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Chapter 4.
combinational logic technologies
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Combinational Logic Technologies
Standard gates (random logic)

gate packages
cell libraries

Regular logic
multiplexers
decoders 

Two-level programmable logic
PALs
PLAs
ROMs

The simplest way to implement logic circuits would be using standard gates. However, 
as more complicated and diverse logic systems are getting required, a wealth of 
implementation techniques are proposed. There are three major categories in logic 
implementation technologies.
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Random logic
Transistors quickly integrated into logic gates (1960s)
Catalog of common gates (1970s)

Texas Instruments Logic Data Book – the yellow bible
all common packages listed and characterized (delays, power)
typical packages: 

in 14-pin IC: 6-inverters, 4 NAND gates, 4 XOR gates

Today, very few parts are still in use
However, parts libraries exist for chip design

designers reuse already characterized logic gates on chips

Again it is easy and simple to use standard gates such as NAND and AND, called 
random logic. Since a single gate is not good to sell and buy, a few or several gates are 
packed into a package. Right now, it is not widely used for economical reasons since 
there are a lot of IC packages in the catalog.
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Regular logic
Need to make design faster
Need to make engineering changes easier to make
MUX and DEMUX

Unlike random logic, regular logic refers to a flexible component that performs a specific 
high-level function compared to primitive logic gates. Design becomes easier with these 
regular logic components since each component performs a specific function. Sometimes 
we can flexibly exploit the regular logic components for other purposes than its original 
one. 
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multiplexer demultiplexer 4x4 switch

control control

Making connections
Direct point-to-point connections between gates

wires we've seen so far
Route one of many inputs to a single output - multiplexer (MUX)
Route a single input to one of many outputs - demultiplexer (DEMUX)

Two popular regular logic components are MUX and DEMUX. A MUX selects one of 
its data inputs to the output by the control inputs; a MUX is also called a selector. The 
diagram on the left shows a 4-input MUX. Can you guess the relation between the 
number of data inputs and the number of control lines? A DEMUX performs the reverse 
function, often called a decoder. We can clearly see that these components perform 
higher-level functions compared to logic gates
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Mux and demux
Switch implementation of multiplexers and demultiplexers

can be composed to make arbitrary size switching networks
used to implement multiple-source/multiple-destination 
interconnections

A

B

Y

Z

A

B

Y

Z

When we combine MUXs and DEMUXs, a switching network can be implemented. 
Note that control lines are skipped here.
In this slide, there are 2X2 switching networks. By using control variables (which are 
skipped), A and B can be routed to either Y or Z.
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multiple input sources

multiple output destinations

MUX

A B

Sum

Ss

Sb

B0

MUX

DEMUX

Mux and demux (cont'd)
Uses of multiplexers/demultiplexers in multi-point connections

B1A0 A1

S0 S1

Let’s see how MUX and DEMUX can be used for a logic system design. Here is a 1-bit 
adder, a V-shape polygon. There are two sources for each input and two destinations for 
the resulting sum. So there are total three control variables.

Sa
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two alternative forms
for a 2:1 Mux truth table

logical form

A Z
0 I0
1 I1

I1 I0 A Z
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Z = A' I0 + A I1

Multiplexers (MUXs)/selectors
Multiplexers/selectors: general concept

2n data inputs, n control inputs (called "selects"), 1 output
used to connect 2n points to a single point
control signal pattern forms binary index of input connected to 
output

functional form

Let’s look at how a MUX function can be described as a boolean expression or a truth 
table. We will start with the simplest one, 2:1 MUX. There are two inputs I0 and I1 and 
the control input is A. Then Z will select I0 or I1 depending on A’s value. If we tabulate 
all the cases of I0 and I1, the final truth table is the one on the right.
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2   -1
I0
I1
I2
I3
I4
I5
I6
I7

A  B  C

8:1
mux

Z

I0
I1
I2
I3

A  B

4:1
mux

ZI0
I1

A

2:1
mux Z

k=0

n

Multiplexers/selectors (cont'd)
2:1 mux: Z = A'I0 + AI1
4:1 mux: Z = A'B'I0 + A'BI1 + AB'I2 + ABI3
8:1 mux: Z = A'B'C'I0 + A'B'CI1 + A'BC'I2 + A'BCI3 +

