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9. Pole Placement and Model Matching

 Output feedback Control Configurations
 Unity feedback configuration –Pole Placement
 Regulation and Tracking
 Implementable Transfer Functions
 Model Matching-Two-Parameter Configuration

1Linear  Systems
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Unity feedback configuration –Pole Placement
Unity feedback:
      ( ) ( )[ ( ) ( )]
      ( ) ( ) ( )
Let 
      ( ) ( ) / ( ), ( ) ( ) / ( )
Then

( ) ( ) ( )      ( )
( ) 1 ( ) ( )

( ) ( )              
( ) ( ) ( ) ( )

Let ( ) be des

o

u s C s pr s y s
y s g s u s

C s B s A s g s N s D s

y s pC s g sg s
r s C s g s

pB s N s
A s D s B s N s

F s

= −
=

= =

= =
−

=
+

ired characteristic polynomial, then
      ( ) ( ) ( ) ( ) ( )
which is called .

A s D s B s N s F s
compensator equation

+ =
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Theorem 9.1

Given polynomials ( ) and ( ), polynomial solutions 
( ) and ( ) exist in comoensator equation for any polynomial ( ) 

if and only if ( ) and ( ) are coprime.

Suppose ( ) and ( ) are not c

D s N s
A s B s F s

D s N s

Proof :
D s N s oprime and contain the same

factor ( ),  then ( )  should contain ( ). This is contracts 
to any polynomial ( ). This is proof of the necessity.

s a F s s a
F s

+ +
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The proof of the sufficiency:
If ( ) and ( ) are coprime, there exists ( ) and ( ) such that
              ( ) ( ) ( ) ( ) 1
Its matrix version is called  This equation
can be expres

D s N s A s B s
A s D s B s N s

Bezout Identity.
+ =

sed by Sylvester resultant form as
              
where  Sylvester resultant,  is vector composed of coefficients
of ( ) and ( ),  and [1 0 0 ....] . 

 is nonsingular if ( ) and ( ) are coprim

S n
S

A s B s n
S D s N s

θ
θ

=

′=
e. 

Then for any ( ),
              ( ) ( ) ( ) ( ) ( ) ( ) ( )
Thus ( ) ( ) ( ),  ( ) ( ) ( ) is the solution.

F s
F s A s D s F s B s N s F s

A s F s A s B s B s N s
+ =

= =
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Example 9.1

ˆ ˆIf   ( ) and ( ) are solution of           
ˆ ˆ              ( ) ( ) ( ) ( ) 0 

ˆ ˆ(for example ( ) ( ), ( ) ( ) are solutions. Then
ˆ ˆ              ( ) ( ) ( ) ( ) ( )     ( ) ( ) ( ) ( )

A s B s

A s D s B s N s

A s N s B s D s

A s A s F s Q s A s B s B s F s Q s B

+ =

= − =

= + = +

( )

( )( ) ( )

2

3 2

3 2

3 2 2

( )
are solutions of the compensator equations.

Given ( ) 1, ( ) 2,  and 
( ) 4 6 4,  then

1( ) 4 6 4 ( )( 2)
3

1( ) 2 4 6 4 ( ) 1
3

( ) 34 3     ( ) ( 22 23) 3  for ( ) (

s

D s s N s s
F s s s s

A s s s s Q s s

B s s s s s Q s s

A s s B s s Q s s

= − = −

= + + +

= + + + + − +

= − + + + + + −

= + = − − = 2 6 15) / 3s+ +
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Theorem 9.2
Consider the unity-feedback system shown in Fig. 9.1(b).
The plant is described by a strictly proper transfer function 

( ) ( ) ( )  with ( ) and  ( ) coprime and 
( ) deg ( ) . Let 1. Then for 

g s N s D s N s D s
N s D s n m n

=
< = ≥ − any polynomial 

( ) of degree ( ),  there exists a proper compensator
( ) ( ) ( )  of degree  such that the overall transfer 

function equals
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )
Furthermore,

o

F s n m
C s B s A s m

pN s B s pN s B sg s
A s D s B s N s F s

+
=

= =
+

 the compensator can be obtained by solving
the linear algebraic equation in (9.13).
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0

0 0

0

0

0 0

0

0

( ) ( ) ( ) ( )

lim ( ) lim ( ) (0)

(0) (0)(0)
(0)

 Achieve the tracking.

