2
1 1 2 25

1 35

45

4

tiplied  to the last row, we obtain

1 ( )
0 0
0 0 1
0 0 0 1
0 0 0 0

which is nonsingular.

a
a
a
a

β

α α α α α α α α α
α α α

α

β

 − − − − + −
 − − 
 −
 
 
 − 
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1

1

Characteristic polynomial of overall system

      ( ) det

      

      
( ) 1
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( ) ( ), ( ), 0
( )

( ) ( )(1 )
( ) ( )

( )
( ) ( )( )

( ) ( ) ( ) ( )1
( )

If ( ) , ( ) / ,
( ) ( )( ) 0 by assigning poles in LHP.
( ) ( )

a

a

yw
a a f

w
f f

kN sy v w v r y r
D s s
k N s N sy w
sD s D s

N s
sN s sN sD sg

k N s sD s k N s s
sD s

w t w w w s
sN s w wN sy s

s s s

= + = − =

+ =

= = =
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= =

= = →
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Disturbance Rejection
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0

( ) ( ), ( ), 0
( )

( ) ( )(1 )
( ) ( )

( )
( ) ( )( )( )

( ) ( ) ( ) ( )1
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a
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a
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kN sy v w v r y w
D s s
k N s k N sy r
sD s sD s
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= + = − =

+ =

= = =
+ ∆+

= =

=
∆

= =
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Tracking to step reference
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Stabilization

12

1 2

1 12 2

 is not affected by state feedback.
If  is stable and ( ,

cc c c

cc c

c

c

cc c c c c

cc c

c

c c

u

u r r r

r

     
= +     

      
 

 = − = − = −   
 

    − −  
= +     

      

xx A A b
xx 0 A 0

x
kx kx k k

x

xx A b k A b k b
xx 0 A 0

A
A A b









)  is controllable,
( ) is said to be .

c

A, b stabilizable
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State Estimator

        
        

ˆˆ        

        1. Initial state must be computed {A, c} is observable
        2. If  is unstable, the estimate error may diverg

Open loop state Estimator
u

y

u
Two problems

−
= +
=

= +

←

x Ax b
cx

x Ax b

A





e.

ˆˆ            ( ),
ˆ            e( ) : ( ) ( )

            e  e,    e  if Re( ( )) 0.  
t t t

λ

− = −
= −

= →∞ >

x x A x x
x x

A A
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Closed-loop State Estimator
ˆˆˆ ( )

ˆˆ ( )
ˆ( ) : ( ) ( )

ˆˆ ( ) ( )
ˆˆ  ( ) ( ) ( )( )

( )

u y

u y
t t t

u u

= + + −

= − + +
= −

= − = + − − − −
= − − − = − −
= −

x Ax b l cx

x A lc x b l
e x x

e x x Ax b A lc x b l cx
A lc x A lc x A lc x x

e A lc e
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Theorem 8.03
Consider the pair ( , ). All eigenvalues of ( )
can be assigned arbitrarily by selecting a real constant 
vector  if and only if ( , ) is observable.

u
y

−

= +
=

A c A lc

l A c
x Ax b

cx


Procedure 8.01

1. Select an arbitrary  stable matrix  that 
    has no eigenvalues in common with those of .
2. Select an arbitrary 1 vector  such that 
    ( ) is controllable.

n n

n

×

×

F
A

l
F, l
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3. Solve the unique  in the Lyapunov equation
    . This  is nonsingular following the 
    dual of Theorem 8.4.
4. Then the state equation
                       
                   

u y= + +

T
TA - FT = lc T

z Fz Tb l

1

1

ˆ    
    generates an estimate of .

