
1

Chapter 3
working with combinational logic



2

Working with combinational logic
Simplification

two-level simplification
exploiting don’t cares
algorithm for simplification

Logic realization
two-level logic and canonical forms realized with NANDs and NORs
multi-level logic, converting between ANDs and ORs

Time behavior
Hardware description languages

The first important topic here is formalizing the process of boolean minimization. In the 
last chapter, we illustrated how logic functions (or its expressions) can be simplified by 
boolean cubes or K-maps. Here we will look at a systematic or algorithmic approach.



3

we'll need a 4-variable Karnaugh map 
for each of the 3 output functions

Design example: two-bit comparator

block diagram

LT
EQ
GT

A B < C D
A B = C D
A B > C D

A
B
C
D

N1

N2

A B C D LT EQ GT
0 0 0 0 0 1 0

0 1 1 0 0
1 0 1 0 0
1 1 1 0 0

0 1 0 0 0 0 1
0 1 0 1 0
1 0 1 0 0
1 1 1 0 0

1 0 0 0 0 0 1
0 1 0 0 1
1 0 0 1 0
1 1 1 0 0

1 1 0 0 0 0 1
0 1 0 0 1
1 0 0 0 1
1 1 0 1 0

and
truth table

Before going into the formal minimization process, let’s look at some examples.
The first example compares two numbers, each of which is two bits long, N1 is AB and 
N2 is CD, where A and C are most significant bits (MSBs) while B and D are least 
significant bits (LSBs).



4

A' B' D  +  A' C  +  B' C D

B C' D'  +  A C'  +  A B D'

LT =

EQ =

GT =

K-map for EQK-map for LT K-map for GT

Design example: two-bit comparator (cont’d)
0 0

1 0

0 0

0 0
D

A

1 1

1 1

0 1

0 0

B

C

1 0

0 1

0 0

0 0
D

A

0 0

0 0

1 0

0 1

B

C

0 1

0 0

1 1

1 1
D

A

0 0

0 0

0 0

1 0

B

C

= (A xnor C) • (B xnor D)

LT and GT are similar (flip A/C and B/D)

A' B' C' D'  +  A' B C' D  +  A B C D  +  A B' C D’

EQ = (AC +A’C’)BD + (AC+A’C’)B’D’=(AC+A’C’)(BD+B’D’)



5

two alternative
implementations of EQ
with and without XOR

XNOR is implemented with 
at least 3 simple gates

A B C D

EQ

EQ

Design example: two-bit comparator (cont’d)



6

4-variable K-map
for each of the 4
output functions

A2 A1 B2 B1 P8 P4 P2 P1
0 0 0 0 0 0 0 0

0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0

0 1 0 0 0 0 0 0
0 1 0 0 0 1
1 0 0 0 1 0
1 1 0 0 1 1

1 0 0 0 0 0 0 0
0 1 0 0 1 0
1 0 0 1 0 0
1 1 0 1 1 0

1 1 0 0 0 0 0 0
0 1 0 0 1 1
1 0 0 1 1 0
1 1 1 0 0 1

Design example: 2x2-bit multiplier

This is a 2bit-by-2bit multiplier that generates 4 bit output (whose MSB is P8 and LSB is 
P1). Note that A2 and B2 are MSBs.

block diagram
and

truth table

P1
P2
P4
P8

A1
A2
B1
B2



7

K-map for P8 K-map for P4

K-map for P2 K-map for P1

Design example: 2x2-bit multiplier (cont’d)
0 0

0 0

0 0

0 0
B1

A2

0 0

0 0

0 1

1 1

A1

B2

0 0

0 1

0 0

1 0
B1

A2

0 1

0 0

1 0

0 0

A1

B2

0 0

0 0

0 0

1 1
B1

A2

0 1

0 1

0 1

1 0

A1

B2

0 0

0 0

0 0

0 0
B1

A2

0 0

0 0

1 0

0 0

A1

B2 P8 = A2A1B2B1

P4 = A2B2B1'
+ A2A1'B2

P2 = A2'A1B2
+ A1B2B1'
+ A2B2'B1
+ A2A1'B1

P1 = A1B1



8

I8 I4 I2 I1 O8 O4 O2 O1
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X Xblock diagram

and
truth table

4-variable K-map for each of 
the 4 output functions

O1
O2
O4
O8

I1
I2
I4
I8

Design example: BCD increment by 1



9

O8 = I4 I2 I1 + I8 I1'