Regulation g ( )  stable
Tracking step reference g ( )  stable and (0) 1
Tracking ram

o o

ot s

o

o

ay s g s r s g s
s

y t sy s g a

B NN Bg p p
F F

Fp
B N

s BIBO
s BIBO g

→∞ →

= =

= =

= =

= →

⇔
⇔ =

0p reference g ( )  stable, (0) 1,  (0) 0o os BIBO g g′⇔ = =

Regulation and Tracking
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[ ] [ ]
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2
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0 0 1 1
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( ) ( 2) /( 1)
Choose 1 1,  deg 2

( ) ( 2)( 1 1)( 1 1) ( 2)( 2 2)
       4 6 4

1 0 1 0
2 1 0 0

4 6 4 1
0 1 0 1
0 2 1 0

1 34 / 3 22 / 3 23/ 3

g s s s
m n F m n

F s s s j s j s s s
s s s

A B A B

A B A B

= − −
= − = = + =

= + + + + − = + + +

= + + +

− 
 − 
  =
 − 
 − 

= = = − = −

   

Example 9.2
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[ ]
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( ) (23 22 ) 3 22 23( )
( ) 34 3 3 34

4 6
( 23 3)( 2) 23
(22 23) 3 ( 2)6 2(22 23)( 2)( )

23 ( 4 6 4) 23( 4 6 4)o

A s s B s s s
B s s sC s
A s s s

Fp
B N

s s s sg s
s s s s s s

= + = − − = − −
− + − −

= = =
+ +

= = =
− −

− + − − + −
= =

+ + + + + +
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Robust Tracking and Disturbance Rejection

2

In example 9.2, if the system is perturbed into
( ) ( 2.1) /( 0.95)

Then the overall feedback system becomes
22 23 2.1

( ) ( ) 6 3 34 0.95( ) 22 23 2.11 ( ) ( ) 23 1
3 34 0.95

6(22 23)(

o

g s s s

s s
pC s g s s sg s s sC s g s

s s
s s

= − −

− − −
+ −= =

− − −+ +
+ −

− + −
= 3 2

0

2.1)
23(3 12 20.35 16

lim ( ) lim ( ) (0) 0.7875  robustot s

s s s
y t sy s g a a not

→∞ →

+ + +
= = = →
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Robust Tracking and Disturbance Rejection

[ ] [ ]

2 2

2 2

( )( )( ) ( )       ( ) ( )
( ) ( )

( ) :  Least common denominator of the unstable poles of ( ) and ( )
( ) / , ( ) ( ) / ( ) for ( ) sin( )

( ) ( ) 

wr

r w

w

N sN sr s r t w s w t
D s D s

s r s w s
r s a s w s N s s s w t b c t d

s s s

φ
ω ω

φ ω

= = = =

= = + = + +

→ = +
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Consider the unity-feedback system shown in Fig. 9.2(a)
with a strictly proper plant transfer function ( ) ( ) ( ).
It is assumed that ( ) and ( ) are coprime. The reference 
signal ( ) and disturba

g s N s D s
D s N s

r t

=

nce ( ) are modeled as 
( ) ( ) ( ) and ( )= ( ) ( ). 

