
Stop Watch
(System Controller Approach)

Problem
• Design a “stop watch” that can measure times taken for

two events
– Inputs

• CLK = 16 Hz
• RESET: Asynchronously reset everything
• X: comes from push button

– First Push: Start timer
– Second Push: Store the time taken for the first event
– Third Push: Store the time taken for the second event

• SEL: select output (High: first event time, Low: second event time)
– Outputs

• Two decimal digits to be connected to two seven segment displays
– Can display 00 ~ 99

Overall Architecture Design

CLK

RESET

X

SEL

SEC

TENSEC

•Which LBB (among those we learn in the class) and how many?

•How to decompose the whole system into data part and control part?

Design System Architecture
• First step: divide the system into a control unit and data unit

– Data unit – stores, routes, combines, and generally process data
– Control unit – starting & stopping the process, testing conditions, and

deciding what to do next

System controller design

Table (Variable Entered Table)

State symbol

P.S.

Q1 Q0

N.S.

D1 D0

Output

S1 S0 ENCNT

A

B

C

unused

0 0

0 1

1 1

1 0

Excitation Eqs, Output Eqs

Q0
Q1 0 1

1

0

Q0
Q1 0 1

1

0

Q0
Q1 0 1

1

0

Q0
Q1 0 1

1

0

Q0
Q1 0 1

1

0

D1= D0=

S1= S0= ENCNT=

Alternative (VHDL program)

4-bit Serial Adder
(Decomposing state machines, synchronous design

methodology, system controller design)

Review of combinational adders

1-bit full adder and 4-bit ripple adder

Binary serial adder

• Serial input feed (two data streams A and B)
• Generate serial output

Ai

Bi

Si

CLR HOLD

CLR – clear the previous carry synchronously

HOLD – hold the previous value of the carry

Carry

Binary serial adder implementation
• LS183: dual 1 bit full adders

Q(Carry)

A

B

0

0

0

0S

1

1

1

1

1

0

0

0

1

1

1

1

1

0

0

0

carry

Problem Statement
• Design a 4-bit adder based on a serial approach

– Parallel feed of X1 and X2
– Parallel out of Y comes out after few cycles
– Final carry available

4-bit adder

START

CONTROL

X1 X2

4 4

4

DONE

YCARRY

if CONTROL=1, X1 plus X2 Y

if CONTROL=0, X1 plus Y Y

START may be long
(External guy will

negate START only
after detecting

DONE)

Start from LBB

• Here, we have some basic building blocks in mind
– 4-bit shift registers, binary serial adder, etc

• Tie these elements together and make them controllable
from the outside world

• We want to take maximum advantage of common building
blocks (MSI chips that are available)

Design System Architecture
• First step: divide the system into a control unit and data unit

– Data unit – stores, routes, combines, and generally process data
– Control unit – starting & stopping the process, testing conditions, and

deciding what to do next

Data unit & Control unit

Shift register Shift register

Binary
serial adder

X1 X2

4 4

4
Y

Control unit Data unit

DONE

START

CONTROL Carry

Architecture
A B C DRIN LINS1 S0

QA QB QC QD

CLR

A B C DRIN LINS1 S0

QA QB QC QD

CLR

Binary
Serial Adder

CLR HOLD

Ai

Bi

SYSCLK

Si

CARRY

Control UnitSTART

CONTROL

DONE

74LS194

74LS194

CARRY

Y

X1

X2

SYSCLK

SYSCLK

Decomposing state machine
• Second step: the state machine part (control unit) can be decomposed into

several parts
– Main machine (system controller) – provides the primary inputs and outputs and

does top level control
– Submachines – perform lower-level steps under control of main machine

• Typical submachine – counter
– Saves 2n states in main machine
– Easier to follow the control 2 bit counter to count

of bits added
Our system controller

Architecture
A B C DRIN LINS1 S0

QA QB QC QD

CLR

A B C DRIN LINS1 S0

QA QB QC QD

CLR

SYSCLK

SYSCLK

X1

X2
Binary

Serial Adder

CLR HOLD

Ai

Bi
SYSCLK

Si

Y3 Y2 Y1 Y0

CARRY

System
Controller

START

CONTROL

DONE

S11 S10 S21 S20 CLR HOLD

74LS194

74LS194

D C B A

SYSCLK

CLR LOAD

EnP
EnT

74LS163
QD QC QB QARCO

C4

C4

CLRCNTR

S11 S10

S21 S20

CLR_L HOLD_L

CLRCNTR_L

System controller design

a b

cd

START

CLRCNTR
HOLD
DONE

,
,

START

CLR
XCONTROLSS

XSS
),Hold else , Load if(

), Load(

22021

11011

),Shift (
),Shift (

22021

11011

XSS
XSS

4C4CSTART

(?)
,
,

CLRCNT
HOLD
DONE

START

Example results
0101 (5)

+ 0001 (1)

0110 (6)

Sate Carry Reg 1 Reg 2 Counter

a - - - 0

b - - - 0

c 0 0101 0001 1

c 1 0010 0000 2

c 0 0001 1000 3

c 0 0000 1100 4

d 0 0000 0110 5

State assignment and Transition Table

Q1Q0 Q1Q0 (D1D0) DONE CLRCNTR CLR HOLD S11 S10 S21 S20

a 0 0 0 ST 1 1 0 1 x x 0 0

b 0 1 1 1 0 0 1 x 1 1 CONT’ CONT’

c 1 1 1 C4 0 0 0 0 0 1 0 1

d 1 0 ST 0 1 x 0 1 x x 0 0

Excitation and Output Eqs.

