Sequential Circuit Analysis and Timing

Various Types of FFs

D	Q	Q	Input D
	$\mathrm{Q}-\mathrm{QN}$	0	Next state
	1	0	

	$\begin{aligned} & \mathrm{Q}-\mathrm{Q} \\ & \mathrm{Q} \mathrm{O}-\mathrm{QN} \end{aligned}$	J	K	Next state
		0	0	Q
		0	1	0
		1	0	1
		1	1	Q'

Analysis of Clocked Synchronous State Machines

- Begin with circuit
- End with state diagram - word description
- 3 step approach

Synchronized Operation With CLK

Step 1: Excitation and Output Equations

- Derive Excitation and Output Equations from the schematic

$$
\begin{aligned}
& J_{A}=\bar{X}, K_{A}=X, \\
& J_{B}=\overline{Q_{A}} \bar{X}, K_{B}=\overline{Q_{A}}, \\
& O=\overline{Q_{A}} Q_{B}
\end{aligned}
$$

Step 2: State/Output Table

	$\begin{aligned} & \text { C.S. } \\ & \text { QB QA } \end{aligned}$	$\begin{gathered} \text { Input } \\ \text { A X } \end{gathered}$	Output O		QA	$\begin{gathered} \text { Input } \\ \mathrm{X} \end{gathered}$			JA			QA			$\begin{aligned} & \text { N.S } \\ & 3 \text { Q } \end{aligned}$
0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1
0	0	1	0	0	0	1	0	1	0	1	0	0	1	0	0
0	1	0	0	0	1	0	1	0	1	0	0	1	0		1
0	1	1	0	0	1	1	0	0	0	1	0	1	1	0	0
1	0	0	1	1	0	0	0	1	1	0	1	0	0	0	1
1	0	1	1	1	0	1	0	1	0	1	1	0	1	0	0
1	1	0	0	1	1	0		0	1	0	1	1	0		1
1	1	1	0	1	1	1		0	0	1	1	1	1		0
Output Table					Excitation Table						Transition Table				

Step 2: State/Output Table

$\begin{aligned} & \text { P.S. } \quad \text { Input } \\ & \text { QB QA } \end{aligned}$			$\begin{array}{lc} \text { Output } & \text { Excitation } \\ \text { O } & \text { JB KB JA KA } \end{array}$					$\begin{gathered} \text { N.S. } \\ \text { QB QA } \end{gathered}$	
0	0	0	0	0	1	1	0	0	1
$\{0$	0	1	0	0	1	0	1	0	0
$\{0$	1	0	0	1	0	1	0	1	1
b 0	1	1	0	0	0	0	1	0	0
$\{1$	0	0	1	0	1	1	0	0	1
		1	1	0	1	0	1	0	0
	1	0	0	1	0	1	0	1	1
		1	0		0	0	1	1	0

Step 2: State/Output Table (Cont.)

C.S. X	O	N.S.		X	
a 0	0	b			
			State	0	1
a 1	0	a	a	b, 0	a,0
b 0	0	d	b	d,0	a,0
b 1	0	a	c	b,1	a,1
c 0	1	b	d	d,0	c,0
c 1	1	a			
d 0	0	d			
d 1	0	c			

Step 3: State Diagram

- Can you tell what this machine is doing?

Example

Timing

- If this circuit is to work with a larger system, what are the timing requirements? - Timing specification

Metastability

Metastability of a sequential logic

S R	Q	QN
00	last Q	last QN
01	0	1
10	1	0
11	0	0

Setup \& Hold Times of Sequential Components (e.g. D-ff)

Maximum CLK frequency

- How fast can the circuit work?

- Assume inputs are ready at the right time

Maximum CLK frequency

- Timing specs for 74LS parts

	Propagation delay	Setup time	Hold time	Max freq.
74LS04 (Inverter)	$\mathrm{t}_{\text {pLH }}=15 \mathrm{~ns}$ $\mathrm{t}_{\mathrm{pHL}}=15 \mathrm{~ns}$	$\mathrm{~N} / \mathrm{A}$		
74LS08 (AND)	$\mathrm{t}_{\mathrm{pLH}}=15 \mathrm{~ns}$ $\mathrm{t}_{\mathrm{pHL}}=20 \mathrm{~ns}$	$\mathrm{~N} / \mathrm{A}$		
74LS109 (JK f/f)	$\mathrm{t}_{\text {pLH }}=25 \mathrm{~ns}$ $\mathrm{t}_{\text {pHL }}=40 \mathrm{~ns}$	$\mathrm{t}_{\mathrm{s}}=35 \mathrm{~ns}$ for H data in $\mathrm{t}_{\mathrm{s}}=25 \mathrm{~ns}$ for L data in	$\mathrm{t}_{\mathrm{h}}=5 \mathrm{~ns}$	25 Mhz

