
Stop Watch
(System Controller Approach)



Problem 
• Design a “stop watch” that can measure times taken for 

two events
– Inputs 

• CLK = 16 Hz
• RESET: Asynchronously reset everything
• X: comes from push button

– First Push: Start timer
– Second Push: Store the time taken for the first event
– Third Push: Store the time taken for the second event

• SEL: select output (High: first event time, Low: second event time) 
– Outputs

• Two decimal digits to be connected to two seven segment displays
– Can display 00 ~ 99



Overall Architecture Design

CLK

RESET

X

SEL

SEC

TENSEC

•Which LBB (among those we learn in the class) and how many?

•How to decompose the whole system into data part and control part?



Design System Architecture
• First step: divide the system into a control unit and data unit

– Data unit – stores, routes, combines, and generally process data
– Control unit – starting & stopping the process, testing conditions, and 

deciding what to do next





System controller design



Table (Variable Entered Table)

State symbol

P.S.
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Output
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Excitation Eqs, Output Eqs
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Alternative (VHDL program)













4-bit Serial Adder
(Decomposing state machines, synchronous design 

methodology, system controller design)



Review of combinational adders 

1-bit full adder and 4-bit ripple adder



Binary serial adder

• Serial input feed (two data streams A and B)
• Generate serial output

Ai

Bi

Si

CLR HOLD

CLR – clear the previous carry synchronously

HOLD – hold the previous value of the carry

Carry



Binary serial adder implementation
• LS183: dual 1 bit full adders
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Problem Statement
• Design a 4-bit adder based on a serial approach

– Parallel feed of X1 and X2
– Parallel out of Y comes out after few cycles
– Final carry available

4-bit adder

START

CONTROL

X1 X2

4 4

4

DONE

YCARRY

if CONTROL=1, X1 plus X2 Y

if CONTROL=0, X1 plus Y Y

START may be long
(External guy will 

negate START only 
after detecting 

DONE)



Start from LBB

• Here, we have some basic building blocks in mind
– 4-bit shift registers, binary serial adder, etc

• Tie these elements together and make them controllable 
from the outside world

• We want to take maximum advantage of common building 
blocks (MSI chips that are available)



Design System Architecture
• First step: divide the system into a control unit and data unit

– Data unit – stores, routes, combines, and generally process data
– Control unit – starting & stopping the process, testing conditions, and 

deciding what to do next



Data unit & Control unit

Shift register Shift register

Binary 
serial adder 

X1 X2

4 4

4
Y

Control unit Data unit

DONE

START

CONTROL Carry



Architecture
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Decomposing state machine
• Second step: the state machine part (control unit) can be decomposed into 

several parts
– Main machine (system controller) – provides the primary inputs and outputs and 

does top level control
– Submachines – perform lower-level steps under control of main machine

• Typical submachine – counter
– Saves 2n states in main machine
– Easier to follow the control 2 bit counter to count 

# of bits added
Our system controller



Architecture
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System controller design 
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Example results 
0101 (5)

+ 0001 (1)

-------------

0110 (6)

Sate  Carry   Reg 1     Reg 2    Counter

a          - - - 0

b          - - - 0

c          0       0101      0001           1

c          1       0010      0000           2

c          0       0001      1000           3

c          0       0000      1100           4

d          0       0000      0110           5



State assignment and Transition Table 

Q1Q0          Q1Q0 (D1D0)      DONE CLRCNTR  CLR HOLD S11 S10 S21 S20               

a            0   0             0   ST                     1     1              0       1        x     x     0     0

b            0   1             1    1                      0   0              1        x        1     1   CONT’ CONT’

c            1   1             1   C4                     0    0              0       0        0     1     0     1

d            1   0             ST   0                     1    x              0       1        x     x     0     0  



Excitation and Output Eqs.
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Logic Diagram



Asynchronous Inputs and Output Glitches

• Things to watch out for in synchronous 
design
– Clock skew
– Gating the clock
– Asynchronous inputs
– Output glitches



Example
• Binary counting order for our previous state 

assignment 

Q1Q0          Q1Q0 (D1D0)      DONE CLRCNTR  CLR HOLD S11 S10 S21 S20               

a            0   0             0   ST                     1     1              0       1        x     x     0     0

b            0   1             1    0                      0   0              1        x        1     1   CONT’ CONT’

c            1   0             1   C4                     0    0              0       0        0     1     0     1

d            1   1            ST  ST                     1     x              0       1        x     x     0     0   
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Focus on part of solution
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Asynchronous START
• Is START synchronous or asynchronous?

– Could be either
– Assume asynchronous (comes from another system not using same 

SYSCLK)
• Look at transition from “11” to “00” by negating START 
• What happens if ts, th of D f/fs are not satisfied due to 

asynchronous START?
– Usually stay at 1 or go to 0
– Problem? – early change to START=0 => “00”

late change to START=0 => “11”
• Problem: unexpected results can happen

– Delays not equal, f/fs different
– Generally – could do either if ts, th not satisfied

11 01

10
on occasion



Synchronize START (Synchronizer)

D1 Q1

D0 Q0

0Q
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Q1
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START
SYNCSTART _

Change right after SYSCLK 
edge, so START_SYNC will 

satisfy ts, th of f/fs

11S



Additional Problem?
• What else besides START_SYNC=1 or 0? 
• Metastable – stuck in middle for a while

– What happen if START does not satisfy ts, th of 
“Synchronizer” D f/f

– START_SYNC not 1 or not 0 for a while

• Metastability – real problem (early versions of 
several microprocessor chips had this problem!)

• Synchronizer Failure and Metastability
– Solutions?



Output Glitch on DONE 
• Look at transition between b=“01” and c=“10”

01

00

10

11

One f/f change at a 
time because 

slightly different 
delay s

• For a moment in the transition from “01” to “10”
– Q1Q0 = “00” or “11”
– DONE=1 between states b (“01”) and c (“10”)

Q1

Q0

SYSCLK

DONE

Problem? May or may not.
DONE is used for 

synchronous inputs of other 
parts – not likely the problem

What if DONE is used for 
asynchronous CLR of other 

parts? 



Put  a register (Stabilizer) on output 
• One D f/f on DONE
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Work?
• DONE_REG delayed – usually no problem

Q1

Q0

SYSCLK

DONE

DONE_REG

• Register output not always needed
– Good state assignment (compare this with our first state 

assignment)
– Some good output logics (e.g., S11)



Synchronous Design Methodology
(Summary)

• All LBBs and f/fs are clocked by the same common clock 
signal
– We use guaranteed LBBs and f/fs by the manufacturer (critical 

race free!!)
– Glitches on combinational circuits connecting LBBs and f/fs have 

no effect, since the control inputs are sampled only after the  
glitches have had a chance to settle out

• Three tasks to ensure reliable system operation
– Minimize and determine the amount of clock skew
– Ensure that f/fs have positive setup- and hold-time margins
– Identifying asynchronous inputs, synchronize them with the clock
– Filter any problematic output glitches with output stabilizers


