
1

Chapter 7.
finite state machines (FSMs)

In chapter 6, we looked at counters, whose values are useful for representing states.
Normally the number of states is finite. And a circuit or a system is modeled as a
machine that makes transitions among states. The state is the main theme of this chapter.
Some counters are moving among states without external inputs but FSMs usually have
external inputs. So FSM is a kind of a superset.

2

Finite State Machines
Sequential circuits

primitive sequential elements
combinational logic

Models for representing sequential circuits
finite-state machines

Design procedure
State/output diagrams
State/output tables
next state/output equations

Basic sequential circuits revisited
shift registers
counters

Hardware description languages
These are the topics that will be discussed in this chapter. Of course the next state
depends on the current state and the input values. The FSMs fall into two categories:
Moore and Mealy machines. Also we will look at how inputs are handled in sequential
systems. Still registers and counters are key parts of the sequential circuits.

3

Abstraction of state elements
Divide circuit into combinational logic and state
Localize the feedback loops and make it easy to break cycles
Implementation of storage elements leads to various forms of sequential
logic

Combinational
Logic

Storage Elements

Outputs

State OutputsState Inputs

Inputs

Now we are gonna break down a sequential logic system into two parts: combinational
logic part and memory part (states). Multiple storage elements will be used to abstract the
system states. The state, together with inputs, will determine the system operation: e.g.
what is the next state, output?

4

Forms of sequential logic
Asynchronous sequential logic – state changes occur whenever state
inputs change (elements may be simple wires or delay elements)
Synchronous sequential logic – state changes occur in lock step
across all storage elements (using a periodic waveform - the clock)

Clock

Asynchronous sequential logic circuits are operating without a clock, as shown on the
left. The majority of sequential logic is synchronous logic circuits operating with clock
signals, as illustrated on the right. With the clock signal, it is more convenient to control
state transitions.

5

In = 0

In = 1

In = 0In = 1

100

010

110

111001

Finite state machine representations
States: determined by possible values in sequential storage elements
Transitions: change of state
Clock: controls when state can change by controlling storage
elements

Sequential logic
sequences through a series of states
based on sequence of values on input signals
clock period defines elements of sequence

Now we use 5 states to describe the system behavior. The number in the circle represents
the state. The state transition is determined by the current state and the input. Sometimes,
the state transition takes place without an input, e.g. just by a clock tick.

6

Example finite state machine diagram
Combination lock from introduction to course

5 states
5 self-transitions
6 other transitions between states
1 reset transition (from all states) to state S1

reset
S3

closed

closed
mux=C1 equal

& new

not equal
& new

not equal
& new

not equal
& new

not newnot newnot new

S1 S2 OPEN

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

open

Let’s revisit the door combination lock system briefly. In the example in chapter 1, there
were 5 states. There are two kinds of transitions: self-transition, and ordinary transition.

7

Can any sequential system be represented with a
state diagram?

Shift register
input value shown
on transition arcs
output values shown
within state node

100 110

111

011

101010000

001

1

1

1

1

0

0

0
0

1

1

1

0

0

1

00

D Q D Q D QIN

OUT1 OUT2 OUT3

CLK

This state diagram shows all the possible states and transitions of a 3 bit shift register. In
this case, the new state values are equal to output values. For example, when the system
moves from 100 to 010, the output is 010. First of all, 3 bit will represent 8 states. And in
each state, two kinds of input values are expected.

8

010

100

110

011001

000

101111

3-bit up-counter

Counters are simple finite state machines
Counters

proceed through well-defined sequence of states in response to enable
Many types of counters: binary, BCD, Gray-code

3-bit up-counter: 000, 001, 010, 011, 100, 101, 110, 111, 000, ...
3-bit down-counter: 111, 110, 101, 100, 011, 010, 001, 000, 111, ...

In the case of a 3bit up counter, every clock tick will make a transition without any
inputs. In this case the numbers follow binary coding; hence it is called a binary counter.

9

How do we turn a state diagram into logic?
Counter

3 flip-flops to hold state
logic to compute next state
clock signal controls when flip-flop memory can change

wait long enough for combinational logic to compute new value
don't wait too long as that is low performance

D Q D Q D Q

OUT1 OUT2 OUT3

CLK

"1"

This one is a 3bit binary (up) counter. Recall that when all the lower bits are true, the
higher bit should be toggled at the next clock tick.