0

Q0
Q1

0 1
0

1

1

ST 1

101 QSTQD ⋅+=

ST
0 1

0

1

1

0 C4

401010 CQSTQQQD ⋅+⋅+=

1

Q0
Q1

0 1
0

1

0

1 0

0QDONE =

1

Q0
Q1

0 1
0

1

0

x 0

0QCLRCNTR =

0

Q0
Q1

0 1
0

1

1

0 0

01QQCLR =

1

Q0
Q1

0 1
0

1

x

1 0

0QHOLD =

x

Q0
Q1

0 1
0

1

1

x 0

111 QS =

x

Q0
Q1

0 1
0

1

1

x 1

110 =S

0

Q0
Q1

0 1
0

1

c

0 0

CONTROLQQS ⋅= 0121

0

Q0
Q1

0 1
0

1

c

0 1

01020 QQCONTROLQS +⋅=

Logic Diagram

Asynchronous Inputs and Output Glitches

• Things to watch out for in synchronous
design
– Clock skew
– Gating the clock
– Asynchronous inputs
– Output glitches

Example
• Binary counting order for our previous state

assignment

Q1Q0 Q1Q0 (D1D0) DONE CLRCNTR CLR HOLD S11 S10 S21 S20

a 0 0 0 ST 1 1 0 1 x x 0 0

b 0 1 1 0 0 0 1 x 1 1 CONT’ CONT’

c 1 0 1 C4 0 0 0 0 0 1 0 1

d 1 1 ST ST 1 x 0 1 x x 0 0

a b

cd

START

CLRCNTR
HOLD
DONE

,
,

START
CLR

XCONTROLSS
XSS

),Hold else , Load if(
), Load(

22021

11011

),Shift (
),Shift (

22021

11011

XSS
XSS

4C
4CSTART

HOLD
DONE,

START

Focus on part of solution

0

Q0
Q1

0 1
0

1

1

1 ST

101011 QSTQQQQD ⋅++=

ST
0 1

0

1

0

C4 ST

0101010 4 QQCQQSTQQSTD ⋅+⋅+⋅=

1

Q0
Q1

0 1
0

1

0

0 1

0101 QQQQDONE +=

D1 Q1

D0 Q0

0Q
1Q

0Q
1Q

Q1

Q0

1Q
ST

ST
1Q

0Q

ST
1Q

0Q

4C
1Q

0Q

SYSCLK

SYSCLK

DONE

-

Q0
Q1

0 1
0

1

1

0 -

011 QS =

11S

Asynchronous START
• Is START synchronous or asynchronous?

– Could be either
– Assume asynchronous (comes from another system not using same

SYSCLK)
• Look at transition from “11” to “00” by negating START
• What happens if ts, th of D f/fs are not satisfied due to

asynchronous START?
– Usually stay at 1 or go to 0
– Problem? – early change to START=0 => “00”

late change to START=0 => “11”
• Problem: unexpected results can happen

– Delays not equal, f/fs different
– Generally – could do either if ts, th not satisfied

11 01

10
on occasion

Synchronize START (Synchronizer)

D1 Q1

D0 Q0

0Q
1Q

0Q
1Q

Q1

Q0

1QST

ST
1Q

0Q

ST
1Q

0Q

4C
1Q

0Q

SYSCLK

SYSCLK

DONE

D1 Q1

Q1
SYSCLK

START
SYNCSTART _

Change right after SYSCLK
edge, so START_SYNC will

satisfy ts, th of f/fs

11S

Additional Problem?
• What else besides START_SYNC=1 or 0?
• Metastable – stuck in middle for a while

– What happen if START does not satisfy ts, th of
“Synchronizer” D f/f

– START_SYNC not 1 or not 0 for a while

• Metastability – real problem (early versions of
several microprocessor chips had this problem!)

• Synchronizer Failure and Metastability
– Solutions?

Output Glitch on DONE
• Look at transition between b=“01” and c=“10”

01

00

10

11

One f/f change at a
time because

slightly different
delay s

• For a moment in the transition from “01” to “10”
– Q1Q0 = “00” or “11”
– DONE=1 between states b (“01”) and c (“10”)

Q1

Q0

SYSCLK

DONE

Problem? May or may not.
DONE is used for

synchronous inputs of other
parts – not likely the problem

What if DONE is used for
asynchronous CLR of other

parts?

Put a register (Stabilizer) on output
• One D f/f on DONE

D1 Q1

D0 Q0

0Q
1Q

0Q
1Q

Q1

Q0

1QST

ST
1Q

0Q

ST
1Q

0Q

4C
1Q

0Q

SYSCLK

SYSCLK

DONE

D1 Q1

Q1
SYSCLK

START
SYNCSTART _

D1 Q1

Q1
SYSCLK

REGDONE _

11S

Work?
• DONE_REG delayed – usually no problem

Q1

Q0

SYSCLK

DONE

DONE_REG

• Register output not always needed
– Good state assignment (compare this with our first state

assignment)
– Some good output logics (e.g., S11)

Synchronous Design Methodology
(Summary)

• All LBBs and f/fs are clocked by the same common clock
signal
– We use guaranteed LBBs and f/fs by the manufacturer (critical

race free!!)
– Glitches on combinational circuits connecting LBBs and f/fs have

no effect, since the control inputs are sampled only after the
glitches have had a chance to settle out

• Three tasks to ensure reliable system operation
– Minimize and determine the amount of clock skew
– Ensure that f/fs have positive setup- and hold-time margins
– Identifying asynchronous inputs, synchronize them with the clock
– Filter any problematic output glitches with output stabilizers