AB'C'I4 + AB'CI5 + ABC'I6 + ABCI7

In general: Z = Σ (mkIk)

in minterm shorthand form for a 2n:1 Mux

How can we express the output in a general form, regardless of the # of inputs? First of 
all, n is the # of control wires. So there are total 2**n inputs. Here m_k is the k-th
minterm from the control variables.
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Gate level implementation of muxes
2:1 mux

4:1 mux

At the top left, an AND-OR realization of a 2:1 MUX is shown. What are the 2 data 
inputs and what is the control input?
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control signals B and C simultaneously choose 
one of I0, I1, I2, I3 and one of I4, I5, I6, I7

control signal A chooses which of the
upper or lower mux's output to gate to Z

alternative
implementation

C

Z

A  B

4:1
mux

2:1
mux

2:1
mux

2:1
mux

2:1
mux

I4
I5

I2
I3

I0
I1

I6
I7

8:1
mux

Cascading multiplexers
Large multiplexers can be made by cascading smaller ones

Z

I0
I1
I2
I3

A

I4
I5
I6
I7

B  C

4:1
mux

4:1
mux

2:1
mux

8:1
mux

You can build a large scale MUX in two ways. One option is just to use a single 
conventional MUX for 2**n inputs and n control lines. Or you can combine small scale 
MUXs. This slide shows two cases of building an 8:1 MUX from small scale MUXs.
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Multiplexers as general-purpose logic
A 2n:1 multiplexer can implement any function of n variables

with the variables used as control inputs and
the data inputs tied to 0 or 1
in essence, a lookup table

Example:
F(A,B,C) = m0 + m2 + m6 + m7

= A'B'C' + A'BC' + ABC' + ABC
=   A'B'C'(1) + A'B'C(0) 

+ A'BC'(1) + A'BC(0) 
+ AB'C'(0) + AB'C(0) 
+ ABC'(1) + ABC(1)

F = A'B'C'I0 + A'B'CI1 + A'BC'I2 + A'BCI3 + AB'C'I4 + AB'CI5 + ABC'I6 + ABCI7
CA B

0
1
2
3
4
5
6
7S2

8:1 MUX

S1 S0

Z

1
0
1
0
0
0
1
1

F

This slide is very important. Actually a MUX can do more than just selection. Suppose 
each input wire (one of 2**n inputs) is fixed to either 0 or 1. Depending on the control 
inputs (here A,B,C), the corresponding bit will be popped up to F. This is kind of a 
lookup table.
Now look at the system with a different viewpoint. Forget this is a MUX. Suppose A,B,C 
are the input variables of a logic function F. When will F be true? 



The reality is that a MUX can implement any function of n variables. Here is another 
example of implementing the same logic function in a simplified way. In this variation, 
one of the control variable is used as a data input of a 4:1 MUX. Now we have two 
control variables A and B. Meanwhile C becomes some of the data inputs. Overall, we 
have 4 cases instead 8 cases by considering F as a function of C 13

A B C F
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

C'

C'

0

1 A B

S1 S0

F
0
1
2
3

4:1 MUX

C'
C'
0
1

F

CA B

0
1
2
3
4
5
6
7

1
0
1
0
0
0
1
1

S2

8:1 MUX

S1 S0

Multiplexers as general-purpose logic (cont’d)
A 2n-1:1 multiplexer can implement any function of n variables

with n-1 variables used as control inputs and
the data inputs tied to the last variable or its complement

Example:
F(A,B,C) = m0 + m2 + m6 + m7

= A'B'C' + A'BC' + ABC' + ABC
= A'B' (C') + A'B (C') + AB' (0) + AB (1)
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Generalization

Example: 
G(A,B,C,D)
can be realized
by an 8:1 MUX

n-1 mux control 
variables

single mux data 
variable

four possible
configurations
of truth table
rows can be
expressed as
a function of In-1