Let ( ) be the least common denominator of the unstable poles 
of ( ) and ( ). If no roots of ( ) is a zero of ( ), 
then there exists a 

r r w w

w t
r s N s D s w s N s D s

s
r s w s s g s
φ

φ

=

proper compensator such that the overall system 
will track ( ) and reject ( ), both asymptotically and robustly.r t w t

Theorem 9.3
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:
        ( ) ( ) ( ) ( ) ( ) ( )

( )        ( )
( ) ( )

( ) ( )        ( )
1 ( ( ) ( ) ( ))( ( ) ( ))

( ) ( ) ( ) ( ) ( ) ( )                 
( ) ( ) ( ) ( ) ( ) ( )

The output excited

yw

Proof
A s D s s B s N s F s

B sC s
A s s

N s D sg s
B s A s s N s D s

N s A s s N s A s s
A s D s s B s N s F s

φ

φ

φ
φ φ

φ

+ =

=

=
+

= =
+

 by ( ) equals
( )( ) ( ) ( )        ( ) ( ) ( )

( ) ( )
The unstable poles of ( ) are cancelled by ( ),  
thus we have ( ) 0 as .

w
w yw

w

w

w

w t
N sN s A s sy s g s w s

F s D s
D s s

y t t

φ

φ

= =

→ →∞
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The output excited by ( ) :
( ) ( )        ( )  ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
        ( ) : ( ) ( ) (1 ( )) ( )

( )( ) ( ) ( )        
( ) ( )

The unstable roots of ( ) are cancelle

r yr

r yr

r

r

r

r t
B s N sy s g s r s r s

A s D s s B s N s
e s r s y s g s r s

N sA s D s s
F s D s

D s

φ

φ

= =
+

= − = −

=

d by ( ),  then 
( ) ( ) 0 as .

This shows asymptotic tracking and disturbance rejection.

This is refered to as 

r

s
r t y t t

internal model principle.

φ
− → →∞
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2        ( ) ( 2) /( 1)
        ( ) ( ) ( ) ( ) ( ) ( )
For tracking to a step reference, 
we intruduce the internal model ( ) 1/ .
deg ( ) ( ) 3 , we select deg ( ) 1 2
Then deg ( ) 5,  If we 

g s s s
A s D s s B s N s F s

s s
D s s n A s m n

F s

φ

φ
φ

= − −
+ =

=
= = = = − =
=

2 2

5 4 3 2

2 2 3

2 3

select closed loop poles as
2, 2 1, 1 2.

        ( ) ( 2)( 4 5)( 2 5)
               8 30 66 85 50
        ( ) ( ) ( 1) 0 0
        ( ) 2 0 0

j j
F s s s s s s

s s s s s
D s s s s s s s
N s s s s

φ

− − ± − ±

= + + + + +

= + + + + +

= − = − + +

= − + + +

Example 9.3
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[ ]

[ ]

0 0 1 1 2 2

2

2

2

0 1 0 1 0 0
2 1 0 0 0 0

0 0 1 0 1 0
     

0 2 1 0 0 0

0 0 0 1 0 1
0 0 2 1 0 0

                              50 85 66 30 8 1

( ) 96.3 118.7 25
( ) 127.3

( ) 96.3 11( )
( ) ( )

A B A B A B

B s s s
A s s

B s sC s
A s sφ

− 
 − 
 
 − 
 −
 
 
 −
 

−  
=

− − −
=

+

− −
= =

     

     

2

8.7 25
( 127.3)

s
s s

−
+
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Embedding Internal Models

( ) ( ) ( ) ( ) ( )

If deg ( )  and deg ( ) 1,
the solution is unique.
If we increase the deg ( ) by one, 
the solution is not unique. There is one free parameter.
We can choose one parameter in  

A s D s B s N s F s

D s n A s n

A s

+ =

= = −

0 1

0

( ) ...
Here if we choose 0,  ( ) inlcudes the root at 0.