- Find the worst case delay path
- Sum up worst case component delay, independent of transition direction H->L, L->H
$-109 \mathrm{t}_{\mathrm{p}}->08 \mathrm{t}_{\mathrm{p}}->109 \mathrm{t}_{\text {setup }}: 40+20+35=95 \mathrm{~ns}$
$-109 \mathrm{t}_{\mathrm{p}}->04 \mathrm{t}_{\mathrm{p}}->109 \mathrm{t}_{\text {setup }}: 40+15+35=90 \mathrm{~ns}$
- $\operatorname{Maxf}_{\mathrm{clk}}=1 / 95 \mathrm{~ns}=10.5 \mathrm{Mhz}$

Setup and Hold time specifications on X

- t_{s} for $X \quad X$ setup

- t_{h} for X

Propagation delay

- X -> O: N/A (Applicable only for Mealy type output)
- CLK -> O:
$-\quad$ tpLH $=$ max (tpLH '109 + tpLH ’08, tpHL '109 + tpLH ’04 + tpLH ‘08)
$=\max (25 \mathrm{~ns}+15 \mathrm{~ns}, 40 \mathrm{~ns}+15 \mathrm{~ns}+15 \mathrm{~ns})=70 \mathrm{~ns}$
$-\quad$ tpHL $=$ max (tpHL '109 + tpHL '08, tpLH '109 + tpHL ’04 + tpHL ’08)
$=\max (40 \mathrm{~ns}+20 \mathrm{~ns}, 25 \mathrm{~ns}+15 \mathrm{~ns}+20 \mathrm{~ns})=60 \mathrm{~ns}$

Final timing spec for our circuit

	Propagation delay	Setup time	Hold time	Max freq.
Our circuit	$\mathrm{t}_{\mathrm{pLH}}=70 \mathrm{~ns}$ $\mathrm{t}_{\mathrm{pHL}}=60 \mathrm{~ns}$	$\mathrm{t}_{\mathrm{s}}=70 \mathrm{~ns}$	$\mathrm{t}_{\mathrm{h}}=5 \mathrm{~ns}$	10.5 Mhz

- This spec will be used for analyzing timing of a larger system containing our circuit as a component.

Quiz

- What is the maximum clock frequency of the following circuit?

Can you tell what this guy is doing?

SYSCNT

Bubble-to-bubble approach

Proper use of bubbles and naming

- Name of a signal: Help understanding the circuit like meaningful variable names in C programs (READY, GO, ENABLE, REQUEST, etc)
- Active High or Active Low (to take advantage of gate implementation, e.g., NOR is faster than OR)
- Use the bubble to represent Active Low signal and its name has "_L" or "-" (e.g., READY_L or READY-)

(c)

(d)

Examples

RESET-

MSI Chips
 (used in our 2's complement machine)

Read: 8.4, 8.5, 6.4
(3rd Edition 8.4, 8.5, 5.4)

74LS163

- 4-bit, synchronous, parallel load, binary counter

Table 8-11 State table for a 74×163 4-bit binary counter.

8 bit counter using 74LS163 ?

- Cascading using RCO

74LS194

- 4-bit, parallel in, parallel out, bi-directional shift register

Function	Inputs		Next state			
	S1	so	QA*	QB*	$Q C$	$Q D^{*}$
Hold	0	0	QA	QB	QC	QD
Shift right	0	1	RIN	QA	QB	QC
Shift left	1	0	QB	QC	QD	LIN
Load	1	1	A	B	C	D

74LS139

- Dual 2-to-4 Decoder

74LS138

- 3 Enables, 3-to-8 Decoder
[Table 5-7 Truth table for a 74×138 3-to-8 decoder.