I0 I1 . . . In-2 In-1 F

. . . . 0 0 0 1 1

. . . . 1 0 1 0 1

0 In-1 In-1' 1

Multiplexers as general-purpose logic (cont’d)

choose A,B,C as 
control variables

CA B

0
1
2
3
4
5
6
7

1
D
0
1
D’
D
D’
D’

S2

8:1 MUX

S1 S0

A B C D G
0 0 0 0 1
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 0
1 1 1 0 1
1 1 1 1 0

1

D

0

1

D'

D

D’

D’

Here is the generalized n-input logic function by a (n-1)-input MUX.
Depending on the output of two cases of the singled-out variable, a different data input is 
attached to each minterm of the (n-1) input MUX. Reducing the MUX size is economical.
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1:2 Decoder:
O0 = G • S’
O1 = G • S 

2:4 Decoder:    
O0 = G • S1’ • S0’
O1 = G • S1’ • S0
O2 = G • S1  • S0’
O3 = G • S1  • S0

3:8 Decoder:          
O0 = G • S2’ • S1’ • S0’
O1 = G • S2’ • S1’ • S0
O2 = G • S2’ • S1  • S0’
O3 = G • S2’ • S1  • S0
O4 = G • S2  • S1’ • S0’
O5 = G • S2  • S1’ • S0
O6 = G • S2  • S1  • S0’
O7 = G • S2  • S1  • S0

Demultiplexers (DEMUXs)/decoders
Decoders/demultiplexers: general concept

single data input, n control inputs, 2n outputs
control inputs (called “selects” (S)) represent binary index of output 
to which the input is connected
data input usually called “enable” (G)

There is only one data input in DEMUXs, often denoted by G, which will be carried to 
one of the outputs. The control inputs are often denoted by S and the index of the control 
wires. Again, for n control inputs, we have 2**n outputs.
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active-high 
enable

active-low 
enable

active-high 
enable

active-low 
enable

O0G

S

O1

O0\G

S

O1

S1

O2

O3

O0G

O1

S0 S1

O2

O3

O0\G

O1

S0

Gate level implementation of demultiplexers
1:2 decoders

2:4 decoders

This slide shows a few DEMUXs implemented by logic gates. We can add two bubbles 
for each input. The reason for inserting two bubbles is to implement the DEMUX by 
NOR gates
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demultiplexer generates appropriate
minterm based on control signals

(it "decodes" control signals)

Demultiplexers as general-purpose logic
A n:2n decoder can implement any function of n variables

with the variables used as control inputs
the enable input is tied to 1 and
the appropriate minterms summed to form the function

A'B'C'
A'B'C
A'BC'
A'BC
AB'C'
AB'C
ABC'
ABC

CA B

0
1
2
3
4
5
6
7

S2

3:8 DEC

S1 S0

“1”

Like a MUX, a DEMUX can also perform a logic function of n variables. Here n 
variables are used for the control wires of the DEMUX. Depending on the values of 
control wires, a specific minterm will be asserted. Then what we need to do is ORing the 
relevant minterms for each output function F.
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F1

F2

F3

Demultiplexers as general-purpose logic (cont’d)
F1 = A'BC'D + A'B'CD + ABCD
F2 = ABC'D' + ABC
F3 = (A' + B' + C' + D')

A B

0 A'B'C'D'
1 A'B'C'D
2 A'B'CD'
3 A'B'CD
4 A'BC'D'
5 A'BC'D
6 A'BCD'
7 A'BCD
8 AB'C'D'
9 AB'C'D
10 AB'CD'
11 AB'CD
12 ABC'D'
13 ABC'D
14 ABCD'
15 ABCD

4:16
DECEnable

C D

By using a single 4:16 DEMUX, we can implement three functions of 4 variables, with a 
few more gates.

DEMUX is a 
minterm

generator!
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0 A'B'C'D'E'
1
2
3
4
5
6
7

S2

3:8 DEC

S1 S0

A B

0
1
2
3S1

2:4 DEC

S0

F

0
1
2 A'BC'DE'
3
4
5
6
7

S2

3:8 DEC

S1 S0

EC D

0 AB'C'D'E'
1
2
3
4
5
6
7 AB'CDE

Cascading decoders
5:32 decoder

1 x 2:4 decoder
4 x 3:8 decoders

3:8 DEC

0
1
2
3
4
5
6
7 ABCDE

EC D

S2 S1 S0 S2

3:8 DEC

S1 S0

By combining small scale decoders or demuxes, we can build a larger-scale demux.