:
    :
    
      ( ) ( )
    lim 0 lim lim

t t t

Verify

u u

−

−

→∞ →∞ →∞

=

= −
= − = + + − −
= + − + = − =

= → = → =

x T z
x

e z Tx
e z Tx Fz Tb lcx TAx Tb

Fz lcx FT lc x F z Tx Fe
e z Tx T z x
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Reduced-Dimensional State Estimator

Procedure 8.R1
1. Select an arbitrary ( 1) ( 1) stable matrix 
    that has no eigenvalues in common with those of .
2. Select an arbitrary ( 1) 1 vector  such that ( , )
    is controllable.
3. Solve the unique 

n n

n

− × −

− ×

F
A

l F l

T

1

 in the Lyapunov equation .
    Note that  is an ( 1) 1 matrix. 
4. Then the ( 1)-dimensional state equation
                       

ˆ                       

    

n
n

u y

y−

−
− ×

−
= + +

   
=    
   

TA FT = lc
T

z Fz Tb l

c
x

T z



is an estimate of .x
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ˆˆ :
y

u u

   
= =   

   
= −
= − = + + − − =

c
x Px

z T
e z Tx
e z Tx Fz Tb lcx TAx Tb Fe  

Theorem 8.6
If  and  have no common eigenvalues, 
then the square matrix

                            ,

where  is the unique solution of ,
is nonsingular if and only if ( , ) is observable 
and ( ,

 
=  
 

A F

c
P

T
T TA - FT = lc

A c
F ) is controllable.l
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4 3 2
1 2 3 4

3 2 1

2 12 3
2

1
3

4

    Let  ( ) det( )
    Dual to (8.22), 

1
1 0

       ( )
1 0 0

1 0 0 0
                      :
    ( ) is nonsingul

Proof :
s s s s s s

C O

α α α α

α α α
α α
α

∆ = − = + + + +

   
   
    − ∆ =      
   
   

=
∆

I A

c
cA

T F l Fl F l F l
cA
cA

Λ
F

1
4

1 1
4 4

4

ar if  and  have no common eigenvalues.
    Then  ( )  and  becomes

1
       

( ) ( )
    If ( , ) is not controllable,  has rank 2 at most and

C O

C O C O
C

−

− −

= ∆
      

= = =      −∆ −∆      

A F
T FΛP

c cc 0
P

FΛΛT 0 F
F l   is singular.

    If ( , ) is not observable,  has at least 1-dim. null space and
    there exists r 0 such that r=0 which implies r=0 and r 0.
    Thus  is singular. This is proof of the necessit

O
O≠ =

P
A c

c P
P y part.
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[ ] [ ]
4 4

1 2 3 4 4

1 3 2 1

2 2

3

4

The sufficiency is proved by contraction. 
Suppose P is singular,  then there exists 0 such that

        

Define := :

1

        

C O C O

O a a a a a

a
a
a
a

α α α
α α

≠

   
= =   

   
′= =

 
 
  =
 
 
 

r
c cr

r 0
ΛΛr

aΛr a

1
2

1
3

4 4

1 0
1 0 0

1 0 0 0 0
        0 if ( } is controllable.
        0 if ( } is controllable.
        := 0 0 if ( } is observa

x
x
x

C O C C

O

α

     
     
     =
     
     =     
= = = → =

→ =
→ = → =

cr
cAr
cA r
cA r cr

Λr a a 0 a F, l
a F, l
aΛr r A,c ble.

        .contradict→
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3. Find a reduced dimensional state estimator for the state equation and
    Verify the validity of the designed estimator through Matlab simulation

1 1 2 1
                       0 1 1 0

0 0 1 1

−  
 = + 
   

x x

[ ]                       1 1 1 .
    Select the eigenvalues 3 and 3 2 . 

u

y
j


 
 
 

=

− − ±

x

HW 8-2
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The state equation:
          
          
If the state is not measurable,

ˆˆ          ( )
we use the estimated state for feedback

ˆ          
Then

ˆ          
       

u
y

u y

u r

r

= +
=

= − + +

= −

= − +

x Ax b
cx

x A lc x b l

kx

x Ax bkx b







[ ]

ˆˆˆ   ( ) ( )
:

          
ˆˆ

          
ˆ

r
Matrix form

r

y

= − + − +

  −     
= +       − −      

 
=  

 

x A lc x b kx lcx

x A bk x b
lc A lc bk x bx

x
c 0

x







Feedback from Estimated States
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[ ]

By selecting a equivalence transformation

          :
ˆˆˆ

The equivalent eq. is 

          

          

r

y

         
= = =         − −         

−       
= +       −       


=



x x I 0 x x
P

e x x I I x x

x A bk bk x b
e 0 A lc e 0

x
c 0

e





1

Controllable part is given by
          ( )    
Overall transfer function becomes
          ( ) ( )f

r y

g s s −


 


= − + =

= − +

x A bk x b cx

c I A bk b



Separation Property
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The pair ( , ), for any  real constant matrix , 
is controllable if and only if ( , ) is controllable.

:
The proof follows the proof of Theorem 8.1. 
The only difference is that (8.4) is mod

p n

Proof

− ×A BK B K
A B

2

ified as: 

( ) ( )
( )

p

p
f

p

p

C C

 − − − − −
 − − − =  −
 
  

I KB K A BK B K A BK B
0 I KB K A BK B
0 0 I KB
0 0 0 I

State Feedback-Multivariable Case
Theorem 8.M1
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Theorem 8.M3

All eigenvalues ( ) can be assigned arbitrarily 
(provided complex conjugate eigenvalues are assigned
in pairs) by selecting a real constatnt  if and only if 
( , ) is controllable.

−A BK

K
A B
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If the -dimensional -input pair ( , ) is 
controllable and if  is cyclic, then for almost
any 1 vector , the single-input pair ( , ) 
is controllable.

 is cyclic if its characteristic polynomial

n p

p×

A B
A

v A Bv

A  equals 
its minimal polynomial.  

 is cyclic iff its Jordan form has only one Jordan block 
for each distinct eigenvalue.
A

Cyclic Design

Theorem 8.7 
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:
       Controllability is invariant under any equivalence transformation, 
       thus we assume  to be Jordan form 

2 1 0 0 0
0 2 1 0 0

                  0 0 2 0 0
0 0 0 1 1
0 0 0 0 1

Intuitive Validation

 
 
 
 =
 − 
 − 

A

A 1

2

1 2 1

0 1
0 0

      1 2
4 3
1 0

       ( , ) is controllable iff 0, 0.
       2 0 and 0
       

x
x

v
v

x

v v v
Almost controllable

α

β
α β

α β

   
   
    
   = = = 
    
   
      

→ ≠ ≠
← = + ≠ = ≠
→

B Bv B

A Bv

2 1 0 2 1
0 2 0        0 2
0 0 2 1 0

 no  s.t. ( , ) is controllablev v

   
   = =   
      

→ ∃

A B

A B



Perception and Intelligence Laboratory
School of Electrical Engineering at SNU

State Feedback-Multivariable Case

47Linear Systems

    If ( , ) is controllable, then for almost any
     real constant matrix , the matrix ( )
    has only distinct eigenvalues and is, consequently, cyclic.

:
    ( ) h

p n

Intuitive Verification

× −

−

A B
K A  BK

A  BK
4 3 2

1 2 3 4

3 2
1 2 3

as 
            ( )

    where  are functions of the entries of . By differentiation

            ( ) 4 3 2

    If ( ) has repeated roots, then ( ) and ( ) are

f

i

f

f f f

s s a s a s a s a
a

s s a s a s a
s s s

∆ = + + + +

′∆ = + + +

′∆ ∆ ∆

K

 not coprime.