Inputs						Outputs							
G1	G2A_L	G2B_L	C	B	A	Y7_L	Y6_L	Y5_L	Y4_L	Y3_L	Y2_L	Y1_L	Y0_L
0	X	x	x	x	x	1	1	1	1	1	1	1	1
x	1	x	x	x	X	1	1	1	1	1	1	1	1
x	x	1	x	x	x	1	1	1	1	1	1	1	1
1	0	0	0	0	0	1	1	1	1	1	1	1	0
1	0	0	0	0	1	1	1	1	1	1	1	0	1
1	0	0	0	1	0	1	1	1	1	1	0	1	1
1	0	0	0	1	1	1	1	1	1	0	1	1	1
1	0	0	1	0	0	1	1	1	0	1	1	1	1
1	0	0	1	0	1	1	1	0	1	1	1	1	1
1	0	0	1	1	0	1	0	1	1	1	1	1	1
1	0	0	1	1	1	0	1	1	1	1	1	1	1

Applications of Decoder

- Address decoder
- In microcomputers, an I/O address is 8 bits so that there are 256 unique device addresses.
- How to make 16 I/O ports of two I/O chips (8 ports of each) to the following I/O mapped addresses?

Applications of Decoder

- Cascading
- Cascade small decoders for longer bits decoding
- How to make 5-to-32 decoder (with 3 enables EN1, EN2-, EN3-) using 74LS138 and 74LS139?

Applications of Decoder

- Use as a Demultiplexer

- Use in combinational logic design
- Use a 74LS138 to implement $F=D \bar{E} \bar{F}(A B+\bar{A} \bar{B} \bar{C})$

SYSCNT

Hints

- Sequential Two's complement machine
- Analyze a machine that takes the 2's complement of an 8-bit number
- 8 bits in, START $\rightarrow 8$ bits out, DONE
- More realistic example that uses MSI chips
- For PLDs, FPGAs design, we usually use functional blocks (LBB - Logic Building Block) equivalent to the counters, shift registers, decoders, etc

General Architecture and Operation

- Example: $01001010 \rightarrow 10110110$ (2’s complement of A $=2^{\mathrm{n}}-\mathrm{A}$)
$-01001010 \rightarrow 11111111+1-01001010=10110101+1=10110110$
- Write down bits from right until a 1 is encountered. Complements all bits there after
- General Operation Flow
- Load 8 bits into 2×74194 (4 bit shift right/left register)
- Do a circular shift on the data, inverting bits as necessary
- Finally, the 2's complement data will appear at the output after 8 shift operations

Parallel Data Out $\mathrm{Q}_{7} \mathrm{Q}_{6} \mathrm{Q}_{5} \mathrm{Q}_{4} \mathrm{Q}_{3} \mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}$	Invert InvertQ
- - -	0
$0 \begin{array}{lllllllll}0 & 1 & 0 & 0 & 1 & 0 & 1 & 0\end{array}$	0
$1 \begin{array}{lllllllll}0 & 0 & 1 & 0 & 0 & 1 & 0 & 1\end{array}$	0
	1
3 1 1100101001	1
$4 \quad 01100100$	1
$5 \begin{array}{lllllllll}5 & 1 & 1 & 1 & 0 & 1 & 0\end{array}$	1
$6 \begin{array}{llllllllll}6 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1\end{array}$	1
$7 \begin{array}{lllllllll}6 & 0 & 1 & 0 & 1 & 1 & 0\end{array}$	1
8 1 10011101010	1

General Architecture and Operation

- 74LS194 (4 bit shift register) is used for loading \& shifting 8 bit data
- We use D f/f (with asynchronous clear) to remember from when inverting is necessary
- We use 74LS163 (a synchronous 4-bit counter) to count 8 shifts
- System controller control the overall operation
- The system controller determines when data should be loaded, shifted or held by controlling S1 and S0
- The system controller also looks at BITFLG so as to know when to set the INVERT D f/f
- The system controller also clears 74LS163 at the beginning, increments it each time a bit is shifted, and detects when 8 bits have been shifted.
- Finally, the system controller asserts DONE signal

Much larger system analysis

- Analysis of the structure
- More than a few f / fs in circuit - not practical to treat as a single state machine
- Try directly applying the 3-step approach
- How many f/fs?
- Shift reg - 8, Counter - 4, INVERT -1, System Controller - 2
$-15 \mathrm{f} / \mathrm{fs}=>2^{15}$ states
- Then, 3 step analysis only on system controller

Synchronous System Structure

- Generally 2 Parts: Data Unit \& Control Unit
- Data unit: process data (store, route, combine)
- Control unit: starting and stopping actions, test conditions, decide what to do next
- Only control unit - designed as state machine

Data unit
Control unit (State Machine)

Decomposing State Machines

- The control unit may be further partitioned
- Main machine - system controller
- Sub machines - counter, INVERT D f/f

Do a 3 step analysis only on system controller

Step 1: Excitation and Output Eqs.