O4 = I4 I2' + I4 I1' + I4’ I2 I1

O2 = I8’ I2’ I1 + I2 I1'

O1 = I1'

O8 O4

O2 O1

Design example: BCD increment by 1 (cont’d)
0 0

0 0

X 1

X 0
I1

I8

0 1

0 0

X X

X X

I4

I2

0 0

1 1

X 0

X 0
I1

I8

0 0

1 1

X X

X X

I4

I2

0 1

0 1

X 0

X 0
I1

I8

1 0

0 1

X X

X X

I4

I2

1 1

0 0

X 1

X 0
I1

I8

0 0

1 1

X X

X X

I4

I2

In O8, we will interpret a don’t care (DC) term as 1 if it helps to minimize the number of 
literals for the elements of the ON-set. The other DC terms will be treated as 0. To 
minimize the number of literals, we have to find out the maximum size subcube.



10

Definition of terms for two-level simplification
Implicant

single element of ON-set or DC-set or any group of these elements that can 
be combined to form a subcube (or an adjacent group)

Prime implicant (PI)
implicant that can't be combined with another to form a larger subcube

Essential prime implicant
prime implicant is essential if it alone covers an element of ON-set
will participate in ALL possible covers of the ON-set
DC-set used to form prime implicants but not to make implicant essential

Objective:
grow implicant into prime implicants
(to minimize literals per term)
cover the ON-set with as few prime implicants as possible
(to minimize number of product terms)

So far we have examined a few examples of logic design simplification
From now on, we will try to perform simplification in a systematic or algorithmic way. 
To do so, we first have to define some terminologies.



11

0 X

1 1

1 0

1 0
D

A

1 0

0 0

1 1

1 1

B

C

5 prime implicants:
BD, ABC', ACD, A'BC, A'C'D

Examples to illustrate terms

0 0

1 1

1 0

1 0
D

A

0 1

0 1

1 1

0 0

B

C

6 prime implicants:
A'B'D, BC', AC, A'C'D, AB, B'CD

minimum cover: AC + BC' + A'B'D

essential

minimum cover: 4 essential implicants

essential

First of all, we have to find out all the possible prime implicants. Then we first transform 
the essential prime implicants to boolean expressions. Then we will try to find the 
minimum set of prime implicants to cover the entire on-set, called minimum cover.



12

Algorithm for two-level simplification
Algorithm: minimum sum-of-products expression from a Karnaugh map

Step 1: choose an element of the ON-set
Step 2: find "maximal" groupings of 1s and Xs adjacent to that element

consider top/bottom row, left/right column, and corner adjacencies
this forms prime implicants (number of elements always a power of 2)

Repeat Steps 1 and 2 to find all prime implicants

Step 3: revisit the 1s in the K-map
if covered by single prime implicant, it is essential, and participates in final cover
1s covered by essential prime implicant do not need to be revisited

Step 4: if there remain 1s not covered by essential prime implicants
select the smallest number of prime implicants that cover the remaining 1s



For all 1s, check the PIs that include the 1. The PIs should be considered for all the 1s 
and DCs around that can be united. Then we first choose essential PIs and then find out 
the minimum cover, the minimum number of PIs that cover the remaining 1s.

13

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

3 primes around AB'C'D'

Algorithm for two-level simplification (example)
X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

2 primes around A'BC'D'

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

2 primes around ABC'D

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

minimum cover (3 primes)

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

2 essential primes

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C



14

Activity

X 0

0 1

X 0

X 1
D

A

0 X

X 1

X 0

1 1

B

C

BC BD AB AC’DCD’

BDCD’ AC’D

BDCD’ AC’D

List all prime implicants for the following K-map:

Which are essential prime implicants?

What is the minimum cover?

X 0

0 1

X 0

X 1
D

A

0 X

X 1

X 0

1 1

B

C

Let’s start with prime implicants. Among PIs, check which are essential. Finally, we 
should find out the minimum cover, which is the minimum number of PIs that cover all 
the elements of the ON-set (including essential PIs)



15

Implementations of two-level logic
Sum-of-products

AND gates to form product terms (minterms)
OR gate to form sum

Product-of-sums
OR gates to form sum terms (maxterms)
AND gates to form product

In this section, we will focus on how to implement logic networks with NAND or NOR 
gates. Again there are two kinds of canonical forms: S-O-P and P-O-S. A small circle is 
an inverter.