9-Step Design Approach

Step 1: State/output table or diagram
Step 2: Minimize # of states if possible
Step 3: State variable assignment
Step 4: Transition/output table
Step 5: Choose a f/f type
Step 6: Excitation table
Step 7: Excitation equations
Step 8: Output equations
Step 9: Draw a logic diagram

Excitation/Output
equations

State/Output
table

State/output
diagram

Problem Statement

Design a synchronous state-machine with one input X and an output
Z. Whenever the input sequence consists of two consecutive 0’s
followed by two consecutive 1’s or vice versa, the output will be 1.
Otherwise, the output will be 0.

Problem Interpretation
Problem statement is sometimes ambiguous

assume that input X is synchronous

Synch. X

Mealy
output Z
Moore
output Z

1 1 0 1 0 0 0 1 1 1 0 0 1 1 0

Asynch. X

Mealy
output Z
Moore
output Z

1 1 0 1 0 0 0 1 1 1 0 0 1 1 0

if x is asynch

Mealy Machine

Output are a function of P.S. and inputs
Output associated with transition
Tend to give the fewest states necessary
Can cause problems when the inputs are asynchronous

a
b

XY

c

Z

XY Z

X Z

Moore Machine

Output are a function of P.S.
Output associated with state
Tend to have more states
Output change only with a state change

do not rely on asynchronous inputs

a

d

XY

c

Z

XY

X

b

Step 1: State/Output Diagram

Draw bubbles for all correct sequences

A

B C D E

F G H I

0/0 0/0 1/0 1/1

1/0 1/0 0/0

• Meanings: A state is a meaningful abstraction of previous
history (How many differentiated states? Infinite? What you
need to remember? What you can forget?)

– (A – got nothing),
– (B – got 0), (C – got 00), (D – got 001), (E – got 0011)
– (F – got 1), (G – got 11), (H – got 110), (I – got 1100)

• In (E-got 0011), the future will not depend on 00 before 11 E=G

• Similarly, I=C

0/1

1/1

0/1

Step 1: State/Output Diagram

Adding other input sequences

A

B C D E

F G H I

0/0 0/0 1/0 1/1

1/0 1/0 0/0

1/1

0/1

0/1

0/0

1/0

0/0

1/0

0/01/0

Step 1: State/Output Diagram
Another approach

A state is understood as remembering something (previous history)
All we have to remember is the last three inputs
Eight states will be needed

(a=000, b=001, c=010, d=011, e=100, f=101, g=110, h=111)

P.S. X N.S. Z
a 0 a 0
a 1 b 0
b 0 c 0
b 1 d 1
c 0 e 0
c 1 f 0
d 0 g 0
d 1 h 0
e 0 a 0
e 1 b 0
f 0 c 0
f 1 d 0
g 0 e 1
g 1 f 0
h 0 g 0
h 1 h 0

a b c d

e f g h

0/0

1/0 0/0

1/1

0/0

1/0

0/0
1/00/0

1/0

0/0
1/0

0/1
1/0 0/0

1/0

Step 2: State Minimization
Identify equivalent states

Same output and next state (sometimes – use circular reasoning)
Formal minimization is beyond of scope

P.S. X N.S. Z
a 0 a 0
a 1 b 0
b 0 c 0
b 1 d 1
c 0 e 0
c 1 f 0
d 0 g 0
d 1 h 0
e 0 a 0
e 1 b 0
f 0 c 0
f 1 d 0
g 0 e 1
g 1 f 0
h 0 g 0
h 1 h 0

equivalent

equivalent

a = e (got x00) ↔ C (got 00)

b (got 001) ↔ D (got 001)

c (got 010) ↔ B (got 0)

d = h (got x11) ↔ G (got 11)

f (got 101) ↔ F (got 1)

g (got 110) ↔ H (got 110)