- Inputs?
- External inputs (4): CLK, START, BITFLAG, C7 (ignore POC for simplification)
- P.S. (2): Q1, Q2
- Outputs?
- External outputs (7): CLR_CNTR, RST_INVRT, S0, S1, ENCNTR, SET_INVRT, DONE
- N.S. (2): = Excitations D1, D2
$D_{2}=Y_{1}+Y_{3}+Q_{2} \bar{C}_{7}=Q_{1}+Q_{2} \bar{C}_{7}$
$D_{1}=Y_{1}+\bar{Q}_{2}$ START $=\bar{Q}_{2} Q_{1}+\bar{Q}_{2}$ START
ENCNTR $=Y_{3}+Y_{2}=Q_{2}$
$S_{1}=Y_{1}=\bar{Q}_{2} Q_{1}$
$S_{0}=Y_{3}+Y_{2}+Y_{1}=Q_{2}+Q_{1}$
DONE $=Y_{0}=\bar{Q}_{2} \bar{Q}_{1}$

1. avoid glitch on SI when transit to Y2
2. hold time on RIN (not likely the problem)
$C L R _C N T R=\bar{Q}_{2} \bar{Q}_{1}$
$R S T$ _INVRT $=\bar{Q}_{2} \bar{Q}_{1}$

SET_INVRT $=\overline{C L K} \cdot Y \cdot B I T F L A G=\overline{C L K} \cdot Q_{2} \overline{Q_{1}} \cdot B I T F L A G$

Step 2: State/Output Table

- How many rows and columns?

Step 2: State/Output Table

- Variable entered table

	P.S. Q2 Q1	Outputs							
EC CC S1 S0 RI SI DONE								\quad	N.S.
:---									
Q2 Q1									

Step 3: State Diagram

Quiz: Why we need Y3? Can we merge it with Y2?

Example

Sample Timing Diagram

Timing Analysis

- Timing specs. for the parts we have used

Chip	tpLH(ns)	tpHL(ns)
LS00, LS04, LS10, LS27	15	15
LS86	30	22
LS139 A,B -> Y	29	38
LS139 G -> Y	24	32

LS74	tpLH	tpHL	ts	th
CLR, CLK, PR->Q	25	40		
D			20	5
fmax $=25 \mathrm{Mhz}$				

LS163	tpLH	tpHL	ts	th
CLK->Q	24	27		
CLK->RCO	35	35	20	5
ENT->RCO	14	14		
CLR->Q		28		
A,B,C,D,ENP,ENT, LD			20	0
fmax $=25$ Mhz				

LS194	tpLH	tpHL	ts	th
CLR->Q		35		
CLK->Q	26	30		
S1, S0			30	
L,R,A,B,C,D			20	
All				0
fmax $=25 \mathrm{Mhz}$				

Maximum CLK frequency

- We must satisfy setup time for all f/f inputs (we will consider only D2, S0, RIN as examples)