A B C



16

Two-level logic using NAND gates
Replace minterm AND gates with NAND gates
Place compensating inversion at inputs of OR gate

NAND/NOR gates requires less CMOS TRs than AND/OR gates. So we want to change 
AND/OR gates into NAND gates only (or NOR gates only)

The simplest way is to insert double inverters between AND and OR gates. Then what 
happens is that AND becomes NAND just by placing bubbles. How about the OR gate?

A B CA B C



17

Two-level logic using NAND gates (cont’d)
OR gate with inverted inputs is a NAND gate

de Morgan’s: A’ + B’ = (A • B)’
Two-level NAND-NAND network

inverted inputs are not counted
in a typical circuit, inversion is done once and signal distributed

Recall de Morgan’s Law. When inverters are passing through a gate, the gate should be 
changed from OR to AND and vice versa.



18

Two-level logic using NOR gates
Replace maxterm OR gates with NOR gates
Place compensating inversion at inputs of AND gate

In the case of P-O-S forms, the same technique is used; however, this time, the NOR gate 
is the results of conversion. 
Again, we insert two bubbles between OR and AND gates and push those bubbles in the 
opposite directions.



19

Two-level logic using NOR gates (cont’d)
AND gate with inverted inputs is a NOR gate

de Morgan’s: A’ • B’ = (A + B)’
Two-level NOR-NOR network

inverted inputs are not counted
in a typical circuit, inversion is done once and signal distributed

Using de Morgan’s theorem again, the AND gate with inverted inputs is transformed into 
the NOR gate as shown in the above.



20

Two-level logic using NAND and NOR gates
NAND-NAND and NOR-NOR networks

de Morgan’s law: (A + B)’ =   A’ • B’ (A • B)’ =   A’ + B’
written differently: A + B =  (A’ • B’)’ (A • B)   =  (A’ + B’)’

In other words ––
OR is the same as NAND with complemented inputs
AND is the same as NOR with complemented inputs
NAND is the same as OR with complemented inputs
NOR is the same as AND with complemented inputs

This slide summarizes what I explained about conversion from AND-OR combination to 
either NAND or NOR gates. All the conversions are just variations of de morgan’s
theorem.



21

A

B

C

D

Z

A

B

C

D

Z

NAND

NAND

NAND

Conversion between forms
Convert from networks of ANDs and ORs to networks of 
NANDs and NORs

introduce appropriate inversions ("bubbles")
Each introduced "bubble" must be matched by a 
corresponding "bubble"

conservation of inversions
do not alter logic function

Example: AND/OR to NAND/NAND

Again, inverters inserted between gates are called bubbles. In order to make no changes 
in the logic function, the bubbles are always paired.



22

Z = [ (A  • B)’ • (C   • D)’ ]’

= [ (A’ + B’)  • (C’ + D’)  ]’

= [ (A’ + B’)’ + (C’ + D’)’ ]

=   (A  • B)   + (C  • D)  

Conversion between forms (cont’d)
Example: verify equivalence of two forms

A

B

C

D

Z

A

B

C

D

Z

NAND

NAND

NAND

Let’s verify the conversion rule by boolean expressions and boolean theorems



23

conserve
"bubbles"

Step 1
conserve
"bubbles"

Step 2

NOR

NOR

NOR

\A

\B

\C

\D

Z

NOR

NORA

B

C

D

Z

Conversion between forms (cont’d)
Example: map AND/OR network to NOR/NOR network

A

B

C

D

Z

When an input variable, say A, is complemented, it is denoted by \A 
When a S-o-P canonical form is converted to NOR networks, we have to insert two 
bubbles at the input stage. And the same thing happens at the output stage.



24

Z = {  [ (A’ + B’)’ + (C’ + D’)’ ]’ }’

= {     (A’ + B’)  • (C’ + D’)      }’

=       (A’ + B’)’ + (C’ + D’)’

=       (A  • B)  +  (C  • D)   

Conversion between forms (cont’d)
Example: verify equivalence of two forms

A

B

C

D

Z

NOR

NOR

NOR

\ A

\ B

\ C

\ D

Z

This is the boolean logic proof of the conversion in the previous slide.