Here, we have 5 control lines (A,B,C,D,E) to route the enable line, F, to one of 32 output 
lines
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• • •

inputs

AND
array

• • •

outputs

OR
arrayproduct

terms

Programmable logic arrays (PLAs)
Pre-fabricated building block of many AND/OR gates

actually NOR or NAND
"personalized" by making/breaking connections among the gates
programmable array block diagram for sum of products form

A PLA is a general implementation of sum of products of a logic function. We first 
implement each product term (not necessarily minterm). Then the product terms will be 
Ored in the next stage. So we have two generic logic arrays. Programming means 
configuring connections in two arrays.

Sum of

products
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example:
F0 = A  + B' C'
F1 = A C'  +  A B
F2 = B' C'  +  A B
F3 = B' C  +  A

personality matrix 1 = uncomplemented in term
0 = complemented in term
– = does not participate

1 = term connected to output
0 = no connection to output

input side:

output side:

product inputs outputs
term A B C F0 F1 F2 F3

AB 1 1 – 0 1 1 0
B'C – 0 1 0 0 0 1
AC' 1 – 0 0 1 0 0
B'C' – 0 0 1 0 1 0
A 1 – – 1 0 0 1

reuse of terms

Enabling concept
Shared product terms among outputs

Let’s take some logic functions for example to illustrate how we can use an PLA for 
logic implementation. There are 4 functions of three input variables. To use an PLA 
systematically, it is good to write a personality matrix. The middle section indicates how 
input variables are combined in the AND array and the right section shows how those 
product terms are combined in the OR array.



Before programming
All possible connections are available before "programming"

in reality, all AND and OR gates are NANDs

We have to look at two cross-connects: one is between inputs and AND gates and the 
other is between AND gates and OR gates. We can make or break connections in those 
two cross-connects.

AB

A B C

22



23

A B C

F1 F2 F3F0

AB

B'C

AC'

B'C'

A

After programming
Unwanted connections are "blown"

fuse (normally connected, break unwanted ones)
anti-fuse (normally disconnected, make wanted connections)

Then we have to do programming, which is the process of enabling or disabling each 
cross-point. If fuses are used for each cross point, we break unwanted ones. If anti-fuses 
are used, we enable the wanted ones. 



Short-hand notation so we don't have to draw all the wires
x signifies a connection is present and perpendicular signal is an 
input to gate
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notation for implementing
F0 = A B  +  A' B'
F1 = C D'  +  C' D

AB+A'B'
CD'+C'D

AB

A'B'

CD'

C'D

A B C D

Alternate representation for high fan-in structures

For simplicity, let’s assume fuses for each crosspoint, denoted by x. Before programming, 
the PLA will look like the one on the left. After programming for the required functions, 
the PLA will become the one on the right. All the unwanted crosspoints are broken.
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A B C F1 F2 F3 F4 F5 F6
0 0 0 0 0 1 1 0 0
0 0 1 0 1 0 1 1 1
0 1 0 0 1 0 1 1 1
0 1 1 0 1 0 1 0 0
1 0 0 0 1 0 1 1 1
1 0 1 0 1 0 1 0 0
1 1 0 0 1 0 1 0 0
1 1 1 1 1 0 0 1 1

A'B'C'

A'B'C

A'BC'

A'BC

AB'C'

AB'C

ABC'

ABC

A B C

F1 F2 F3 F4 F5
F6

full decoder as for memory address

bits stored in memory

PLA example
Multiple functions of A, B, C

F1 = A B C
F2 = A + B + C
F3 = A' B' C'
F4 = A' + B' + C'
F5 = A xor B xor C
F6 = A xnor B xnor C