A s A A s
A A s s

= + +
= =
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Example 9.4

[ ]

2 2

4 3 2

0 0 1 1 2 2

( ) ( ) ( ) ( ) ( )
Deg ( ) 2,  we choose deg ( ) 2 instead of 1 1
If we choose ( ) ( 4 5)( 2 5)
                            6 18 30 25

1 0 1 0 0
2 1 0 0 0

0 1 0 1 0
     

0 2 1 0 0

A s D s B s N s F s
D s A s n

F s s s s s
s s s s

A B A B A B

+ =
= = − =

= + + + +

= + + + +

−
−

−
−

    

[ ]25 30 18 6 1

0 0 1 0 1
0 0 2 1 0

 
 
 
 
 
  = 
 
 
 −
 

−  

    
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[ ] [ ]

0
2

0 1 2
2

0 1 2

0 0 1 1 2 2

2

2

By letting 0,

       ( )

has 1/  as a factor, the remaining solution is unique.
            0 12.5 34.8 38.7 1 28.8

( ) 28.8 38.7 12.5       ( )
( ) 34.8

Thi

A

B B s B sC s
A A s A s

s
A B A B A B

B s s sC s
A s s s

=

+ +
=

+ +

= − − −

− − −
= =

+
s compensator can achieve robust tracking. 

This is a better design of Example 9.3.
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2

         ( ) 1/
For step tracking and rejection of disturbance ( ) sin(2 ).
Then  should include 4 and does not need include .
         ( ) ( ) ( ) ( ) ( )
deg ( ) 1 deg ( ) 1 0

         

g s s
w t a t

s s
A s D s B s N s F s

D s n A s n

A

θ
=

= +

+
+ =

= = → ≥ − =
2 2

0 0 1 2

2 2 3 2 3
0 1 2 3

0

0 1 2 3

0 1
0 0 1 2 0

0 1

0 1

( ) ( 4)       ( )

         ( ) ( )( 4) 0 4 0

         ( ) ( ) ( ) ( )

0 0
             

0 0
0 0

s A s B s B B s B s

D s D s s D D s D s D s s s s

A D s B s N s F s

D D D D
N N

A B B B F F
N N

N N

= + = + +

= + = + + + = + + ⋅ +

+ =

 
 
   =   
 
  



    

 

   

 [ ]1 2 3  F F

Example 9.4
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[ ]

2 3 2

0 0 1 2

2 2

2 2

If we select
       ( ) ( 2)( 2 2) 4 6 4
Then

0 4 0 1
1 0 0 0

          4 6 4 1
0 1 0 0
0 0 1 1

( ) 4 2 4 4 2 4       ( )
( ) 1 ( 4) 4

This achieves the tracking to step re

F s s s s s s s

A B B B

B s s s s sC s
A s s s

= + + + = + + +

 
 
   =   
 
 

+ + + +
= = =

× + +



ference and rejection of 
disturbance sin(2 ) asymptotically and robustly.a t θ+
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Implementable Transfer Functions

Design constraints:
1. All compensators used have proper rational transfer function.
2. The configuration selected has no plant leakage in the sense

that all forward paths from r to y pass through the plant.
3. The closed loop transfer function of every possible input-output

pair is proper (well posed) and BIBO stable(totally stable).
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Implementable Transfer Functions

( 2)(2 2)( ) ( )
3yr

s sg s not proper not well posed
s

− + +
= →

+
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Theorem 9.4

Consider a plant with proper transfer function ( ).
Then ( ) is implementable if and only if ( ) and 

( )( ) :
( )

are proper and BIBO stable.

o o

o

g s
g s g s
g st s
g s

=

Definition 9.1

Given a plant with proper transfer function ( ),
an overall transfer function ( ) is said to be implementable 
if there exists a no-plant-leakage configuration and 
proper compensators so that the (

o

o

g s
g s

g ) is well posed and totally stable.s
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Consider a plant with proper transfer function ( ) ( ) ( ).
Then ( ) ( ) ( )  is implementable if and only if 
1. All roots of ( ) have negative real parts ( ( ) is Hurwitz).
2. Deg ( ) deg ( ) deg

o

g s N s D s
g s E s F s

F s F s
F s E s

=
=

− ≥ ( ) deg ( )
    (pole-zero excess inequality).
3. All zeros of ( ) with zero or positive real parts are retained 
    in ( ) (retainment of nonminimum-phase zeros).