25

A
B
C

D
E

F
G

X

Multi-level logic
x = A D F  +  A E F  +  B D F  +  B E F  +  C D F  +  C E F  +  G

reduced sum-of-products form – already simplified
6 x 3-input AND gates + 1 x 7-input OR gate (that may not even 
exist!)
25 wires (19 literals plus 6 internal wires)

x = (A + B + C) (D + E) F  +  G
factored form – not written as two-level S-o-P
1 x 3-input OR gate, 2 x 2-input OR gates, 1 x 3-input AND gate
10 wires (7 literals plus 3 internal wires)

If there are common parts in a canonical form, it may be better to use multi-level logic to 
reduce the number of literals and gates at the cost of delay. Again tradeoff between delay 
and gate count



26

Level 1 Level 2 Level 3 Level 4

original
AND-OR 
network

A

C
D

B

B
\C

F

introduction and
conservation of 

bubbles A

C
D

B

B
\C

F

redrawn in terms
of conventional

NAND gates A

C
D

\B

B
\C

F

Conversion of multi-level logic to NAND gates
F = A (B + C D) + B C’

Normally when we add two bubbles in a wire, two levels are converted to NAND gates. 
Here we add two bubbles between AND and OR gates.



27

Conversion between forms
Example

A

X
B
C
D

F

original circuit

A

X
B
C
D

F

add double bubbles to 
invert all inputs of OR gate

\ D

A

B
C

F

\ D

A

X

B
C

F
\ X

insert inverters to eliminate 
double bubbles on a wire

add double bubbles to 
invert output of AND gate

X

This slide illustrates how we can convert a combination of AND and OR gates into 
NAND and NOT gates. As mentioned before, NOT gates can be replaced by NAND 
gates by splitting the input.



28

Level 1 Level 2 Level 3 Level 4

A

C
D

B

B
\C

Foriginal
AND-OR 
network

introduction and
conservation of 

bubbles A

C

D
B

B

\C

F

Conversion of multi-level logic to NORs
F = A (B + C D) + B C’

Here we add bubbles in different position to use NOR gates. Note that the final inverter 
is implemented by NOR!

redrawn in terms
of conventional

NOR gates
\ A

\ C
\ D

B

\ B
C

F.



29

&

&
+2x2 AOI gate

symbol

&

&
+3x2 AOI gate

symbol

NAND NAND Invert

possible implementation

A
B

C
D

Z

AND OR Invert

logical concept

A
B

C
D

Z

AND-OR-Invert (AOI) gates
AOI function:  three stages of logic — AND, OR, Invert

multiple gates "packaged" as a single circuit block

Here is a special case of AND-OR-Inverter gates, which is a popular combination in a 
logic package. The reason it becomes a popular combination is that it can be 
implemented compactly with CMOS TRs.



30

AOI example
Why AOI is more compact than NAND or NOR?

out = [ab+c]’:

circuit

and

or

invert

symbol
3v

X Y

0v
Z1

0v

3v

X Y

Z2

NOR

NAND



31

&

&
+

A’

B’
A

B

F

Conversion to AOI forms
General procedure to place in AOI form

compute the complement of the function in sum-of-products form
by grouping the 0s in the Karnaugh map

Example:  XOR implementation
A xor B = A’ B  +  A B’
AOI form:

F = (A’ B’ +  A B)’

Let’s take an example to use AOI to implement a logic function. Suppose we have to 
implement a XOR function. 
F = AB’+A’B. first of all, we consider F’ (note that there is an inverter at the end of 
AOI). 
F’ = AB+A’B’. So we implement F’ in the SOP form.



32

Summary for multi-level logic
Advantages

circuits may be smaller
gates have smaller fan-in

Disadvantages
circuits will be slower
more difficult to design
tools for optimization are not as good as for two-level
analysis is more complex

Multi-level logic design can reduce the number of gates or at least the number of fan-ins 
of gates. However, optimization is more complex.



33

Time behavior of combinational networks
Waveforms

visualization of values carried on signal wires over time
useful in explaining sequences of events (changes in value)

Simulation tools are used to create these waveforms
input to the simulator includes gates and their connections
input stimulus, that is, input signal waveforms

Some terms
gate delay — time for change at input to cause change at output

min delay – typical/nominal delay – max delay
careful designers design for the worst case

rise time — time for output to transition from low to high voltage
fall time — time for output to transition from high to low voltage
pulse width — time that an output stays high or stays low between changes

The next topic of this chapter is the behavior of combinational logic as time goes by.

The waveform of a system can be simulated by a tool considering gates and their 
connections. The output of the system is triggered by the input stimulus. 