Here are the six functions of three variables.
As there are three variables, total 8 minterms exist. Then all the relevant minterms of 
each function will be connected to its OR gate.
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a given column of the OR array 
has access to only a subset of 

the possible product terms

PALs and PLAs
Programmable logic array (PLA)

unconstrained fully-general AND and OR arrays
Programmable array logic (PAL)

constrained topology of the OR array
faster and smaller OR plane

A little bit less programmable but faster version is PAL. In PALs, the cross-connects 
between AND gates and OR gates are already fixed; the transistor logic is much simpler. 
What we can control is the cross-connects between inputs and AND gates, denoted by x. 
So, there is less flexibility in PALs compared to PLAs.
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minimized functions:

W = A + BD + BC
X = BC'
Y = B + C
Z = A'B'C'D + BCD + AD' + B'CD'

A B C D W X Y Z
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0
0 1 0 0 0 1 1 0
0 1 0 1 1 1 1 0
0 1 1 0 1 0 1 0
0 1 1 1 1 0 1 1
1 0 0 0 1 0 0 1
1 0 0 1 1 0 0 0
1 0 1 – – – – –
1 1 – – – – – –

PALs and PLAs: design example
BCD to Gray code converter

Suppose we have to design a BCD to GRAY code converter. And simplified functions 
are shown in the above. Unfortunately, there are no common product terms among 
outputs.
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not a particularly good
candidate for PAL/PLA

implementation since no terms 
are shared among outputs

however, much more compact 
and regular implementation 

when compared with discrete 
AND and OR gates

A B C D minimized functions:

W = A + BD + BC
X = B C'
Y = B + C
Z = A'B'C'D + BCD + AD' + B'CD'

PALs and PLAs: design example (cont’d)
Code converter: programmed PLA

A

BD

BC

BC'

B

C

A'B'C'D

BCD

AD'

BCD'

W X Y Z

Here, 4 functions are implemented by a single PLA. Total 10 product terms are needed to 
be represented. In this case, there is no common product term that can be shared by 
multiple outputs, which means PLA is not an attractive option.
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4 product terms 
per each OR gate

A

BD

BC

0

BC'

0

0

0

B

C

0

0

A'B'C'D

BCD

AD'

B'CD'

W X Y Z

A B C DPALs and PLAs: (cont’d)
Code converter: programmed PAL

Let’s consider a PAL where exactly 4 AND gates
are ORed for each function. Note that the maximum 
# of product terms of outputs is 4

As there are 4 functions, total 16 AND gates are required. For some functions, they don’t 
need up to 4 product terms. Then, a FALSE term is connected to surplus AND gates. To 
make a false term, just leave all the fuses intact.

Could be 
a limiting 

factor
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W

X

Y

Z

B

B

B

B

B

B

\B
C

C

C

C

C
A

AA

D

D

D

\D

\D

PALs and PLAs: design example (cont’d)
Code converter: NAND gate implementation of PAL and PLA

As we have seen before, an AND-OR combination is easily converted to NAND logic. 
Just add two bubbles (inverters) in the middle and push them to the opposite directions. 
So PALs and PLAs are actually implemented by NAND gates.
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Activity

Map the following functions to the PLA below:
W = AB + A’C’ + BC’
X = ABC + AB’ + A’B
Y = ABC’ + BC + B’C’

A B C

W X Y
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Activity (cont’d)

9 terms won’t fit in a 7 term PLA
can apply concensus theorem
to W to simplify to:
W = AB + A’C’

8 terms wont’ fit in a 7 term PLA
observe that AB = ABC + ABC’
can rewrite W to reuse terms:
W = ABC + ABC’ + A’C’

Now it fits
W = ABC + ABC’ + A’C’
X = ABC + AB’ + A’B
Y = ABC’ + BC + B’C’

This is called technology mapping
manipulating logic functions
so that they can use available 
resources

ABC

ABC’

A’C’

AB’

A’B

BC

B’C’