D s N s

N s
E s

−

Corollary 9.4
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We design so that  ( ) ( ) / ( ) is BIBO stable, 
then all roots of ( ) have negative real parts
In Theorem 9.4,

( ) ( ) ( )         ( )
( ) ( ) ( )

should be proper in order for 

o

o

o

g s E s F s
F s condition (1).

g s E s D st s
g s F s N s

g

=
→

= =

( ) to be implementable.
The condition for ( ) to be proper is
        deg ( ) deg ( ) deg ( ) deg ( )
In order for ( ) to be BIBO stable, all roots of ( ) with zero or
positive real par

s
t s

F s N s E s D s condition (2).
t s N s
+ ≥ + →

ts must be cancelled by the roots of ( ). Thus 
( ) must contain the minimum phase zero of ( )

E s
E s N s condition (3).→

Verification of Corollary 9.4
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9.4
If the configuration with no plant leakage, then we have
           ( ) ( ) ( ) ( ) ( )

( )           ( ) ( ) ( ) ( )
( )

( ) is the closed loop transfer function from 

o

o

The necessity of Theorem

y s g s r s g s u s
g su s r s t s r s
g s

t s r

= =

= =

 to . Then 
( ) should be proper and BIBO stable for the implementable 

condition (3).
9.4

will be established constructively in the following lecture.

u
t s

The sufficiency of Theorem

Proof of Theorem 9.4
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2

2 1
12( ) 2 1 11

2
( ) /( 2)( 1) :

yr

yn

s
s sg s not totally stables s

s s
g s s s s not BIBO stable

−
−= = →

− ++
−

= − +

Problem of Unity Feedback Configuration
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[ ]

2 2

2

2

22

2

2

We want to design by unity feedback
( 2) ( 2)   ( ) ( )   

1 2 2
( )( ) ( ) ( 1)   ( ) ( )

1 ( ) ( ) ( ) 1 ( ) ( 3)

( 1) ( 2)
( 1)( 3) 1   ( )

( 1) ( 2)1
( 3) 1

o

o
o

o

o

s sg s g s
s s s

g sC s g s sg s C s
C s g s g s g s s s

s s
ss s sg s

s s
s s s

− − −
= → =

− + +
− −

= → = =
+ − +

− − −
− −+ −= =

− − −
+

+ −

2 2

( 2)
( 1)( 2 2)

This implementation involves the pole-zero cancellation of 
unstable pole 1 and so is not totally stable and not acceptable.

s
s s s

s

−
− + +

−

Example 9.6
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1 2
1 2

1 2

1 2

( ) ( )    ( )      ( )
( ) ( )

Even if ( ) & ( ) are the same, 
it can achieve any model matching. Then 

( ) ( )    ( )      ( )
( ) ( )

L s M sC s C s
A s A s

A s A s

L s M sC s C s
A s A s

= =

= =

Model Matching-Two-Parameter Configuration
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1
2

( )
( ) ( ) ( )    ( ) ( ) ( ) ( )1 ( ) ( ) ( ) 1

( ) ( )
( ) ( )            

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )    ( ) ( . )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

o

o

N s
g s L s D sg s C s N s M sg s C s A s

D s A s
L s N s

A s D s M s N s
E s L s N s B s N sg s cf
F s A s D s M s N s A s D s B s N s

= =
+ +

=
+

= =
+ +

Model Matching-Two-Parameter Configuration

Problem
Given ( ) ( ) / ( ),  where ( ) & ( ) are coprime
and deg ( ) deg ( ) ,  and given an implementable

( ) ( ) / ( ),  find proper ( ) / ( ) & ( ) / ( ).o

g s N s D s N s D s
N s D s n

g s E s F s L s A s M s A s

=
< =

=
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1. Compute
( ) ( ) ( ) ( ) ( )            :
( ) ( ) ( ) ( ) ( ) ( ) ( )

    where ( )and ( ) are coprime. Cancel all common factors between 
    ( ) and ( ). Then