34

F is not always 0
pulse 3 gate-delays wide

D remains high for
three gate delays after

A changes from low to high

F
A B C D

Momentary changes in outputs
Can be useful — pulse shaping circuits
Can be a problem — incorrect circuit operation 
(glitches/hazards)
Example: pulse shaping circuit

A’ • A = 0
delays matter

Let’s see how a waveform changes over time in this case. Here, each gate is assumed to 
incur 10 time unit delay. This time-varying behavior is utilized to make a periodic pulse.



35

initially 
undefined

close switch

open switch

+

open 
switch

resistor
A B

C
D

Oscillatory behavior
Another pulse shaping circuit

Assume that each gate delay is 10 time units. Here, the output of NAND is feedback to 
its input with a couple of inverters. Let’s look at the waveform of B. what does it look 
like?



36

Hardware description languages (HDLs)
Describe hardware at varying levels of abstraction
Structural description

textual replacement for schematic
hierarchical composition of modules from primitives

Data-flow style description
textual replacement of truth table

Behavioral/functional description
describe what module does, not how
synthesis generates circuit for module

Simulation semantics

This is the last topic of chapter 3.

So far, we rely on boolean expressions and schematic drawings to describe logic functions. However, as a logic function gets 
complicated, it will become extremely hard to write and understand the logic system. Hierarchy can help to mitigate this 
problem; but it is not enough. HDLs are proposed to deal with this problem.

Using HDLs, we can describe any complicated logic system. Moreover, the languages can be executed, they run like s/w. A 
program emulates the behavior of the designed system as faithfully as possible. It radically reduces the time to design a system



37

HDLs
Abel (circa 1983) - developed by Data-I/O

targeted to programmable logic devices
not good for much more than state machines

ISP (circa 1977) - research project at CMU
simulation, but no synthesis

Verilog (circa 1985) - developed by Gateway (absorbed by Cadence)
similar to Pascal and C
delay is only interaction with simulator
fairly efficient and easy to write
IEEE standard

VHDL (circa 1987) - DoD sponsored standard
similar to Ada (emphasis on re-use and maintainability)
simulation semantics visible
very general but verbose
IEEE standard

Verilog and VHDL are the most popular HDLs.

V: very high speed IC

This course does not aim to cover HDLs in-depth.



VHDL power

Alternative to schematics (interconnection of components)
Much more powerful than schematics

Boolean eqs.
Truth table
Complex operations (addition, …)

Represent entire system – designed as a hierarchy
Many tools available



VHDL design example

Design half of a 74x139 (Dual 2-to-4 decoder)
Three different types of programming (description)

Structural description
Data-flow style description
Behavioral description



74x139

G

A_L

B_L

A_i

B_i

U1

U2

U3

U4

U5

U6

U7

U8

U9







Behavioral Description

To this point, structural and data-flow description alternatives 
of schematic and truth table
Behavioral description: richest set of language element 
algorithmic description of hardware
Main element: process

process (signal_name1, signal_name2, …)

begin

----

----

end process

Sensitivity list

Sequential statements

- loops

- case statements

- if-then-else





VHDL design flow



½ 74x139 timing diagram



½ 74x139 fitting result



Magnification of a MC (Macrocell)



Hierarchical Design (2 × ½ 74x139)



50

HDLs vs. programming languages (PLs)
Program structure

instantiation of multiple components of the same type
specify interconnections between modules via schematic
hierarchy of modules 

Assignment
continuous assignment (logic always computes)
propagation delay (computation takes time)
timing of signals is important (when does computation have its effect)

Data structures
size explicitly spelled out - no dynamic structures 
no pointers

Parallelism
hardware is naturally parallel (must support multiple threads)
assignments can occur in parallel (not just sequentially)

Even though a hierarchical structure is common on HDLs and PLs, there are some 
fundamental differences between HDLs and PLs.
For example, continuous assignment and propagation delay are not typically supported in 
PLs.



51

HDLs and combinational logic
Modules - specification of inputs, outputs, bidirectional, and 
internal signals
Continuous assignment - a gate’s output is a function of its 
inputs at all times (doesn’t need to wait to be "called")
Propagation delay- concept of time and delay in input affecting 
gate output
Composition - connecting modules together with wires
Hierarchy - modules encapsulate functional blocks

HDLs can describe every aspect of combinational logic systems.



52

Working with combinational logic summary
Design problems

filling in truth tables
incompletely specified functions
simplifying two-level logic

Realizing two-level logic
NAND and NOR networks
networks of Boolean functions and their time behavior

Time behavior
Hardware description languages
Later

combinational logic technologies
more design case studies