A B C

W X Y



Let’s look at the simplified structure of a ROM. A ROM is just like a look-up table 
whose structure is similar to that of a DEMUX. Actually, all the minterms are present in 
ROMs. Instead of the enable wire, the bits for outputs are programmed. When an address 
is coming in, its stored data (bits) should be brought up. An address to retrieve each 
stored word is equal to a minterm in the decoder. 33

decoder

0 n-1

Address

2   -1
n

0

1 1 1 1

word[i] = 0011

word[j] = 1010

bit lines (normally pulled to 1 through 
resistor – selectively connected to 0 
by word line controlled switches)

j

i

internal organization

word lines (only one 
is active – decoder is 
just right for this)

Read-only memories (ROMs)
Two dimensional array of 1s and 0s

entry (row) is called a "word"
width of row = word-size
index is called an "address"
address is input
selected word is output
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F0 = A' B' C  +  A B' C'  +  A B' C

F1 = A' B' C  +  A' B C'  +  A B C

F2 = A' B' C'  +  A' B' C  +  A B' C'

F3 = A' B C  +  A B' C'  + A B C'

truth table

A B C F0 F1 F2 F3
0 0 0 0 0 1 0
0 0 1 1 1 1 0
0 1 0 0 1 0 0
0 1 1 0 0 0 1
1 0 0 1 0 1 1
1 0 1 1 0 0 0
1 1 0 0 0 0 1
1 1 1 0 1 0 0

block diagram

ROM
8 words x 4 bits/word

address outputs
A B C F0F1F2F3

ROMs and combinational logic
Combinational logic implementation (two-level canonical form) 
using a ROM

So, a number of functions can be implemented together by using a single ROM. Here, 
total 32 bits are stored and 4 bits constitute a word. Actually, we don’t need those 
boolean expressions. We just need to fill in the ROM by the truth table and that’s it.
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ROM structure
Similar to a PLA structure but with a fully decoded AND array

completely flexible OR array (unlike PAL)
n address lines

• • •

inputs

decoder 2n word
lines

• • •

outputs

memory
array

(2n words
by m bits)

m data lines

A ROM is similar to a PLA, but for n inputs, there are always 2**n AND gates. 
Depending on the output values, what we need to do is to control transistors of 
crosspoints (or bits)



By using ROMs, we can implement a number of functions quickly at the cost of large 
size (e.g. 2**n AND gates). Also, we cannot utilize DC terms. We can say that if we 
have to use many minterms, the ROM approach is the best. If there are many shared 
product terms among outputs, PLA may be good. If the number of product terms for each 
output is small, PAL may be the best approach

36

ROM vs. PLA/PAL
ROM approach advantageous when

design time is short (no need to minimize output functions)
most input combinations are needed (e.g., code converters)
little sharing of product terms among output functions

ROM problems
size doubles for each additional input
can't exploit don't cares

PLA approach advantageous when
design tools are available for multi-output minimization
there are relatively few unique minterm combinations
many minterms are shared among the output functions

PAL problems
constrained fan-ins on OR plane
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Regular logic structures for two-level logic
ROM – full AND plane, general OR plane

cheap (high-volume component)
can implement any function of n inputs
medium speed

PAL – programmable AND plane, fixed OR plane
intermediate cost
can implement functions limited by number of terms
high speed (only one programmable plane that is much smaller than 
ROM's decoder)

PLA – programmable AND and OR planes
most expensive (most complex in design, need more sophisticated tools)
can implement any function up to a product term limit
slow (two programmable planes)

This slide shows a pro-con list of ROM, PAL, PLA technologies. ROMs may be the 
cheapest due to mass production. In PALs, the OR array is fixed; it takes less time in the 
OR array. However, no shared product terms is supported in PALs. PLA is the most 
flexible and expensive option among logic implementation technologies.
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Combinational logic technology summary
Random (fixed) logic

Single gates or in groups
conversion to NAND-NAND and NOR-NOR networks
transition from simple gates to more complex gate building blocks
reduced gate count, fan-ins, potentially faster
more levels, harder to design

Time response in combinational networks
gate delays and timing waveforms
hazards/glitches (what they are and why they happen)

Regular logic
multiplexers/decoders
ROMs
PLAs/PALs
advantages/disadvantages of each

In chapter 4, we looked at a few programmable structures that facilitate the 
implementations of two-level logic functions. Each structure has its own pros and cons.