    Then  a coprime fraction ( ) / ( ) such that 

            ( ) / ( ) ( ) / ( )
f f

f f f f

s s

s s s s

′∃ ∆ ∆

′ ′∆ ∆ = ∆ ∆

Theorem 8.8 
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4 3

3 2 4 3

2 1 3 2 4 3

1 2 1 3 2 4 3

1 2 1 3 2

1 2 1

1

The sufficient and necessary condition is 
Sylvester resultant is singular

0 0 0 0 0 0
2 0 0 0 0
3 2 0 0
4 3 2

       det
1 0 4 3 2
0 0 1 0 4 3
0 0 0 0 1 0 4
0 0 0 0 0 0 1 0

a a
a a a a
a a a a a a
a a a a a a a

a a a a a
a a a

a

 
 
 








 

( ) 0

The solution space is a line(a very small portion) 
in high dimensional space.
Thus Sylvester resultant is almost nonsingular, and 

 is almost cyclic.

ijb k



 = =






−A BK
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1

1

If is not cyclic, we can choose ,  then
             ( ) :
where  is cyclic. ( , ) is controllable since ( , ) is controllable.
Thus   such that ( , ) is controllable. By choo

= −

= − + = +

∃

A u w K x
x A BK x Bw Ax Bw

A A B A B
v A Bv



2 2

2

1 2

1 2

sing
             ,  with .
Then the system becomes
             ( ) ( )
The resulting state feedback control becomes
             ( ) : .
The  can achieve a

= − =

= − + = − +

= − + = −
= +

w r K x K vk

x A BK x Br A Bvk x Br

u r K K x r Kx
K K K



rbitrary eigenvalue assignment.
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1. Select an  matrix  with a set of desired
    eigenvalues that contains no eigenvalues of .
2. Select an arbitrary  matrix  such that 
    ( , ) is obaservable.
3. Solve the unique  in the Ly

n n

p n

×

×

F
A

K
F K

T

1

apunov equation 
    .
4. If  is singular, select a different  and repeat
    the process. If  is nonsingular, we compute ,
    and ( ) has the set of desired eigenvalues.

The Lyapunov 

−

−

−

AT TF = BK
T K

T K = KT
A BK

1

equatuion becomes
   ( )     or    −− = − =A BK T TF A BK TFT

Lyapunov-Equation Method
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If  and  have no eigenvalues in common, then 
the unique solution  of  is nonsingular 
only if  is controllable and  is observable.

The proof of Theorem 8.4 applies here except
Proof :

−

A F
T AT TF = BK

(A,B) (F,K)

3 2 1

2 12 3
2

1
3

 that 
(8.22) must be modified as

     ( )

     ( )
where ( ) is nonsingular. If  is uncontrollable
or  is un

C O

α α α
α α
α

  
  
   − ∆ =     
  

   
− ∆ = Σ

∆

I I I I K
I I I 0 KF

T F B AB A B A B
I I 0 0 KF

I 0 0 0 KF
T F

F (A,B)
(F,K) observable, then  is singular. 

The contraction statement is true.
T

Theorem 8.M4



Perception and Intelligence Laboratory
School of Electrical Engineering at SNU

State Feedback-Multivariable Case

52Linear Systems

111 112 113 114 121 122 12

211 212 213 214 221 222

111 112 113 114 121 122

211 212 21

1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

0 1
0 0 0 0 1 0 0 0

b

y

α α α α α α

α α α α α α

β β β β β β
β β β

− − − − − −   
   
   
   
   = +   
   
   
− − − − − −   
      

=

x x u











        





3 214 221 222β β β
 
 
 

x

Canonical Form Method
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4 3 2 2
111 112 113 114 221 222

1
111 111 112 112 113 11312

211 211 212 212 213 213

Desired characteristic polynomial is given by
       ( ) ( )( ).
Let us select  as

1
       

0 1

f s s s s s s s

b

α α α α α α

α α α α α α
α α α α α α

−

∆ = + + + + + +

− − − 
=   − − −  

K

K

114 114 121 122

214 214 221 221 222 222

21

111 112 113 114

2

                                

where  are arbitary real constants. Then we have
0 0

1 0 0 0 0 0
0 1 0 0 0 0

       0 0 1 0 0 0

i

α α α α
α α α α α α

α
α α α α

α



− − − 
− − − 

− − − −

− =

−

A BK









      

11 212 213 214 221 222

.