( ) ( )            ( )
(

c
o

r c

o

g s E s E s N s E s
N s F s N s F s N s N s F s
E s F s

E s N s
E s N sg s

F s

= = =

=

2

( ) ( )
) ( ) ( ) ( ) ( )

    From this equation, we may be tempted to set ( ) ( ) and 
    solve for ( ) and ( ) from ( ) ( ) ( ) ( ) ( ). 
    However, no proper ( ) ( ) ( ) may exist in the

L s N s
A s D s M s N s

L s E s
A s M s F s A s D s M s N s

C s M s A s

=
+

=

= +
=  equation. 

    Thus we need some additional manipulation.

Procedure 9.1

Model Matching-Two-Parameter Configuration
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ˆ2. Introduce an arbitrary Hurwitz polynomial ( )
ˆ    such that the degree of ( ) ( ) is 2 1 or higher to match

    the degree of denominators in both side of 
ˆ( ) ( ) ( )          ( ) ˆ( ) ( )o

F s

F s F s n

E s F s N sg s
F s F s

−

= =
( ) ( )    (9.31)

( ) ( ) ( ) ( )
    where deg ( ) deg ( ) 1,  whereas, deg ( ) ( ) 2 1.

ˆ    In other words, if deg ( ) , then deg ( ) 2 1 .
ˆ    Because the polynomial ( ) will be canceled i

L s N s
A s D s M s N s

A s D s A s D s n

F s p F s n p

F s

+

≥ − ≥ −

= ≥ − −

n the design, 
    its roots should be chosen to lie inside the sector in Fig.8.3(a).



Perception and Intelligence Laboratory
School of Electrical Engineering at SNU
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3. From
ˆ( ) ( ) ( ) ( ) ( )           ( ) ˆ ( ) ( ) ( ) ( )( ) ( )

    we set
ˆ           ( ) ( ) ( )

    and solve ( ) and ( ) from
ˆ           ( ) ( ) ( ) ( ) ( ) ( )

    If we write
        

o
E s F s N s L s N sg s

A s D s M s N sF s F s

L s E s F s
A s M s

A s D s M s N s F s F s

= =
+

=

+ =

2
0 1 2

2
0 1 2

2
0 1 2

   ( )

           ( )
ˆ           ( ) ( )

    with 1.

m
m

m
m

n m
n m

A s A A s A s A s

M s M B s M s M s

F s F s F F s F s F s
m n

+
+

= + + + +

= + + + +

= + + + +
≥ −






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[ ] [ ]0 0 1 1 0 1 2

0 1

0 1

0 1

0 1

0

0

Then ( ) and ( ) can be obtained by solving
               

... 0 ... 0

... 0 ... 0
0 ... ... 0

      : 0 ... ... 0
... ... ... ... ... ... ...
0 0 ... 0 ...
0 0 ... 0 .

m m m n m

n

n

n n

m n n

n

A s M s
A M A M A M F F F F

D D D
N N N

D D D
N N N

D D
D

+

−

−

=

=

S

S

 

( )
( )

..
( ) ( )  must be proper. In order for ( ) ( )  to be proper,

ˆ     deg ( ) deg ( ) deg ( ) ( ) deg ( )

ˆ     deg ( ) ( ) deg ( ) deg ( ) deg ( ) deg ( )

      relative degree of

nD
M s A s L s A s

L s A s F s F s D s

F s F s N s L s D s N s

 
 
 
 
 
 
 
 
 
  

≤ = −

− − ≥ −

 ( ) relative degree of ( ).og s g s≥
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2 2

2 2

2

2 ( 2)( ) ( )
1 2 2

( ) ( 2) 1 ( ):
( ) ( 2 2)( 2) 2 2 ( )