Step 3: State Assignment

Major effect on circuit cost
Practical guidelines

00…00 for initial state
Minimize # of state variables that change on transition
Maximize # of state variables that do not change in group of related states
Exploit symmetries – related states or group one bit difference
Use unused states well: Minimal risk or Minimal cost
Decompose – into individual bits or fields such that each bit has well defined meaning
w.r.t inputs and outputs
Consider using more than the minimum # of state variables

One-hot assignment small excitation equations, good for 1-out-of-s coded output

State Assignment Examples

State
Name

Simplest
QCQBQA

Decomposed
QCQBQA

One-hot
Q6-Q1

Arbitrary
QCQBQA

a (got 000)
b (got 001)
c (got 010)
d (got 011)
f (got 101)
g (got 110)

000
001
010
011
100
101

000
001
010
011
101
110

000001
000010
000100
001000
010000
100000

000
001
011
010
110
111

Assignment

We will use this assignment although it
is not particularly good

Step 4-6: Transition/Excitation/Output Table

P.S. QCQBQA X N.S. QCQBQA Z DCDBDA

a 0 0 0 0 a 0 0 0 0
a 0 0 0 1 b 0 0 1 0
b 0 0 1 0 c 0 1 1 0
b 0 0 1 1 d 0 1 0 1
c 0 1 1 0 e=a 0 0 0 0
c 0 1 1 1 f 1 1 0 0
d 0 1 0 0 g 1 1 1 0
d 0 1 0 1 h=d 0 1 0 0
e 0 a 0
e 1 b 0
f 1 1 0 0 c 0 1 1 0
f 1 1 0 1 d 0 1 0 0
g 1 1 1 0 e=a 0 0 0 1
g 1 1 1 1 f 1 1 0 0
h 0 g 0
h 1 h 0

Step 7-8: Excitation/Output Eqs.

0 0 0 0
1 0 1 0
0 0 1 0
- - - -

QCQB

QAX
00 01 11 10

00

01

11

10

0 0 1 1
1 1 1 0
1 1 1 0
- - - -

QCQB

QAX
00 01 11 10

00

01

11

10

0 1 0 1
1 0 0 0
1 0 0 0
- - - -

QCQB

QAX
00 01 11 10

00

01

11

10Minimum
Cost

XQQXQQQD ABABCC += ABBABB QQXQQQD ++= XQQXQQXQQD ABABABA ++=

0 0 1 0
0 0 0 0
0 0 0 1
- - - -

QCQB

QAX
00 01 11 10

00

01

11

10

XQQXQQZ ACAB +=

Step 9: Logic Diagram

Will skip
How much logic?

14 NANDs
3 F/Fs
1 Invertor

Minimum Cost Design: Unused states assigned for “minimum cost”
Risk?

Little risk – go into used states
If it is not acceptable, may have to change don’t care to specific states

100 0 000

100 1 001

101 0 011

101 1 010

P.S. X N.S.

24

010

100

110

011001

000

101111

3-bit up-counter

present state next state
0 000 001 1
1 001 010 2
2 010 011 3
3 011 100 4
4 100 101 5
5 101 110 6
6 110 111 7
7 111 000 0

3-bit Binary Counter

Tabular form of state diagram
Like a truth-table (specify output for all input combinations)
Encoding of states: easy for counters – just use value

For the 3-bit up counter, here is the state transition table. It’s like there are three inputs
and three outputs. In this case the literals for states are the inputs for the state transition.
If there are other outside inputs, those should be also written in the table.

D flip-flop for each state bit
Combinational logic based on encoding

25

Q3 Q2 Q1 D3 D2 D1
0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 0 0 0

D1 <= Q1’
D2 <= Q1Q2’ + Q1’Q2

<= Q1 xor Q2
D3 <= Q1Q2Q3’ + Q1’Q3 + Q2’Q3

<= (Q1Q2)Q3’ + (Q1’ + Q2’)Q3
<= (Q1Q2)Q3’ + (Q1Q2)’Q3
<= (Q1Q2) xor Q3

Implementation

0 0

0 1

1 1

0 1Q1

Q2

Q3D3

0 1

1 0

1 0

0 1Q1

Q2

Q3D2

1 1

0 0

1 1

0 0Q1

Q2

Q3D1

26

Diagram for the 3-bit Binary Counter

D Q D Q D Q

OUT1 OUT2 OUT3

CLK

"1"