D2 setup	Path1: $\underline{\text { CLK } \rightarrow \text { Q2(LS74) }}+\underline{\mathrm{B} \rightarrow \mathrm{Y} 3(L S 139)}+\underline{\mathrm{Y} 3 \rightarrow \mathrm{D} 2(L S 10)}+$ D2_setup $=40+38+15+20=113 \mathrm{~ns}$
	$\text { Path2: } \begin{aligned} \underline{\text { CLK } \rightarrow \text { Q2(LS74) }}+\underline{\text { LS00 }}+\underline{\text { LS10 }}+\text { D2_setup } \end{aligned}$
	Path3: $\underline{\text { CLK } \rightarrow \text { CNTR Q(LS163) }}+\underline{\text { CNTR Q } \rightarrow \text { C7(LS10) }}+\underline{\text { LS00 }}+\underline{\text { LS10 }}+$ D2_setup $=27+15+15+15+20=92 \mathrm{~ns}$
S0 setup	Path1: $\underline{\text { CLK } \rightarrow \text { Q2,Q1 (LS74) }}+\underline{\text { A,B } \rightarrow Y(L S 139) ~}+\underline{Y} \rightarrow$ S0(LS10) + S0_setup $=40+38+15+30=123 \mathrm{~ns}$
$\begin{gathered} \text { RIN } \\ (=\text { SRI: Shift Right Input }) \\ \text { of Left 'x194' } \\ \text { setup } \end{gathered}$	$\text { Path1: } \frac{\text { CLK } \rightarrow \text { Q0(LS194) })}{=30+30+20=80 \mathrm{~ns}}+\underline{\text { LS86 }}+\text { RIN_setup }$
	$\begin{aligned} \text { Path2: } & \frac{\text { CLK(falling edge) } \rightarrow \text { SI (LS27,LS04) }}{=}+\underset{\text { SI } \rightarrow \text { INVQ(LS74) }}{=15+15+25(40 ?)+30+20=105(120 ?)}+\mathrm{LS} 86+1 / 2 \text { Lclk }>105(120 ?) \mathrm{ns} \rightarrow 210(240 ?) \mathrm{ns} \rightarrow \text { setup } \end{aligned}$

Max clk frequency $=1 / 210 \mathrm{~ns}=4.8 \mathrm{Mhz}$

If we use the pure maximum value approach,
Max clk frequency $=1 / 240 \mathrm{~ns}=4.2 \mathrm{Mhz}$

Setup and Hold time specifications on START

- t_{s} for START start

- t_{h} for START

Problem Statement

- Design 74x166-8 bit parallel-in, serial-out shift register with enable

CLR - Asynchronous
EN - when asserted -> according to LD
otherwise -> hold
LD - when asserted -> LD
otherwise -> Shift

Step 1: State/Output Table

- A state table (or diagram) isn't very helpful since LD can take you from any state to any other -> messy!
- Inputs:

A-H
SER
CLR
EN
LD
State variables: Qs
$\left.\begin{array}{l}8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 8\end{array}\right\}$

Alternatives

- CLR asynchronous - not needed
- EN - take care in special way
- initially assume always asserted
- Think 2 bits rather than 8 bits and then generalize
- Variables: SER, A, B, LD, $\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}} \rightarrow$ still $2^{6}=64$ rows! \rightarrow "Variable Entered Table"

Variable-Entered Table

Q_{A}	Q_{B}	LD	Q_{A}	Q_{B}
0	0	0	SER	0
0	0	1	A	B
0	1	0	SER	0
0	1	1	A	B
1	0	0	SER	1
1	0	1	A	B
1	1	0	SER	1
1	1	1	A	B

Steps 2-6

- Step 2: state minimization - not relevant
- Step 3: state assignment - not relevant
- Step 4: Transit/output table - we already have
- Step 5: Choose f/f - D f/f
- Step 6: Excitation table - same as transit table

Steps 7-8: Excitation/Output Eqs. (Variable Entered Map)

$D_{A}=\overline{L D} \cdot S E R+L D \cdot A$

$$
D_{B}=\overline{L D} \cdot Q_{A}+L D \cdot B
$$

Steps 9: Logic Diagram

Steps 9: Logic Diagram

Remind (General Sequential Circuit Structure)

Remind (General Sequential Circuit Timing)

Gating the CLK

- Short GCLK pulse - dependent on delay
- Comes too soon (or late) after asserting enable

Different approach to holding

- Delay in CLK line is not good design practice
- Puts in CLK skew
- All f/f CLKs don't triggered at same time \rightarrow eliminates the good points to use synchronous design (we can ignore a lot of difficult timing issues)
- Desired: "Synchronous function-enable input"
- EN should sampled along with data at CLK edge

Clock Skew

- Clock skew: difference between arrival times of CLK at different devices
- Caused by
- Gating in the CLK line
- Delay along long lines (1ns/ft - speed of light) - CAD serial routing

Clock Skew

- Problem
- If $t_{\text {sk }}$ too long - CLK edge get to $B \mathrm{f} / \mathrm{f}$ after D_{B} changes => Wrong operations
- In general - hold time on D_{B} can be violated

$$
t_{\text {ffpd }}(\min)+t_{\text {comb }}(\min)>t_{s k}+t_{h}
$$

t_{sk} max?: use timing specs
x74 (25ns) $+x 00(9 n s)+x 10(9 n s)-x 74 h o l d ~(5 n s)=38 n s$