0 0 0 0 1 0
α α α α α

 
 
 
 
 
 
 
 

− − − − − 
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[ ]
[ ]

1

1

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) (

hc lc

hc lc

hc lc

hc

s s s
s s s s
s s s
s s s
s s s
s s s s s s
s s s

s s s s s s

s s s s

s s s

−

−

=

=
=

=
=
= − = −
= +

+ = −

+ + =

=

G N D
y N D u
D v u
y N v
x L v
u r Kx r KL v
D D H D L
D H D L v r KL v

D H D K L v r

y N D H[ ]
[ ] [ ]

1

1 1

) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

lc

f hc lc

s s

s s s s s s s

−

− −

+ +

= + + = +

D K L r

G N D H D K L N D KL

Effects on Transfer Matrices
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ˆˆ ( )
ˆ( ) : ( ) ( )

( )
t t t

= +
=

= − + +
= −

= −

x Ax Bu
y Cx

x A LC x Bu Ly
e x x
e A LC e







State Estimators-Multivariable Case
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Consider the -dimensional -output observable pair 
( , ). It is assumed that  has rank .
1. Select an arbitrary ( ) ( ) stable matrix  
    that has no eigenvalues in common with those . 
2. Se

n q
q

n q n q− × −
A C C

F
A

lect an arbitrary ( )  matrix  such that
    ( , ) is controllable. 
3. Solve the unique ( )  matrix  in the 
    Lyapunov equation .
4. If the square matrix of order 

                   

n q q

n q n

n

− ×

− ×
− =

L
F L

T
TA FT LC

                 

    is singular, go back to Step 2 and repeat the process.

 
=  
 

C
P

T

Procedure 8.MR1
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1

If  is nonsingular, then the ( )-dimensional state equation
      

      

generates an estimate of .

To justify the procedure, 

      

      :
    

n q

−

−
= + +

   
=    
   

   
=   

   
= −

P
z Fz TBu Ly

C y
x

T z
x

y C
x

z T
e z Tx



  
        ( ) ( ) .
Since  is selected as stable, 0 as t .

= − = + + − −
= + − = − =

→ →∞

e z Tx Fz TBu LCx TAx TBu
Fz LC TA x F z Tx Fe

F e
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If  and  have no common eigenvalues, 
then the square matrix

             : ,

where  is the unique solution of ,
is nonsingular only if  is observable and 

 is controllable.

 
=  
 

−

A F

C
P

T
T TA FT = LC

(A,C)
(F,L)

Theorem 8.M6
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[ ]1 2 1 2

1 2

2

2

( )
  ( )

( )
  ( ) ( )

= +
=

 
= + = 

 
=
= +

− − −
= + −
= − − +
= − − +
= − + − +

1 2

1 2

1

1 2

1

x Ax Bu
y Cx

C
Q Q Q C Q T I

T
z Fz + TBu + Ly
x Q y Q z
u = r Kx = r KQ y KQ z
x Ax B r - KQ Cx KQ z

A BKQ C x BKQ z Br
z Fz + TB r KQ Cx KQ z LCx

LC TBKQ C x F TBKQ z TBr









Feedback from Estimated States-Multivariable Case
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[ ]

[ ]

2

2

2

1( ) ( )

n

n q

f

y

s s

−

−

− −      
= +      − −      

 
=  

 
      

= =       −−      
− −       

= +       
       

 
=  

 
= − +

1

1

A BKQ C BKQx x B
r

LC TBKQ C F TBKQz z TB

x
y C 0

z

I 0x x x
T Ie z Tx z

x A BK BKQ x B
r

e 0 F e 0

x
C 0

e

G C I A BK B
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4. Given 
0 1 0 0 0 0
0 0 1 0 0 0

           ,     
3 1 2 3 1 2

2 1 0 0 0 2
   Find two different constant matrices  such that 
   has eigenvalues 4 3  and 5 4 .j j

   
   
   = =
   −
   
   

−
− ± − ±

A B

K (A BK) 
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