Input determines next state

27

In Q1 Q2 Q3 NQ1 NQ2 NQ3 (= D1 D2 D3)
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 1
0 0 1 1 0 0 1
0 1 0 0 0 1 0
0 1 0 1 0 1 0
0 1 1 0 0 1 1
0 1 1 1 0 1 1
1 0 0 0 1 0 0
1 0 0 1 1 0 0
1 0 1 0 1 0 1
1 0 1 1 1 0 1
1 1 0 0 1 1 0
1 1 0 1 1 1 0
1 1 1 0 1 1 1
1 1 1 1 1 1 1

D1 <= In
D2 <= Q1
D3 <= Q2

Back to the shift register

100 110

111

011

101010000

001

0

1

1 1

11

1

1

0

0

0

0 0

1

00

D Q D Q D QIN

OUT1 OUT2 OUT3

CLK

Here is the state transition table for a 3bit shift register. In this case, there is one external
input in addition to the current states.

28

More complex counter example
Complex counter

repeats 5 states in sequence
not a binary number representation

Step 1: derive the state transition diagram
count sequence: 000, 010, 011, 101, 110

Step 2: derive the state transition table from the state transition diagram
Present State Next State
Qc Qb Qa Qc Qb Qa
0 0 0 0 1 0
0 0 1 – – –
0 1 0 0 1 1
0 1 1 1 0 1
1 0 0 – – –
1 0 1 1 1 0
1 1 0 0 0 0
1 1 1 – – –

note the don't care conditions that arise from the unused state codes

010

000 110

101

011

In this case, only five states are used out of 8 possible binary values; so three don’t care
cases appear. Note that the next state literals are denoted with + symbol.

Step 3: K-maps for next state functions

29

Dc = Qa

Db = Qb’ + Qa’Qc’

Da = QbQc’

More complex counter example (cont’d)

0 0

X 1

0 X

X 1Qa

Qb

QcDc

1 1

X 0

0 X

X 1Qa

Qb

QcDb

0 1

X 1

0 X

X 0Qa

Qb

QcDa

We see K-maps for three counter variables here.

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 30

Self-starting counters (cont’d)
Re-deriving state transition table from don't care assignment

0 0

1 1

0 0

1 1Qa

Qb

QcDc

1 1

1 0

0 1

0 1Qa

Qb

QcDb

0 1

0 1

0 0

0 0Qa

Qb

QcDa

Present State Next State
Qc Qb Qa Qc Qb Qa
0 0 0 0 1 0
0 0 1 1 1 0
0 1 0 0 1 1
0 1 1 1 0 1
1 0 0 0 1 0
1 0 1 1 1 0
1 1 0 0 0 0
1 1 1 1 0 0

010

000 110

101

011

001111

100

Counters have two categories: self-starting and non self-starting. In self-starting, even
though the system starts in one of all possible states, which may not be legal, the system
will eventually go to one of valid states. And then, the system will remain in the set of
legitimate states. Note that there are no don’t care terms.

31

Self-starting counters
Start-up states

at power-up, counter may be in an unused or invalid state
designer must guarantee that it (eventually) enters a valid state

Self-starting solution
design counter so that invalid states eventually transition to a valid state
may limit exploitation of don't cares

implementation
on previous slide

010

000 110

101

011

001111

100

010

000 110

101

011

001 111

100

The left two counters are non-self-starting since if the system is in the state not shown in
the state diagram, it will not work. Meanwhile the right one is self-starting.

32

Activity

2-bit up-down counter (2 inputs)
direction: D = 0 for up, D = 1 for down
count: C = 0 for hold, C = 1 for count

01

00 11

10

C=0
D=X

C=0
D=X

C=0
D=X

C=0
D=X

C=1
D=0

C=1
D=0

C=1
D=0

C=1
D=0

C=1
D=1

Q1 Q0 C D NQ1 NQ0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 1
0 0 1 1 1 1
0 1 0 0 0 1
0 1 0 1 0 1
0 1 1 0 1 0
0 1 1 1 0 0
1 0 0 0 1 0
1 0 0 1 1 0
1 0 1 0 1 1
1 0 1 1 0 1
1 1 0 0 1 1
1 1 0 1 1 1
1 1 1 0 0 0
1 1 1 1 1 0

