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Energy level alignment at interface: Molecular orientation, reaction with metal, distortion of electronic
distribution, existence of electric dipoles, etc.
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Energy levels of Organic Materials
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Weiying Gao and Antoine Kahn (Princeton Univ.), NSF workshop, "Technological Challenges
for Flexible, Light-weight, Low-cost and Scalable Organic Electronics and Photonics," January
16-17, 2003

3/14

Ionization Potential (eV)

n - Donor 1/ eV
Qoof
q p e o

TN TIN

(Nj? ZnTPP H,TPP
1 .

O—t8:§—@ == 7-1~ DPNTCI
o

DPNTCI
NG o
x - Acceptor  + ToN@ |\ IO,
8T TONG
o - Insulator + m¢ WWWWWWWWWWWWWW
n- CHa(CHz)‘aCHa
9-—-

H. Ishii, K. Sugiyama, E. Ito, and K. Seki,
Adv. Mater. 11, 605 (1999).
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Neutral contact, Schottky contact EE 430856
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neutral contacts : (1) we assumed that the semiconductor is not doped and thus contains no
charge carriers of its own, and (2) we assumed that the contact interfaces consist only of the pure
materials, 1.e. that they are i1deally clean and the states at the surface are the same as those in the
bulk.

Schottky contacts: the depletion zones are formed near the contacts, for example, in doped
semiconductors, and for one of the two polarities of the applied voltage they are inhibiting
contacts (Schottky barriers) that prevent the flow of current.
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Fig. 8.22 The term diagram of an ideal intrinsic and Ve is so low that the density of injected :’_5 ' R
semiconductor with neutral contacts (see charge carriers cannot measurably influence S ;
Fig. 8.21) and an applied voltage Vex:. Here,  the field F. This case is also termed the “flat g*é‘_l\’!ﬂlﬂ} l Semiconductor
only the transport levels are shown. F is the band case”. When the applied voltage is higher, - = -
Fig. 8.23 The barrier for the injection of an electron from a

electric field strength; the remaining notation  so many charge carriers are injected that the
is as in Figs. 8.19-8.21. The transport levels in  space charge determines the field within the
semiconductors are flat and not curved only semicenductor and thereby dominates the
when the semiconductor is not p- or n-doped  charge transport (see Sect. 8.4.4).

metal into a semiconductor with an applied electric field F.

@, and &g = d, — AD are the barrier heights without and with
the image charges taken into account, x; is a measure of the
width of the barrier (see text).
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Contacts 2014, 14 Semester

b = -4, P =workfunctionof metal, 4 = electron affinity of the semiconductor

&, =P — A, [ =lonization potential of the ssmiconductor

Prior to Prior to
contact contact
Metal 1 Semiconductor . - Metal 2

Fig. 8.19 The term diagrams of an (organic) band at the energy E., VB the upper edge of
semiconductor SC and two metals My and M3, the valence band at the energy Ep, Eg the
which are not in contact. V is the vacuum band-gap energy, Ac the electron affinity, /¢ the
energy level, Er the Fermi energy, ® the work  ionisation energy, and d the thickness of the
function, CB the lower edge of the conduction = semiconductor sample (cf. also Fig. 8.6).
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Contact potential and built-in electric field EE 420859
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SChOttky barrier EE 430.859
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Schottky barrier Under reverse bias the measured capacitance
Fermi level is equalized throughout the M/S/M structure corresponds to the junction capacitance

by the diffusion of the carriers: Diffusion of holes from the

molecular material into the metals leaves the negative g _ (e £,6.N, o 1 )1/2

ionized acceptor dopants at the interface (band bending): A 9) V 4V

This diffusion will continue until the internal energy d
barrier (eVp,: diffusion potential) is large enough to stop it.
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S. Karg, W. Riess, V. Dyakonov, M. Schwoerer, Synth. Met., 54, 427 (1993).
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Measurement of an internal electric field EE 430,859
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Electroabsorption Measurement
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Measurement of an internal electric field
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Ian H. Campbell, John P. Ferraris, Thomas W. Hagler, Michael D. Joswick, Ian D. Parker, Darryl L. Smith
Polymers for Advanced Technologies, 8 (7), pp. 417 — 423
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Internal electric field and accumulated charges EE 430.859
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At the largest forward bias Voltage measured, AGURE & Electroabmrplic_m spectra of the three layer
electron density at the PQ/PVK interface: 2x10!? electrons/cm? LED under (a) 20 V forward bias and (b) —20 V reverse

bias at the fundamental frequency of the applied a.c. bias.
The relative changes in the amplitudes of the signal from
each layer are evident. The a.c. bias amplitude was 3 V.

hole density at the PBD/PQ interface: 3x10!! holes/cm?.
[.H. Campbell, M.D. Joswick, 1.D. Parker, Appl. Phys. Lett. 67 (1995) 3171.
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Fermi level alignment at the metal/semiconductor contact EE 430.859
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-2V, is also modified:
. H. Ishii, N. Hayashi, E. Ito, Y. Washizu, K. Sugi, Y. Metal Semiconductor eVbi: |(D mt A— d)s |

Kimura, M. Niwano, Y. Ouchi, and K. Seki, phys. stat.
sol. (a) 201, 1075 (2004)

After contact: vacuum level shift c)
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Metal/Organic interface EE 430859
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Schottky-Mott model Interface Dipole Model p
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I. H. Campbell, S. Rubin, T. A. Zawodzinski, J. D. Kress, R. L. Martin, D. L. Smith, N. N. Barashkov, and J. P. Ferraris, Phys. Rev. B 54, R14321 (1996).

12/14 Changhee Lee, SNU, Kor:




A2l EL

Origin of interface dipole cE 130855
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Charge Transfer

Cation Anion Mirror Surface Possible factors forming and affecting the
Formation Formation Force Rearrangement interfacial dipole layer.
al) and a2): Charge transfer across the

7

interface,
b) Concentration of electrons in the
adsorbate leading to positive charging of
the vacuum side,
c) Rearrangement of electron cloud at the
(a1) (a2) (b) (©) metal surface, with the reduction of tailing
into vacuum,
d) Strong chemical interaction between
_ the surface and the adsorbate leading to
ﬂt‘.eeggiac:n Interface Permanent  the rearrangement of the electronic cloud
State Dipole and also the molecular and surface
7 7 7 geometries (both directions of dipoles

possible),
¢) Existence of interface state serving as a

buffer of charge carriers,
d (f) f) Orientation of polar molecules or
() (e) functional groups.

H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mater. 11, 605 (1999).
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Effect of interface dipole on the hole injection barrier EE 430,850
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FIG. 1. I(V) curves for ITO/(PEDOT/PSS)Vorganic(150 nm)/Au(45 nm)
(tvpe 1) devices. and ITO/PEDOT/PSS)VAu(80 nm)/organic(150 nm)/
Au(45 nm) (type 2) devices: (a) @-NPD:; (b) pentacene.

N. Koch, A. Kahn, J. Ghijsen and J.-J. Pireaux, J. Schwartz, R. L. Johnson, A. Elschner, Appl. Phys. Lett. 82, 70 (2003)
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