ˆˆ( ) ( ) ( ) ( 4), ( ) ( 4)
ˆ( ) ( ) ( ) ( ) ( ) ( ) ( 2 2)( 4)

                                           

o

o

s sg s g s
s s s

g s s E s
N s s s s s s F s

L s E s F s s F s s

A s D s M s N s F s F s s s s

− − −
= → =

− + +
− − −

= = =
+ + − + +

= = − + = +

+ = = + + +
3 2

2

            6 10 8
( ) 0 1, ( ) 2.

s s s
D s s s N s s

= + + +

= + − = −

Example 9.7
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[ ] [ ]0 0 1 1

1 2

1 0 1 0
2 1 0 0

   8 10 6 1
0 1 0 1
0 2 1 0

Solution is [18  13   1  12].
( ) ( 4) ( ) (12 13)( )         ( )
( ) 18 ( ) 18

A M A M

L s s M s sC s C s
A s s A s s

− 
 − 
  =
 − 
 − 
− −
− + − +

= = = =
+ +

   

Example 9.7 (cont)
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2

2 2 3 2

2 3 2

2 ( 2)(4 2) 4 6 4( ) ( )
1 ( 2 2)( 2) 4 6 4

(0) 1, (0) 0  step and ramp reference.
( ) ( 2)(4 2) (4 2) ( ):
( ) ( 2 2)( 2)( 2) 4 6 4 ( )

ˆ( ) ( ) ( )

o

o

s s s s sg s g s
s s s s s s s

g g tracking to
g s s s s E s
N s s s s s s s s F s

L s F s E s

− − − + − + +
= → = =

− + + + + + +
′= = →

− − + − +
= = =

+ + + − + + +

=

[ ] [ ]0 0 1 1

1 2

ˆ(4 2), ( ) 1
1 0 1 0
2 1 0 0

   4 6 4 1
0 1 0 1
0 2 1 0

(4 2) (22 23)( )         ( )
34 3 3 34

s where F s

A M A M

s sC s C s
s s

= − + =

− 
 − 
  =
 − 
 − 

− + − +
= =

+ +

   

Example 9.8
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Implementation of Two-Parameter Compensators

[ ]

[ ] [ ]

1 2

1

1
1 2

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( )
( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( )

This is a transfer function matrix with 2-inputs, 1-output which
can be realized by a 

L s M su s C s r s C s y s r s y s
A s A s

r s
A s L s M s

y s

s C s C s A s L s M s

m d

−

−

= − = −

 
= −  

 
= − = −

−

C

 state equation. imensional
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Example 9.9

[ ] [ ]

[ ]

1 2

The implemenation of compensator in 9.8 :
( )(4 2) 7.33 7.67( ) ( ) ( ) ( ) ( )
( )11.33 11.33

( )1      4 7.33 43.33 75.38
( )11.33

11.33 43.33 75.38

Example
r ss su s C s r s C s y s
y ss s

r s
y ss

r
x x

y

 − + + = − =   + +   
  = − + −   +   

= − + −

[ ]4 7.33
r

u x
y

 
 
 

 
= + −  

 
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Future Study

 Optimization Techniques   
 Convex optimization
 Newton methods, …
 Formulation of optimization problem

 Optimal Control  
 Find optimal gain for state feedback
 Recatti equation
 LQG/LTR techniques for Multivariable system

 Estimation Theory
 Find optimal gain for state estimator
 Kalman Recatti equation
 Kalman filter design

44Convex Optimization

 Random process
 Linear Systems
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Future Study

 Adaptive Control
 Automatic on-line design of compensators
 On-line parameter estimation of compensators

 Nonlinear Filtering
 Particle filter
 Extended Kalman filter

 Applications
 Control applications
 Communication/power/vision/robot systems
 Intelligent/Learning systems

45Convex Optimization
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Closing Remarks

Thanks for your sincere listening to my lecture

46Convex Optimization

Sorry for me not to give good presentations.

Love you 

T

S

L
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