33

Activity (cont’d)

Q1 Q0 C D D1 D0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 1
0 0 1 1 1 1
0 1 0 0 0 1
0 1 0 1 0 1
0 1 1 0 1 0
0 1 1 1 0 0
1 0 0 0 1 0
1 0 0 1 1 0
1 0 1 0 1 1
1 0 1 1 0 1
1 1 0 0 1 1
1 1 0 1 1 1
1 1 1 0 0 0
1 1 1 1 1 0

D1 = C’S1
+ CDS0’S1’ + CDS0S1
+ CD’S0S1’ + CD’S0’S1

= C’S1
+ C(D’(S1 ⊕ S0) + D(S1 ≡ S0))

D0 = CS0’ + C’S00 1 1 0

0 1 1 0

1 0 0 1

1 0 0 1

D

S1

S0

C

0 0 1 1

0 0 1 1

1 0 1 0

0 1 0 1

D

S1

S0

C

34

Counter/shift-register model
Values stored in registers represent the state of the circuit
Combinational logic computes:

next state
function of current state and inputs

outputs
values of flip-flops

Inputs

Outputs

Next State

Current State

next state
logic

Here is the big picture of counter- or shift register-based sequential logic systems. The
current state and the input will decide the next state by forming a combinational logic in
the oval. In the case of counters or registers, the values in the storage elements form the
output. What if the state is not exactly the output?

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 35

General state machine model
Values stored in registers represent the state of the circuit
Combinational logic computes:

next state
function of current state and inputs

outputs
function of current state and inputs (Mealy machine)
function of current state only (Moore machine)

Inputs Outputs

Next State

Current State

output
logic

next state
logic

If output is different from the state, there should be one more combinational logic, the
upper oval. There is another important classification: depending on the combinational
logic for outputs. If outputs are functions of only current state, that model is called a
Moore machine. On the other hand, if outputs are also dependent on external inputs, this
is called a Mealy machine (drawn by a blue arrow).

36

State machine model (cont’d)
States: S1, S2, ..., Sk

Inputs: I1, I2, ..., Im
Outputs: O1, O2, ..., On

Transition function: Fs(Si, Ij)
Output function: Fo(Si) or Fo(Si, Ij)

Inputs
Outputs

Next State

Current State

output
logic

next state
logic

Clock

Next State

State

0 1 2 3 4 5

Again, the state transition time is the reference time, which is typically positive- (or
negative-) edge of the clock signal depending on FF types. The clock period should be
long enough to allow full propagation of input and the current state signals through
combinational logic parts.

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 37

Comparison of Mealy and Moore machines
Mealy machines tend to have less states

different outputs on arcs (n2) rather than states (n)
Moore machines are safer to use

outputs change at clock edge (always one cycle later)
in Mealy machines, input change can cause output change as soon as
logic is done – a big problem when two machines are interconnected –
asynchronous feedback may occur if one isn’t careful

Mealy machines react faster to inputs
react in same cycle – don't need to wait for clock
in Moore machines, more logic may be necessary to decode state into
outputs – more gate delays after clock edge

As outputs of a Mealy machine are functions of the external inputs and the present state,
the number of states may be less. Information for the next state transition is split between
inputs from outside and the state. In Moore machines, outputs are dependent only on the
present state, the output will change synchronously if combinational logic has no
problem. In Mealy machines, external inputs can change the output anytime with
combinational logic delay somewhat independently of the clock. If two machines
perform the same function, Mealy machines react faster since inputs are already
changing the combinational logic for output.

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 38

Comparison of Mealy and Moore machines (cont’d)

Moore

Mealy

state feedback

inputs

outputsreg

combinational
logic for
next state logic for

outputs

inputs outputs

state feedback

reg
combinational

logic for
next state

logic for
outputs

This slide illustrates the three types of sequential systems. Synchronous Mealy machines
solve the potential glitches and asynchronous change of outputs of Mealy machines by
inserting clock-triggered memory elements.

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 39

D/1

E/1

B/0

A/0

C/0

1

0

0

0
0

1

1

1

1

0

reset

Specifying outputs for a Moore machine
Output is only function of state

specify in state bubble in state diagram
example: sequence detector for 01 or 10

Let’s see how a Moore machine can be described. Here, X/Y is the tuple of state X and
the output Y. The label in each incoming arc is the input. The output is associated with
the current state. Actually, the output signal will be asserted until the system goes to the
next state. This Moore machine detects whether the recent input string is 01 or 10.

current next
reset input state state output
1 – – A
0 0 A B 0
0 1 A C 0
0 0 B B 0
0 1 B D 0
0 0 C E 0
0 1 C C 0
0 0 D E 1
0 1 D C 1
0 0 E B 1
0 1 E D 1

40

B

A

C

0/1

0/0

0/0

1/1

1/0

1/0

reset/0

Specifying outputs for a Mealy machine
Output is function of state and inputs

specify output on transition arc between states
example: sequence detector for 01 or 10

In a Mealy machine, both the input and present state determine the next state. X/Y
notation in each arrow means input X will generate output Y. Compare the number of
states; the Mealy model has only 3 states. The problem of the Mealy machine is that we
cannot be sure of the exact timing of output change, not to mention glitch.

current next
reset input state state output
1 – – A 0
0 0 A B 0
0 1 A C 0
0 0 B B 0
0 1 B C 1
0 0 C B 1
0 1 C C 0

41

Vending
Machine

FSM

N

D

Reset

Clock

OpenCoin
Sensor

Release
Mechanism

Example: vending machine
Release item after 15 cents are deposited
Single coin slot for dimes, nickels
No change

Now we will see three or four implementations of the same vending machine that sells an
item which costs 15 cents. We don’t need to figure out the exact mechanism of
identifying dimes and nickels. Just assume that the corresponding wire will be asserted:
N for nickel and D for dime. Also, for simplicity, we do not care about change.

Dime: 10 cent coin
Nickel: 5 cent coin

42

Example: vending machine (cont’d)
State diagram

symbolic state table

present inputs next output
state D N state open
0¢ 0 0 0¢ 0

0 1 5¢ 0
1 0 10¢ 0
1 1 – –

5¢ 0 0 5¢ 0
0 1 10¢ 0
1 0 15¢ 0
1 1 – –

10¢ 0 0 10¢ 0
0 1 15¢ 0
1 0 15¢ 0
1 1 – –

15¢ – – 15¢ 1

0¢

Reset

5¢

N

N

N + D

10¢

D

15¢
[open]

D

Here is the simple state transition table for the vending machine. This is kind of a Moore
machine since the output becomes 1 after the system moves to state 15¢. First of all, a
dime and a nickel cannot be inserted at the same time, which implies don’t care terms.

Uniquely encode states

43

present state inputs next state output
Q1 Q0 D N NQ1 NQ0 open
0 0 0 0 0 0 0

0 1 0 1 0
1 0 1 0 0
1 1 – – –

0 1 0 0 0 1 0
0 1 1 0 0
1 0 1 1 0
1 1 – – –

1 0 0 0 1 0 0
0 1 1 1 0
1 0 1 1 0
1 1 – – –

1 1 – – 1 1 1

Example: vending machine (cont’d)

So there are 4 states of the system (0,5,10,15¢), which requires minimum two FFs. The
number of bits to represent states can be determined in many ways; we will look at two
cases here. Two external inputs and one external output are already explained. This is a
simple Moore machine since the output is dependent only on state.

44

D1 = Q1 + D + Q0 N

D0 = Q0’ N + Q0 N’ + Q1 N + Q1 D

OPEN = Q1 Q0

Example: Moore implementation
Mapping to logic

0 0 1 1

0 1 1 1

X X 1 X

1 1 1 1

Q1D1

Q0

N
D

0 1 1 0

1 0 1 1

X X 1 X

0 1 1 1

Q1D0

Q0

N
D

0 0 1 0

0 0 1 0

X X 1 X

0 0 1 0

Q1Open

Q0

N
D

There are total 4 input variables for each output. OPEN seems to be the simplest logic. In
this case, the external output is a function of only state variables. For simplicity, we skip
the feedback parts of Q1 and Q0 wires.

Q0

45

present state inputs next state output
Q3 Q2 Q1 Q0 D N D3 D2 D1 D0 open
0 0 0 1 0 0 0 0 0 1 0

0 1 0 0 1 0 0
1 0 0 1 0 0 0
1 1 - - - - -

0 0 1 0 0 0 0 0 1 0 0
0 1 0 1 0 0 0
1 0 1 0 0 0 0
1 1 - - - - -

0 1 0 0 0 0 0 1 0 0 0
0 1 1 0 0 0 0
1 0 1 0 0 0 0
1 1 - - - - -

1 0 0 0 - - 1 0 0 0 1

D0 = Q0 D’ N’

D1 = Q0 N + Q1 D’ N’

D2 = Q0 D + Q1 N + Q2 D’ N’

D3 = Q1 D + Q2 D + Q2 N + Q3

OPEN = Q3

Example: vending machine (cont’d)
One-hot encoding

One-hot encoding means only one bit is ON for each state; that is, only one state variable
is set, or "hot," for each state. So the number of bits to represent states is the same as the
number of states. The benefit is that the next state generation function may be simple
since the number of product terms for each output is typically small. In this case, we use
4 bits or FFs.

VII - Finite State Machines © Copyright 2004, Gaetano Borriello and Randy H. Katz 46

Equivalent Mealy and Moore state diagrams
Moore machine

outputs associated with state

0¢
[0]

10¢
[0]

5¢
[0]

15¢
[1]

N’ D’ + Reset

D

D

N

N+D

N

N’ D’

Reset’

N’ D’

N’ D’

Reset

0¢

10¢

5¢

15¢

(N’ D’ + Reset)/0

D/0

D/1

N/0

N+D/1

N/0

N’ D’/0

Reset’/1

N’ D’/0

N’ D’/0

Reset/0

Mealy machine
outputs associated with transitions

This slide shows the complete state transition diagram of the vending machine in two
versions. In the Moore model, the number in [] is the output. Whereas, in the Mealy
model, the output is associated with each arc.

47

Example: Mealy implementation

0¢

10¢

5¢

15¢

Reset/0

D/0

D/1

N/0

N+D/1

N/0

N’ D’/0

Reset’/1

N’ D’/0

N’ D’/0

Reset/0 present state inputs next state output
Q1 Q0 D N D1 D0 open
0 0 0 0 0 0 0

0 1 0 1 0
1 0 1 0 0
1 1 – – –

0 1 0 0 0 1 0
0 1 1 0 0
1 0 1 1 1
1 1 – – –

1 0 0 0 1 0 0
0 1 1 1 1
1 0 1 1 1
1 1 – – –

1 1 – – 1 1 1

D0 = Q0’N + Q0N’ + Q1N + Q1D
D1 = Q1 + D + Q0N
OPEN = Q1Q0 + Q1N + Q1D + Q0D

0 0 1 0

0 0 1 1

X X 1 X

0 1 1 1

Q1Open

Q0

N
D

In the case of a Mealy machine, the output, OPEN, is a function of state and the inputs.

48

Example: Mealy implementation
D0 = Q0’N + Q0N’ + Q1N + Q1D
D1 = Q1 + D + Q0N
OPEN = Q1Q0 + Q1N + Q1D + Q0D

Here is the overall implementation of the vending machine based on the Mealy model.

49

Hardware Description Languages
VHDL for FSM

Define a new type of signal for use in
symbolic state table

A

B
Z

Selected assignment statement

- for multiple cases

Assigning specific codes to the states?

Not necessary since synthesis tools will do for you
Sometimes necessary

Alternative 1: Use constant definition
Alternative 2: use Synopsys “attribute” enum_encoding

53

Finite state machines summary
Models for representing sequential circuits

abstraction of sequential elements
finite state machines and their state diagrams
inputs/outputs
Mealy and Moore machines

Finite state machine design procedure
deriving state diagram
deriving state transition table
determining next state and output functions
implementing combinational logic

Hardware description languages
We start with simple FSMs like counters and shift registers, where states are outputs
directly. We should differentiate Moore and Mealy models. With either model, we
should be able to design a FSM.

